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The role of carboxylato ligand dissociation in the 
oxidation of chrysin with H2O2 catalysed by [Mn2

III,IV(μ-
CH3COO)(μ-O)2(Me4dtne)](PF6)2 

Shaghayegh Abdolahzadeh,[a] Nicola M. Boyle,[a] M. Lisa Hoogendijk,[a] Ronald 
Hage,[b] Johannes W. de Boer[b] and Wesley R. Browne[a],* 

The aqueous and non-aqueous chemistry of the complex [Mn2
III,IV(µ-CH3COO)(µ-

O)2(Me4dtne)](PF6)2, which has been demonstrated as an exceptionally active catalyst in the 
bleaching of raw cotton and especially wood pulp at high pH (> 11), is explored by UV/vis 
absorption, Raman and EPR spectroscopies and cyclic voltammetry. The data indicate that 
dissociation of the μ-acetato bridge is essential to the catalysts activity and rationalises the 
effect of sequestrants such as DTPA on its performance. 
 

 

Introduction 

The coordination chemistry of manganese complexes1 bearing 
ligands based on the tridentate macrocycle 1,4,7-
triazacyclononane (tacn), has attracted considerable attention 
both with respect to their solid state and magnetic properties 
and as models for bioinorganic systems.2 Since the first reports 
of multinuclear manganese complexes incorporating such 
ligands in the mid-1980s, interest in manganese chemistry is 
driven in large part by the wide range of oxidation states that 
are accessible, e.g., from Mn2

II,II to Mn2
IV,IV. Among the many 

multinuclear manganese complexes reported to date, dinuclear 
manganese complexes containing one3 or more μ-oxido 
groups4 are perhaps the most extensively studied.5  
 Manganese complexes derived from Me3tacn (N,N’,N’’-
trimethyl-1,4,7-triazacyclonone) and Me4dtne (1,2-bis(4,7-
dimethyl-1,4,7-triazacyclonon-1-yl)ethane), such as the mixed-
valence complex [Mn2

III,IV(µ-CH3COO)(µ-O)2(Me4dtne)](PF6)2 
(1),6, 7 and the complexes [Mn2

IV,IV(µ-CH3COO)(µ-
O)2(Me4dtne)](ClO4)3 (2),7 [Mn2

IV,IV(µ-O)3(Me3tacn)2](PF6)2 

(3),2a,b  and [Mn2
III,III(µ-CH3COO)2(µ-O)(Me3tacn)2](PF6)2 

(4),2a,b were developed by Wieghardt and co-workers, with the 
aim of stabilizing µ-oxido bridged manganese units.  
 These complexes were described originally by Wieghardt 
and co-workers as models for manganese catalases and the 
oxygen-evolving complex of photosystem II,2b,7 in particular 
with respect to extensive EPR spectroscopic studies.7 However, 
in addition to their use as structural models for the study of 
enzymes and bioinorganic clusters, many of these complexes 
have been shown to catalyse oxidative transformations with 
H2O2.

8 Indeed complex 3 has shown good to excellent activity 

in the presence of carboxylic acids in a range of oxidative 
transformations including the epoxidation and cis-
dihydroxylation of alkenes9,10,11,12,13 and the oxidation of 
alcohols and aldehydes.14,15 

 
Fig. 1 Structure of complexes 1-4, the ligands Me4dtne and Me3tacn and of 
chrysin 

