RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

An efficient facile and one-pot synthesis of benzodiazepines and chemoselective 1,2-disubstituted benzimidazoles using magnetically retrievable Fe₃O₄ nanocatalyst under solvent free condition

Ramen Jamatia^a, Mithu Saha^a, Amarta Kumar Pal^a*

^aDepartment of Chemistry, North Eastern Hill University, Mawlai Campus, Shillong 793022, India.

Benzodiazepine and chemoselective 1,2-disubstituted benzimidazole derivatives were synthesized by the condensation reaction of o-phenylenediamine with ketones and aryl aldehydes using Fe_3O_4 nanoparticles as a recyclable catalyst under solvent free condition. This synthetic approach eliminates the use of toxic organic solvents with the added benefit of easy separation and reusability of the catalyst without compromising the yield or purity which makes the procedure green.

Green chemistry is the development of reaction processes that reduce or eliminate the use or generation of hazardous substances. Towards the last decade emphasis has been given to developing more environmentally benign synthetic organic processes. Organic solvent pose the biggest challenge in this regard due to its hazardous impact on the environment and the human health. The design of a reaction process without the use of hazardous organic solvent would be an important step towards green chemistry. The present approach offers the advantage of eliminating the use of hazardous organic solvents.

Recently, metal nanoparticles have received much attention in the field of organic synthesis. Metal nanoparticles are much more reactive than the bulk because of their higher surface to volume ratio.² Further, the reusability of the catalyst has become an important trend in chemistry due to growing environmental and economic concern. Of the nanoparticles, Fe₃O₄ NPs are important because of their potential uses such as in magnetic drug targeting, clinical diagnosis and as catalyst.³ Fe₃O₄ NPs, are also of interest due to its easy synthesis and magnetic property which makes it easily separable by an external magnetic field and being comparatively cheap.

Nitrogen containing [6, 7] and [6, 5] fused heterocycles like benzodiazepine and benzimidazole derivatives are important class of heterocyclic compounds having interesting pharmacological and biological properties. These compounds have also been known for their analgesic, antianxiety, hypnotic, anti-inflammatory, anticonvulsant, muscle-relaxant, antitumor, antiulcer, antimicrobial, antiviral, anti-HIV and amnesic properties. Benzimidazole has also been found to be effective against human cytomegalovirus (HCMV) and as efficient selective neuropeptide YY1 receptor antagonists. Because of these medicinal and industrial applications, these compounds have been of wide

interest. These compounds can also be used for the preparation of other important heterocyclic compounds and are important intermediates in many organic reactions. 12-15 Benzodiazepines and benzimidazole derivatives have been prepared by the condensation or cyclization of ophenylenediamine with a variety of carbonyl compounds. Various catalyst such as BF₃.Et₂O₂ NBS, NaBH₄, Na LaCl₃.7H₂O, ¹⁹ polyphosphoric acid, ²⁰ AgNO₃, ²¹ Yb(OTf)₃, ²² Sc(OTf)₃, ²³ Ga(OTf)₃, ²⁴ ZnCl₂, ²⁵ and ionic liquids, ²⁶ have been employed for the synthesis of benzodiazepine. Benzimidazole have also been reported with amberlite, 27 Fe(ClO₄)₃, 28 In₂O₃. 29 However these methods suffer from drawbacks such as the use of hazardous organic solvents, longer reaction time, low vield, harsher reaction condition and high cost. In our present approach, we have synthesized benzodiazepine and benzimidazole derivatives under solvent free condition using Fe₃O₄ NPs which eliminates the use of toxic solvents with the added advantage of reusability of the catalyst.

Fig.1 Some biologically important compounds.

