Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

An extra-highly sensitive sensor for detection of endotoxin was developed. In this sensor, *p*-aminophenole (pAP) was generated with endotoxin induced enzyme reaction and detected with substitutinal stripping voltammetry.

1	Title
2	Electrochemical sensor with substitutional stripping voltammetry for highly
3	sensitive endotoxin assay
4	
5	
6	
7	
8	Author's names
9	Shinichiro Takano, ¹ Kumi Y. Inoue, ^{*1,2} Satoko Takahashi,1 Kosuke Ino, ¹ Hitoshi
10	Shiku, ^{1,3} Tomokazu Matsue, ^{*1,2,3}
11	
12	
13	
14	
15	Affiliations
16	1. Graduate School of Environmental Studies, Tohoku University, 6-6-11-604
17	Aramaki, Aoba, Sendai 980-8579, Japan
18	2. Micro System Integration Center, Tohoku University, 6-6-11-604 Aramaki, Aoba,
19	Sendai 980-8579, Japan
20	3. Advanced Institute for Materials Research, Tohoku University, 6-6-11-604
21	Aramaki, Aoba, Sendai 980-8579, Japan
22	
23	
24	
25	
26	
27	
28	*Corresponding Authors
29	Kumi Y. Inoue
30	Phone: +81-22-795-6167, Fax: +81-22-795-6167
31	E-mail: inoue@bioinfo.che.tohoku.ac.jp
32	Tomokazu Matsue
33	Phone: +81-22-795-7209, Fax: +81-22-795-7209
34	E-mail: matsue@bioinfo.che.tohoku.ac.jp

35 Abstract

36	We have developed a novel method for detection of endotoxin with extra-high
37	sensitivity by introducing substitutional stripping voltammetry (SSV). In this method,
38	p-aminophenol (pAP) conjugated peptide (Boc-Leu-Gly-Arg-pAP; LGR-pAP) was used
39	as a substrate for a protease, which is activated at the last step of the endotoxin-induced
40	Limulus amebocyte lysate (LAL) cascade reaction. Extra-highly sensitive detection of
41	pAP liberated by the endotoxin-induced LAL reaction was successfully realized with
42	SSV based on the accumulation of an amperometric signal owing to exchanging the
43	oxidation current of pAP generated at an electrode in a reaction cell with silver
44	deposition on another electrode in a deposition cell. This reaction is driven by the
45	difference in the redox potential between pAP/quinoneimine and silver/silver ion. The
46	amount of the deposited silver is quantified by anodic stripping voltammetry (ASV).
47	This SSV-based endotoxin assay was performed with a chip device comprising two cells,
48	each of which was connected via a liquid junction made of Vycor [®] glass. The reaction
49	cell and the deposition cell contained a standard endotoxin sample with LAL regents
50	containing LGR-pAP and AgNO ₃ solution, respectively. After the cells were electrically
51	connected for 60 min, ASV was conducted in the deposition cell to quantify the total
52	electrical charge derived by the oxidation of free pAP in the reaction cell. The ASV

2 3		
3		
4		
5	•	
6 7	53	signal increased with the increase of the endotoxin concentration in the sample solution
8		
9	54	in the range $0.5-1000 \text{ EU L}^{-1}$.
10	04	
11		
12	55	
13		
14		
15	56	Keywords
16		
17		
18	57	electrochemical biosensor, endotoxin, lipopolysaccharide, Limulus amebocyte lysate
19		
20	58	assay, protease, substitutional stripping voltammetry
21	00	ussuy, processe, substitutional surpping voltainined y
22		
23 24		
24 25		
26		
27		
28		
29		
30		
31 32		
32		
33		
34		
35		
36		
37		
38 39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50 51		
51 52		
52 53		
54		
55		
56		
57		
58		
59		
60		