Recent mechanistic studies16 and in particular speciation 
analysis in non-aqueous media have demonstrated that,10,11 in 
the case of 3, activity in oxidation catalysis is critically 
dependent of the formation of µ-carboxylato bridged 
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complexes analogous to 4 in situ. A key observation in these 
systems was that the carboxylato ligands were central to 
determining both the activity and selectivity of 3 in the 
oxidation of alkenes in particular10 and, for example, as the 
source of chirality in the enantioselective cis-dihydroxylation 
of alkenes.13 
 In contrast to the selective oxidation of organic substrates, 
the application of complexes 1-4 in industrial bleaching 
applications, e.g., raw cotton8 and wood pulp,17,18,19 with H2O2 
require that the complexes operate under conditions of high pH 
(11-11.5) in aqueous buffers and in the presence of 
sequestrants (e.g., diethylene-triamine-pentaacetic acid, 
DTPA). The latter being important for sequestering trace metal 
ions that can disproportionate H2O2. Interest in such catalysts 
for cotton bleaching is focused especially on limiting the extent 
of cellulose damage through the use of milder reaction 
conditions (i.e. lower temperatures, shorter reaction times), 
however, the treatments require high pH in order to remove fats 
and other unwanted components from raw cotton and to 
remove partially oxidised lignin in the case of wood pulp.18d 
Under these conditions it is complex 1 rather than 3 that has 
shown the better performance in cotton bleaching, especially at 
relatively high pH (11-11.5), which enables significantly lower 
temperatures to be used than the 90-100 °C normally employed 
for such processes.17 
 Central questions relating to the application of 1 in such 
bulk processes are the effects of other components, especially 
sequestrants, and why the catalyst works optimally at such high 
pH values. Answering these questions necessitates elucidating 
the structure of the species present at different pHs and 
potential interactions with the carboxylates that are commonly 
present in the additives used (e.g., DTPA).  
 Although the solid state and magnetic properties of these 
complexes have been examined in detail,7 their speciation in 
solution and especially in water has received relatively little 
attention. This lack of data is in large part due to the tendency 
of these complexes to undergo disproportionation reactions in 
solution and to form labile high-spin d5 MnII complexes, which 
tend to form manganese oxides at high pH. Nevertheless, 
understanding the pH dependence of the coordination 
chemistry of manganese complexes is of wider importance due 
to the numerous roles the complexes play in both natural and 
artificial systems, including the active sites of a number of 
metalloenzymes,20 and in water oxidation catalysis, which has 
seen a recent surge in interest.21  
 In the present contribution, the pH dependent aqueous and 
non-aqueous coordination chemistry of 1 was investigated by 
UV/vis absorption, Raman and electron paramagnetic 
resonance (EPR) spectroscopies, as well as cyclic voltammetry. 
The importance of carboxylato ligands in determining catalytic 
activity is of central interest. In contrast to complex 3, the 
activity of which, at low pH, depends critically on the presence 
of carboxylato ligands,10 here we show that for 1, at high pH, 
dissociation of the µ-carboxylato ligand is key to its activity in 
oxidation catalysis as demonstrated in the bleaching of chrysin 
containing aqueous solutions (Fig. 1) with H2O2. Furthermore, 
we demonstrate that carbonate, either added deliberately or 

present due to absorption of CO2 from the atmosphere, 
especially at high pH, displaces the acetate ligand of 1 and is 
also effective in supressing catalytic activity through 
coordination to the dinuclear complex. 

Results 

Complexes 1 and 2 were prepared as described earlier6,7 with 
slight modifications. The solution chemistry of 1 and 2 was 
first studied in acetonitrile by UV/vis absorption, Raman and 
resonance Raman spectroscopy and by cyclic voltammetry in 
order to examine the effect of ligand exchange on their 
spectroscopic and electrochemical properties. 

 UV/vis absorption spectroscopy and cyclic voltammetry in 
acetonitrile 

The UV/vis absorption spectrum of 1 in CH3CN in the 
presence of various carboxylic acids is shown in Fig. 2. 
Addition of carboxylic acids, such as CCl3CO2H, CF3CO2H 
CH2BrCO2H, benzoic acid and 2,6-dichlorobenzoic acid, has 
relatively little, if any, effect on the UV/vis absorption 
spectrum of 1 in CH3CN. In the case of CCl3CO2H and 
CF3CO2H, however, over time (ca. 30 min) a blue shift in the 
visible absorption is observed, which, on the basis of the pH 
dependence of the absorption spectrum of 1 and by comparison 
with 2 (vide infra), is ascribed to the dissociation of the 
carboxylato bridge. 

 
Fig. 2 UV/vis absorption spectra of 1 (1 mM) in acetonitrile (black) 30 min after 
addition of CH2BrCO2H (green line), CCl3CO2H (red), CF3CO2H (blue), each at 100 
mM. 

A reversible redox wave was observed for 1 in acetonitrile at 
E1/2 = 0.64 V (Fig. 3). The chemical, as well as 
electrochemical, reversibility was confirmed by UV/vis 
absorption (Fig. 4) and FTIR spectroelectrochemistry (ESI, 
Fig. S1 and S2), which showed formation of 2 (i.e. the 
spectrum obtained matched that of the independently prepared 
complex 2 in acetonitrile) and complete recovery of the 
spectrum of 1 upon reduction. 
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Fig. 18 EPR and UV/vis absorption spectra of 2 in water at (initially) pH (black) 
4.5, (red) 6.0, (green) 11.0 and finally (blue) 5.5. g-value of ca. 2. 