RESULTS AND DISCUSSION

Fe₃O₄ NPs was prepared by the addition of a base to an aqueous solution containing Fe³⁺ and Fe²⁺ in a molar ratio of 2:1, according to the procedure given by Karami et al.³³ The resulting solution was heated at 50-60 °C with stirring. A dark black precipitate was formed. Then the precipitate was filtered, dried and characterized by TEM, SEM, XRD, EDAX UV and IR. The equation can be expressed as

$$Fe^{2+} + 2Fe^{3+} + 8HO \longrightarrow Fe_3O_4 + 4H_2O$$

XRD patterns of Fe_3O_4 NPs are shown in **Fig. 2**. The XRD patterns shows a number of prominent Bragg reflections by their indices (220), (311), (400), (422), (511) and (440) which indicates that the resultant nanoparticles were Fe_3O_4 with a spinel structure. The broad peak is an indication that the particles were of nanoscale size. The size of the particles was examined by transmission electron microscope (TEM) and the TEM image (**Fig. 3a**) clearly shows a monodispersed

spherical shaped Fe₃O₄ NPs. The morphology and particle size of the Fe₃O₄ NPs was studied using SEM. The SEM image (Fig. 4a) indicates that the Fe₃O₄ NPs are spherical in shape and in the nanometer range. Characterization of Fe₃O₄ NPs was also done using EDAX. The EDAX spectra show a strong peak of Fe (Fig. 5). The characterization of the Fe₃O₄ NPs was also studied using UV and IR. The UV spectra show a characteristic absorption bands at 370 nm which corresponds to the Fe₃O₄ NPs (Fig. 6), which originate primarily from the absorption and scattering of UV radiation by magnetic nanoparticles. The results was found to be in good agreement with those reported in the literature.³⁴ The particles size were found to be 10-20 nm before used. The distributions of Fe₃O₄ NPs are shown in Fig. 7. The IR spectrum shows bands at 599 cm⁻¹ and 3430 cm⁻¹ which indicates Fe-O structure and OH group for spinel Fe₃O₄ (Fig. S.I-1).³⁵

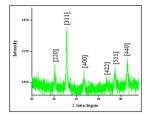
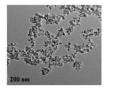
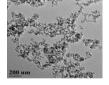
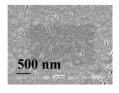
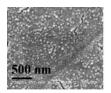




Fig.2 Powder XRD of Fe₃O₄ NPs.

25


35



- (a) Before used
- (b) After reused

Fig.3 TEM image of Fe₃O₄ NPs before and after use.

- (a) Before used
- (b) After reused

Fig.4 SEM image of Fe₃O₄ NPs before and after use.

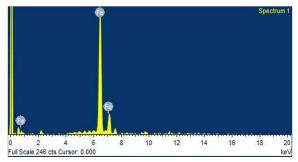


Fig.5 EDAX spectra of Fe₃O₄ NPs.

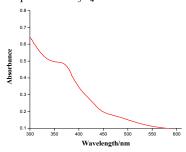


Fig.6 UV visible spectra of Fe₃O₄ NPs.

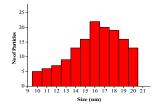


Fig. 7 Histogram diagram of Fe₃O₄ NPs.

The synthesized Fe₃O₄ NPs was then applied as a reusable catalyst in a condensation reaction which intern will produce biologically important heterocyclic compounds such as benzodiazepine and their derivatives. The condensation reaction between o-phenylenediamine (1, 1 mmol) and acetophenone (2, 2.2 mmol) in presence of Fe₃O₄ NPs was carried out under solvent free condition (Scheme 1). The reaction was carried out in various solvents, like water, THF, acetonitrile, ethanol and toluene. Significant improvement was achieved in ethanol and acetonitrile, but the best result was observed under solvent free condition (Fig. 8). However, the reaction did not proceed in water medium which might be due to poor solubility of the starting materials.

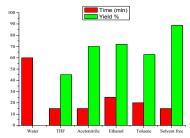


Fig.8 Chart for the optimization of solvent effect.

The amount of catalyst concentration for the model reaction was scanned. Firstly, the condensation reaction of ophenylenediamine (1, 1 mmol) and acetophenone (2, 2.2 mmol) was carried out in absence of catalyst, very less conversion was observed (22 %). The reaction was then studied with various mol % of the catalyst (2-10 mol %). It was found that the product yield proportionally increased with catalyst concentration. Maximum yield was obtained by

35

40

10

20

55

using 6 mol % of the catalyst. Further increase in the catalyst concentration (8 mol % and 10 mol %), the yield of the product did not improve. So 6 mol % is the optimum catalyst concentration is this reaction (Fig. 9).