1. Introduction

60	Endotoxin is a lipopolysaccharide (LPS) existing on the outer membrane of
61	Gram-negative bacteria. ¹ Although endotoxin itself is chemically stable and thermally
62	durable, it induces secretion of proinflammatory cytokines leading to septic shock. ²
63	Therefore, contamination by endotoxin has been a serious problem for the safety of
64	medical treatments and medical supplies. The Limulus amoebocyte lysate (LAL) assay,
65	based on the coagulation reaction of hematocytes lysate of horseshoe crabs induced by
66	endotoxin, is a widely used method to test for endotoxin. ³ The conventional LAL assay
67	is classified into three major categories called the gel-clotting method, the turbidimetric
68	method, and the colorimetric method, all of which are based on photometrical detections.
69	Although many types of test kits are commercially available, conventional LAL assay
70	still requires a skilled technician to perform the test. Another problem for the
71	conventional LAL test is the cost for equipment and reagents. Owing to these problems,
72	most clinics cannot substantially control endotoxin by in situ monitoring of endotoxin
73	levels in medical supplies at appropriate intervals. Actually, dialysis clinics in Japan
74	typically check endotoxin levels in dialysis fluid by ordering weekly endotoxin tests by
75	an external analytical centre. However, it is too late if the endotoxin contamination is
76	discovered after the dialysis treatment. This is a serious problem for safe medical

Analyst Accepted Manuscript

1 2
2 3 4 5 6 7 8
5 6
7 8 9
9 10 11
12 13
14 15
10 17 18
19 20
21 22
23 24 25
26 27
28 29
11 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 8 29 30 1 32 33 4 35 36 37 82
33 34
35 36
37 38 39
40 41
42 43 44
44 45 46
47 48
49 50 51
51 52 53
54 55 56
56 57 58
59 60

77	treatment, particularly in developed countries with increasing incidence of diabetic
78	nephropathy. To overcome the problem of the conventional LAL test, electrochemical
79	techniques have been proposed as promising candidates because they provide
80	easy-to-use, low-cost, and highly sensitive endotoxin sensors. ⁴ We have previously
81	developed two types of electrochemical sensor based on the LAL reaction. ⁵⁻⁷ One is a
82	LAL-based voltammetric assay for detecting p-nitroaniline (pNA) produced from
83	pNA-conjugated peptide (Boc-Leu-Gly-Arg-pNA; LGR-pNA) using differential pulse
84	voltammetry. ^{5,6} The other is LAL-based amperometric assay using a novel substrate
85	(Boc-Leu-Gly-Arg-p-aminophenol; LGR-pAP) specially developed for electrochemical
86	detection. ⁷ These methods have achieved detection of 10 endotoxin units (EU) per litre
87	within 60 min with easy-to-use chip devices. The sensitivity of these methods is equal
88	to or higher than that of conventional LAL assay; however, there are growing demands
89	for an extra-highly sensitive sensor, particularly among haemodialysis treatment sites.
90	In this study, we successfully developed a chip-type endotoxin sensor with
91	extra-high sensitivity by introducing substitutional stripping voltammetry (SSV) ⁸⁻¹¹ and
92	using LGR-pAP as a substrate. SSV is based on the accumulation of an amperometric
93	signal by exchanging the redox current to metal deposition. Figure 1A shows the overall
94	scheme of our detection system using SSV. Endotoxins induce the cascade activation of

95	zymogens in LAL (Factor C, Factor B and proclotting enzyme), which results in the
96	hydrolysis of LGR-pAP. The enzymatically generated free pAP is oxidized to
97	p-quinoneimine (QI) on the reaction electrode, which is electrically connected to the
98	deposition electrode in another cell filled with silver nitrate (AgNO ₃) solution. The
99	resulting oxidation current is exchanged to silver deposition on the deposition electrode
100	(Fig. S1). Similar to a battery cell, this exchange is forced by the difference in the redox
101	potential between pAP/QI and silver/silver ions in separated cells connected by a liquid
102	junction. Unlike pAP, LGR-pAP has no effect of silver deposition, because the potential
103	owing to LGR-pAP oxidation is higher than that from silver ion reduction. Therefore,
104	the amount of the silver deposition corresponds to the concentration of free pAP (Fig
105	S2), which also corresponds to the concentration of endotoxin. The amount of
106	accumulated metallic silver was quantified by high-sensitivity stripping voltammetry.
107	Using this method, 0.5 EU L^{-1} of endotoxin was detected within 60 min.
100	An additional advantage of this mathed is the analysis of matchle wAD to