The cyclic voltammetry of 2 in water at pH 6.25 was similar to 
that of 1, as expected, albeit with the open circuit potential at 
potentials 0.57 V (Fig. 19). At pH 11, the voltammetry changes 
to that observed for 1 at pH 11 and upon returning to pH 6.20 
the redox wave at 0.47 V recovered partially and an additional 
redox wave was observed at ca. 0.16 V. In addition, the open 
circuit potential was less positive than 0.47 V confirming a 
change in redox state from Mn2

(IV,IV) to Mn2
(III,IV).  

 
Fig. 19 Cyclic voltammetry of 2 (1 mM) in 0.1 M KNO3(aq) at pH 6.25 (red), 11.4 
(blue) and subsequently pH 6.20 (green). At a GC electrode vs SCE, at 100 mV s-1. 

Oxidation of chrysin with H2O2 catalysed by 1 

Complex 1 has shown remarkable stability and activity in the 
bleaching of substrates with H2O2 at high pH (pH > 11) and 
with substantial reduction in the temperatures required.17 In the 
present study the flavone chrysin was employed as a model for 
the dyes present in raw cotton. This flavone was selected 
because it is much less readily oxidised in comparison with its 
structural analogues and shows minimal pH dependence on its 
absorption spectrum (and hence on its protonation state) 
between pH 8 and 11, allowing for a comparison of the activity 
of 1 in catalysing its oxidation across this pH range.  
 The rate of bleaching of aqueous solutions of chrysin by 
H2O2 catalysed by 1 shows a pronounced dependence on pH 
between pH 9 and 11 with rapid oxidation observed at pH 11 
compared with that observed at lower pH (Fig. 20). In the 
absence of 1, the rate of oxidation is negligible over the time 
scale examined. Notably, at pH 11 in the presence of 0.5 M 
sodium acetate the rate of oxidation is reduced dramatically 
(Fig. 21), although over long time periods the same overall 
conversion is observed. 

 
Fig. 20 Oxidation of chrysin (40 µM) with H2O2 (400 μM) in the presence of 1 (1 
μM) at pH 9 (blue), 10 (red) and at pH 11 (black) and at pH 11 without 1 (green) 
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Conclusions 
The effect of acetate and carbonate on the activity of the 
complex may also provide insight into the effect of 
sequestrants on the activity of 1, in particular DTPA, which 
bears multiple carboxylate groups. These data indicate that 
optimisation of the concentrations of such additives should take 
into consideration both the suppression of disproportionation of 
H2O2 by free metal ions (through sequestration by, e.g., DTPA) 
and the opposing reduction in the catalytic activity of 1. This 
conclusion also highlights the complexity faced in designing 
catalyst systems for bulk applications where multiple goals 
(e.g., bleaching,  delignification etc.) are to be achieved in a 
single processing step, that involve multiple reactive species. 
 From a mechanistic perspective, the data presented here 
highlight the fact that, although catalysts such as 1, 3 and 4 are 
structurally analogous, a priori, mechanistic understanding 
gained with one system, i.e. the critical role played by 
carboxylates in controlling selectivity by acting as ligands in 
the case of 3/4, cannot be extrapolated to related systems, i.e. 1, 
where the loss of the carboxylato ligand is key to achieving 
activity. 

Experimental Section 
 
Materials. Commercially available chemicals were used 
without further purification unless stated otherwise. Solvents 
for electrochemical and spectroscopic measurements were 
UVASOL (Merck) grade or better. H2O2 was 50% w/w in 
water. [Mn2

III,IV(µ-CH3COO)(µ-O)2(Me4dtne)](Cl)2 was 
received as a gift from Catexel BV.26 ESI-MS m/z 270.7 
[MnIII,IV

2(µ-CH3COO)(µ-O)2(Me4dtne)]2+, 686.2 [MnIII,IV
2(µ-

CH3COO)(µ-O)2(Me4dtne) + (PF6)]
+. Elemental analysis (calc. 

for Mn2C20H43N6O4P2F12): C 28.89 % (28.89 %), H 5.26 % 
(5.21 %), N 10.11 % (10.11 %).6,7 Complex [MnIII,IV

2(µ-
CF3CO2)(µ-O)2(Me4dtne)](PF6)2 was prepared according to the 
general procedure described elsewhere,26 elemental analysis 
(calc. for Mn2C20H40N6O4P2F15): C 27.25 % (27.13 %), H 4.60 
% (4.55 %), N 9.58 % (9.49 %). 
Synthesis of complex [Mn2