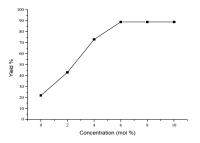


Fig. 9 Effect of catalyst loading on the reaction yield.

Rationalising the above results, we carried out the said condensation reaction of o-phenylenediamine (1, 1 mmol) and acetophenone (2, 2.2 mmol) in presence of Fe₃O₄ NPs (6 mol %) under solvent free condition at 80 °C (Scheme 1). The reaction went to completion within 15 min yielding a solid pale white product in high yield (89 %). The structure of the compound was established by analytical and spectroscopic methods. The presence of peaks in ¹H NMR at 3.4 (brs, 1H), 3.08 (d, J = 13.2 Hz, 1H) and 2.92 (d, J = 13.2Hz, 1H) due to NH and methylene protons and peak at 3281 cm⁻¹ due to NH stretching in IR spectra clearly indicates the

formation of 3a. The effect of temperature on the product yield was also studied. The reaction was carried out at room temperature but no desired product was obtained only starting materials were recovered after 1 h. With increase in the temperature, yield of the desired product increases and maximum yield was achieved at 80 °C (Table 1).

To make the process more general, the model reaction was carried out with different substituted ketones. In all the cases, the reactions were completed within very short period and furnished the corresponding products (3a-h) in higher yield (Table 1).

Table 1. Synthesis of compounds 3a-h and 5a-f.

	Carbonyl compound	Product	Time (min)	Yield(%) ^a	M. p (°C) [Found]	M. p (°C) [Lit.]
1	O 2a	HNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	15	89	150-152	[151-152] ²²
2	Cl 2b	3a H Cl N Cl 3b	12	93	137-139	[147-149] ²⁴

3	O_2N O_2	O_2 NO2	10	90	154-156	[164-166] ²⁴
4	Br 2d	H Br Br 3d	14	91	135-137	[145-146] ¹⁹
5	O_2N	H NO ₂ NO ₂ NO ₂ 3e	10	95	152-154	[154-155] ²⁴
6	H ₃ C 2f	H CH ₃ CH ₃ 3f	15	88	97-100	[99-101] ²⁴
7	H ₃ CO 2g	OCH ₃ OCH ₃ 3g	15	89	113-116	[115-116] ²⁴
8	O 2h	H N N 3h	13	89	133-135	[137-139] ²²

9	O 4a	N N 5a	15	87	129-130	[134] ²⁸
10	Cl 4b	$\begin{array}{c} N \\ N \\ CI \\ 5b \end{array}$	10	91	131-135	[137] ²⁸
11	H ₃ C 4c	CH ₃	10	89	125-127	$[125]^{28}$
12	Br 4d	Br 5d	15	92	157-159	[157-158] ²⁷
13	F 4e	F 5e H ₃ CO	15	86	116-119	NF
14	OCH ₃	H ₃ CO N N H ₃ CO 5f	10	90	149-150	$[150]^{28}$

^a isolated yields NF = Not Found

Encouraged by the initial success, next we decided to explore the synthesis of biologically important benzimidazole and their derivatives using the present protocol. To our delight, it was observed that the reaction worked well and furnished chemoselectively the 1,2-disubstituted benzimidazoles (5a-f) instead of a mixture of monosubstituted and disubstituted product irrespective of the molar ratio used (Scheme 1).³⁶ We also carried out the reaction using various aryl aldehydes having electron donating or electron withdrawing groups. In

all the cases, desired product was achieved in good yields (Table 1).

The plausible mechanism for the formation of compounds 3ah and 5a-f is given below (Scheme 2). Initially the Fe₃O₄ NPs facilitated the reaction between diamine 1 and ketones 2 or aldehyde 4, which generates the common intermediate 9. The intermediate 9 undergoes tautomerism to form intermediate 10. The intermediate 10 then undergoes intramolecular cyclization followed by hydride shift to

Page 6 of 9

furnish the final benzodiazepine products 3a-h. 37 In case of arvl aldehydes, intermediate 9 undergoes cyclization (12) followed by 1,3-hydride shift to produce the disubstituted benzimidazole products **5a-f**. 38

Reusability is one of the most important properties of a good catalyst. So, we checked the reusability of the catalyst in our present protocol. After the completion of the reaction, the reaction mixture was dissolved in 10 mL of ethyl acetate and the catalyst was separated using external magnetic field. The separated catalyst was then dried and reused for another set of reaction. To our excitement, it was found that the Fe₃O₄ NPs can be reused for four consecutive runs without any appreciable decrease in its catalytic activity (Fig. 10).

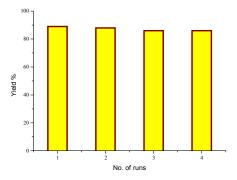


Fig. 10 Reusability chart.

Structure of the compound 3b was further confirmed by Xray crystallography. The compound 3b was carefully recrystallized from ethanol. Fig. 11 shows the ORTEP diagram of compound 3b (CCDC 933681).

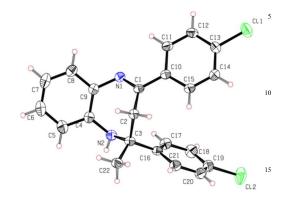


Fig. 11 ORTEP diagram of 3b (CCDC 933681).

Conclusions

In conclusion, we have developed a new efficient and simple method for the synthesis of benzodiazepine chemoselective 1,2-disubstituted benzimidazole derivatives. This method will be very useful in industrial point of view because it is high yielding, solvent free and catalyst can be separated by external magnetic field and reused for several runs.

Acknowledgement

We thank the Department of Chemistry, Sophisticated Analytical and Instrumentation Facility (SAIF) of North-Eastern Hill University, SAIF-CDRI Lucknow, UGC for supporting this work under Special Assistance Programme (SAP) and DST-Purse programme of NEHU Shillong. We are also thankful to DST for financial support (sanctioned no: SERC/F/0293/2012-13), Dr. S. Khatua and Dr. S. L. Nongbri.

Experimental

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on Spectrum BX FT-IR, Perkin Elmer (v_{max} in cm⁻¹) on KBr disks. ¹H NMR and ¹³C NMR (400/300 MHz and 100/75 MHz respectively) spectra were recorded on Bruker Avance II-400 and 300 spectrometer in CDCl₃ (chemical shifts in δ with TMS as internal standard). Mass spectra were recorded on Waters ZO-4000. Transmission Electron Microscope (TEM) was recorded on JEOL JSM 100CX. Scanning electron microscope (SEM) was recorded on JSM-6360 (JEOL). XRD was recorded on Bruker D8 XRD instrument SWAX .CHN were recorded on CHN-OS analyzer (Perkin Elmer 2400, Series II). Silica gel G (E-mark, India) was used for TLC. Hexane refers to the fraction boiling between 60 °C and 80 °C. Absorption spectra were recorded in Lambda25 (PerkinElmer Inc.) spectrometers.

X-ray crystallography

55

45

10

The X-ray diffraction data were collected at 293 K with Mo K α radiation (λ = 0.71073 Å) using Agilent Xcalibur (Eos, Gemini) diffractometer equipped with a graphite monochromator. The software used for data collection CrysAlis PRO (Agilent, 2011), data reduction CrysAlis PRO and cell refinement CrysAlis PRO. The structure were solved by direct methods and refined by full-matrix least-squares calculation using SHELXS-97³⁹ and SHELXL-97⁴⁰ (CCDC 933681).

General procedure for the synthesis of 3a-h.