IV,IV(µ-CH3COO)(µ-
O)2(Me4dtne)](ClO4)3 (2). This complex was prepared using a 
modified procedure originally described in by Schäfer et al.7 
Perchloric acid (0.5 ml, 70 %) was added to a green solution of 
[Mn2

III,IV(µ-CH3COO)(µ-O)2(Me4dtne)](Cl)2 (67% purity)26 
(0.6 mmol) in water (25 ml). The colour of the solution 
changed to pale yellow immediately and crystal formation was 
observed. The precipitate was filtered and dissolved in a 
minimum of hot water and 70 % of the solvent was removed in 
vacuo followed by standing overnight. The solid formed was 
collected by vacuum filtration, washed with cold water, ethyl 
acetate and diethyl ether, followed by drying with air. Yield 
30%. Elemental analysis (calc. for Mn2C20H43N6Cl3O16): C, 
28.6; H, 5.16; N, 10.1, found: C, 28.6; H, 5.15; N, 9.94. 

Instrumentation 

 UV/vis absorption spectra were recorded with a HP8453 
spectrophotometer or a Specord600 (AnalytikJena) in 1 cm 

pathlength quartz cuvettes. Electrochemical measurements 
were carried out using a model CHI760B Electrochemical 
Workstation (CH Instruments). Analyte concentrations were 
typically 1 mM. The pH was controlled by addition of aqueous 
NaOH or H2SO4. CV were reported in water containing 0.1 M 
potassium nitrate and unless stated otherwise, a 3-mm-diameter 
Teflon-shrouded glassy carbon working electrode (CH 
Instruments), a Pt wire auxiliary electrode, and an SCE 
reference electrode were employed. Cyclic voltammograms 
were obtained at a sweep rate of 100 mV s−1 unless stated 
otherwise. All potential values are quoted with respect to SCE. 
Redox potentials are ±10 mV. (Epa, anodic peak potential; Epc, 
cathodic peak potential; E1/2 = (Epa+Epc)/2). 
Spectroelectrochemistry was carried out using an OTTLE cell27 
(a liquid IR cell modified with Infrasil windows and a platinum 
mesh working and counter electrode and a Ag/AgCl reference 
electrode, University of Reading) mounted in a Specord600 
UV/vis spectrometer with potential controlled by a CHI760C 
potentiostat. The Ag/AgCl reference electrode of the OTTLE 
cell was prepared by anodisation at 9 V with a platinum wire 
cathode in 3 M KCl(aq). FTIR spectra were recorded on a Perkin 
Elmer spectrum 400 equipped with a liquid nitrogen cooled 
MCT detector. 
 ESI-MS spectra recorded on a Triple Quadrupole 
LC/MS/MS mass spectrometer (API 3000, Perkin-Elmer Sciex 
Instruments). Mass spectra in tBuOH/H2O solvent mixtures 
were recorded in positive mode and in the range m/z 100−900. 
Samples were prepared using doubly distilled water and pH 
was adjusted using aqueous H2SO4 and NaOH solutions.  
 EPR spectra (X-band, 9.46 GHz) were recorded on a 
Bruker ECS106 spectrometer in liquid nitrogen (77 K). 
Samples for measurement (0.25 mL) were transferred to EPR 
tubes, which were frozen in liquid nitrogen immediately. 
 Raman spectra were recorded at λexc 355 nm (8 mW at 
sample, Cobolt Lasers) in a 135o backscattering arrangement. 
Raman scattering was collected and collimated by a 2.5 cm 
diameter 7.5 mm focal length planoconvex lens and filtered by 
a 355 nm edge filter (Semrock) before refocusing into the 
spectrograph (Shamrock500i spectrograph, Andor Technology 
with a 1800 L/mm grating blazed at 300 nm) using a 2.5 cm 
diameter 17.5 cm focal length plano convex lens and acquired 
with a DV420A-BU2 CCD camera (Andor Technology). The 
spectrometer slit width was set to 11 µm. Each spectrum was 
accumulated, typically 60 or 120 times with 5 s acquisition 
time, resulting in a total acquisition time of between 5 to 10 
min per spectrum. Data were recorded and processed using 
Solis (Andor Technology) with spectral calibration performed 
using the Raman spectrum of acetonitrile/toluene 50:50 (v:v). 
Samples were held in quartz 10 mm path length cuvettes. For 
pH dependent resonance Raman studies aqueous NaOH 
solutions were employed to adjust the pH. 
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Loss of the acetato ligand is shown to be key to the activity of this manganese catalyst at pH 11 in the 
beaching of chrysin  
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