Fe₃O₄ (6 mol %) was added to a mixture of ophenylenediamine 1 (1mmol) and acetophenone 2a-h (2.2 mmol) and heated at 80 °C under solvent free condition. After completion of the reaction, monitored by TLC, the reaction mixture was cooled to room temperature and dissolved in 10 mL ethyl acetate. The Fe₃O₄ NPs was then separated by external magnetic field. The separated Fe₃O₄ NPs was washed with ethyl acetate and dried. Then it was used for another set of reaction under similar condition. The reaction mixture was then washed with water (3 × 5mL), brine (1 × 5 mL) and dried over anhydrous Na₂SO₄. The reaction mass was concentrated under vacuum and the pure product was obtained by purification through column chromatography using ethyl acetate: hexane as eluent.

General procedure for the synthesis of 5a-f.

In a round bottom flask, o-phenylenediamine 1 (1mmol) and aldehyde 4a-f (2.2 mmol), was taken and Fe_3O_4 NPs (6 mol %) was added. The reaction was carried out at 80 °C under solvent free condition. After completion (TLC), the reaction mixture was cooled to room temperature and dissolved in 10 mL ethyl acetate. The Fe_3O_4 NPs was then separated by external magnetic field and washed with ethyl acetate and dried. The separated Fe_3O_4 NPs was then used for another set of reaction under similar condition. The reaction mixture was then washed with water (3 \times 5mL), brine (1 \times 5 mL) and dried over anhydrous Na_2SO_4 . The reaction mass was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate: hexane as eluent.

Spectral data for selected compounds

Compound **3b**: (entry 2): Yellow solid. IR (KBr): 3496, 3025, 1686, 1493, 751 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ = 7.51-7.45 (m, 4H), 7.30-7.25 (m, 1H), 7.20-7.17 (m, 4H), 7.07-7.01 (m, 2H), 6.82-6.76 (m, 1H), 3.41 (s, 1H), 3.07 (d, J = 13.3 Hz, 1H), 2.88 (d, J = 13.5, 1H), 1.71 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 166.1, 145.7, 139.8, 137.6, 136.1, 133.0, 128.5, 128.38, 128.31, 127.0, 126.6, 122.0, 121.5, 73.5, 42.9, 29.7. ESI- MS: m/z 381, 383 [M + H]⁺. Anal. Cacld for $C_{22}H_{18}Cl_{2}N_{2}$: C, 69.30; H, 4.76; N, 7.35. Found: C, 69.53; H, 4.64; N, 7.44.

Compound **3c**: (entry 3): Orange solid. IR (KBr): 3278, 3088, 1604, 1473, 1349 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.47$

(s, 1H), 8.16 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.99-7.96 (m, 3H), 7.42-7.32 (m, 3H), 7.18-7.08 (m, 2H), 6.93-6.91 (dd, J = 7.5 Hz, 1.2 Hz, 1H), 3.55 (s, 1H), 3.28 (d, J = 13.5 Hz, 1H), 3.02 (d, J = 13.5, 1H), 1.87 (s, 3H). C NMR (CDCl₃, 100 MHz): $\delta = 164.1$, 149.0, 148.1, 148.0, 140.4, 139.2, 137.1, 132.5, 131.9, 129.5, 129.2, 128.9, 127.4, 124.4, 122.4, 122.2, 121.6, 120.8, 74.1, 42.8, 29.9. ESI- MS: m/z 403 [M + H]⁺. Anal. Cacld for $C_{22}H_{18}N_4O_4$: C, 65.66; H, 4.51; N, 13.92. Found: C, 65.61; H, 4.62; N, 13.80.

Compound **3d**: (entry 4): Pale brown solid. IR (KBr): 3370, 2979 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ = 7.46-7.27 (m, 9H), 7.11-7.01 (m, 2H), 6.83-6.80 (m, 1H), 3.42 (s, 1H), 3.07 (d, J = 13.2 Hz, 1H), 2.89 (d, J = 13.2 Hz, 1H), 1.72 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 166.2, 146.5, 140.0, 138.3, 137.7, 131.5, 131.4, 128.8, 128.7, 127.6, 126.8, 124.7, 122.2, 121.7, 121.4, 73.7, 43.0, 29.9. ESI-MS: m/z 469, 471 [M + H]⁺. Anal. Cacld for C₂₂H₁₈Br₂N₂: C, 56.20; H, 3.86; N, 5.96. Found: C, 56.12; H, 3.88; N, 5.77.

Compound **5b**: (entry 10): Pale white solid. IR (KBr): 3075, 2928, 2852, 1611, 1250, 744 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.81$ (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.29-7.19 (m, 4H), 7.14 (d, J = 8 Hz, 1H), 6.96 (d, J = 8 Hz, 2H), 5.33 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 152.8$, 142.9, 136.3, 135.8, 134.6, 133.8, 130.4, 129.3, 129.1, 128.2, 127.2, 123.5, 123.1, 120.1, 110.3, 47.8. ESI- MS: m/z 353, 355 [M + H]⁺. Anal. Calcd for C₂₀H₁₄ Cl₂N₂: C, 68.00; H, 3.99; N, 7.93. Found: C, 68.21; H, 4.03; N, 7.82

Notes and references

100

120

- P. T. Anastas, L. G. Heine and T. C. Williamson, Green Chemical Syntheses and Processes: Introduction, 2000, 1, 1.
- C. Burda, X. Chen, R. Narayana and M. A. E. Sayed, *Chem. Rev.*, 2005, **105**, 1025.
- 3. (a) S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu and L. Xu, *Solid State Commun.*, 2004, **129**, 485; (b) V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino and B. Chu, *J. Colloid Interface Sci.*, 1999, **212**, 49.
- H. Schutz, Benzodiazepines; Springer: Heidelberg, 1982, 2, 240; J. K. Landquist, In Comprehensive Heterocyclic Chemistry; A. R. Katritzky and C. W. Rees, Eds.; Pergamon Press: Oxford, U.K., 1984, 1, 166.
- (a) H. Nakano, T. Inoue, N. Kawasaki, H. Miyataka, H. Matsumoto, T. Taguchi, N. Inagaki, H. Nagai and T. Satoh, *Bioorg. Med. Chem.*, 2000, 8, 373; (b) D. A. Horton, G. T. Bourne and M. L. Smythe, *Chem. Rev.*, 2003, 103, 893.
- L. O. Randall and B. Kappel, *Benzodiazepines*; S. Garattini, E. Mussini and L.O. Randall, Eds., Raven Press: New York, 1973, 27.
- J. R. De Baun, F. M. Pallos and D. R. Baker, U.S. Patent 3, 1976, 978, 227; Chem. Abstr., 1977, 86, 5498.
- W. A. Denny, G. W. Rewcastle and B. C. Bagley, *J. Med. Chem.*, 1990, 33, 814.
- T. Fonseca, B. Gigante and T.L. Gilchrist. *Tetrahedron.*, 2001, 57, 1793.
- Z. Zhu, B. Lippa, J. C. Drach and L. B. Townsend, J. Med. Chem., 2000, 43, 2430.
- H. Zarrinmayeh, D. M. Zimmerman, B. E. Cantrell, D. A. Schober and R. F. Bruns, *Bioorg. Med. Chem. Lett.*, 1999, 9, 647.

- M. Essaber, A. Baouid, A. Hasnaoui, A. Benharref and J. P. Lavergne, Synth. Commun., 1998, 28, 4097.
- (a) J. X. Xu, H. T. Wu and S. Jin, *Chin. J. Chem.*, 1999, 17, 84;
 (b) X. Y. Zhang, J. X. Xu and S. Jin, *Chin. J. Chem.*, 1999, 17, 404;
- K. V. V. Reddy, P. S. Rao and D. Ashok, Synth. Commun., 2000, 30, 1825.
- 15. Y. Bai, J. Lu, Z. Shi and B. Yang, Synlett., 2001, 4, 544.
- J. A. L. Herbert and H. Suschitzky, J. Chem. Soc. Perkin Trans., 1974, 1, 2657.
- C-K. Kuo, S. V. More and C-F. Yao, *Tetrahedron Lett.*, 2006, 47, 8523.
- H. R. Morales, A. Bulbarela and R. Contreras, *Heterocycles*, 1986, 24, 135.
- S. S. Pandit, B. D. Vikhe and G. D. Shelke, *J. Chem. Sci.*, 2007, 119, 295.
- D. I. Jung, T. W. Choi, Y. Y. Kim, I. S. Kim, Y. M. Park, Y. G. Lee and D. H. Jung, Synth. Commun., 1999, 29, 1941.
- R. Kumar, P. Chaudhary, S. Nimesh, A. K. Verma and R. Chandra, Green Chem., 2006, 8, 519.
- M. Curini, F. Epifano, M. C. Marcotullio, O. Rosati, Tetrahedron Lett., 2001, 42, 3193.
- 23. S. K. De and R. A. Gibbs, Tetrahedron Lett., 2005, 46, 1811.
- X-Q. Pan, J-P. Zou, Z-H. Huang and W. Zhang, *Tetrahedron Lett.*, 2008, 49, 5302.
- M. A. Pasha and V. P. Jayashankara, Heterocycles, 2006, 68, 1017.
- D. V. Jarikote, S. A. Siddiqui, R. Rajagopal, D. Thomas, R. J. Lahoti and K. V. Srinivasan, *Tetrahedron Lett.*, 2003, 44, 1835.
- 27. S. D. Sharma and D. Konwar, Synth. Commun., 2009, 39, 980.
 - H. A. Oskooie, M. M. Heravi, A. Sadnia, F. K. Behbahani and F. Jannati. Chin. Chem. Lett., 2007, 18, 1357.
 - S. Santra, A. Majee and A. Hajra, *Tetrahedron Lett.*, 2012, 53, 1974.
 - M. E. Tranquillini, P. G. Cassara, M. Corsi, G. Curotto, D. Donati, G. Finizia, G. Pentassuglia, S. Polinelli, G. Tarzia, A. Ursini and F. T. M. V. Amsterdam, *Arch. Pharm.*, 1997, 330, 353.
 - D. A. Claremon, N. Liverton, H. G. Selnick and G. R. Smith, PCT Int. Appl. WO 9640653.
 - M. D. Rosen, Z. M. Simon, K. T. Tarantino, X. L. Zhao and M. H. Rabinowitz, *Tetrahedron Lett.*, 2009, 50, 1219.
 - B. Karami, S. J. Hoseini, K. Eskandari, A. Ghasemib and H. Nasrabadia, *Catal. Sci. Technol.*, 2012, 2, 331.
- O. U. Rahman, S. C. Mohapatra and S. Ahmad, *Mater. Chem. Phys.*, 2012, 32,196.
 - Y.-P. Chang, C.-L. Ren, J.-L. Qu and X.-G. Chen, App. Surf. Sci., 2012, 61, 504.
 - V. Kumar, D. G. Khandare, A. Chatterjee and M. Banerjee, Tetrahedron Lett. 2013, 54, 5505.
 - (a) S. K. De and R. A. Gibbs, *Tetrahedron Lett.*, 2005, 46, 1811;
 (b) M. Saha, A. K. Pal and S. Nandi, *RSC Advances*, 2012, 2, 6397.
 - 38. J.-P. Wan, S.-F. Gan, J.-M. Wu, Y. Pan, *Green Chem.*, 2009, 11, 1633.
 - 39. G. M. Sheldrick, Acta. Crystallog. Sec A., 1990, 96, 467.
 - 40. G. M. Sheldrick, Acta. Crystallog. Sec A., 2008, 645, 112.

GRAPHICAL ABSTRACT

An efficient facile and one-pot synthesis of benzodiazepines and chemoselective 1,2-disubstituted benzimidazoles using magnetically retrievable Fe_3O_4 nanocatalyst under solvent free condition

Ramen Jamatia^a, Mithu Saha^a, Amarta Kumar Pal^a*

^aDepartment of Chemistry, North-Eastern Hill University, Mawlai Campus, Shillong 793022, India.

Tel: +91 364 2307930 ext 2636, E-mail: amartya pal22@yahoo.com, Fax: +91 364 2550076