108 An additional advantage of this method is the exchange of unstable pAP to 109 stable silver. It is known that pAP loses its electrochemical activity due to air oxidation 110 under neutral and alkaline conditions.¹² The signal exchange from pAP to silver has a 111 potential advantage for extended-time measurement to achieve highly sensitive

detection. In the future, the combination of SSV with redox cycling of pAP will alsoincrease the sensitivity of the assay.

In the present study, we first characterized the redox potentials of LGR-pAP, pAP and silver to confirm the strategy to use SSV for endotoxin assay. Then we fabricated a chip device for SSV and demonstrated it to monitor silver deposition by the LAL reaction with and without endotoxin. Silver deposition was observed by monitoring the current flow from the reaction cell and to the deposition cell during silver deposition. Finally, we performed quantitative endotoxin assays with the fabricated device.

2. Material and Methods

2.1. Chemicals and Apparatus

124 An Endospecy[®] ES-24S set was purchased from Seikagaku Co. (Japan). This 125 set comprised lyophilized LAL reagents divided into individual test vials and assay 126 buffer. United States Pharmacopeia reference standard endotoxin (USP-RSE) was 127 purchased from Seikagaku Co. (Japan). The USP-RSE was diluted with endotoxin-free 128 water (water for injection, Otsuka Pharmaceutical, Japan) to obtain standard endotoxin 129 solutions. Primary stock solutions prepared in 2×10^6 EU L⁻¹ were stored at -80°C.

130	Note that EU is a unit expressing endotoxin activity. A secondary stock solution
131	prepared in 1×10^5 EU L ⁻¹ was stored at 4°C. According to the protocol for USP-RSE,
132	the stock solutions were mixed by vigorous vortexing for more than 30 min just prior to
133	further dilution. Standard endotoxin solutions for the experiments were prepared
134	immediately before use. LGR-pAP (Watanabe Chemical Industries, Ltd., Japan) and
135	pAP (Wako Pure Chemical Industries, Ltd., Japan) were dissolved in endotoxin-free
136	water to obtain 10 mM stock solutions which were then stored at -20° C. Aqueous
137	solutions were prepared with water for injection. Toxipet endotoxin-free pipet tips
138	(Seikagaku Co., Japan) were used for all endotoxin assays. AgNO3 was purchased from
139	Wako Pure Chemical Ind., Ltd. (Japan). Poly (dimethylsiloxane) (PDMS, SILPOT 184)
	wake fulle chemical mai, Eld. (supan). Fory (annearyishoxane) (FEWS, SIEPOT 101)
140	was purchased from Dow Corning Toray Co., Ltd. (Japan).
140	was purchased from Dow Corning Toray Co., Ltd. (Japan).
140 141	was purchased from Dow Corning Toray Co., Ltd. (Japan). The cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) were
140 141 142	was purchased from Dow Corning Toray Co., Ltd. (Japan). The cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) were performed with a potentiostat (Compact Stat; Ivium Technologies B.V., The
140 141 142 143	was purchased from Dow Corning Toray Co., Ltd. (Japan). The cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) were performed with a potentiostat (Compact Stat; Ivium Technologies B.V., The Netherlands). An Ag/AgCl electrode and a Pt plate were used as a reference electrode
 140 141 142 143 144 	 was purchased from Dow Corning Toray Co., Ltd. (Japan). The cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) were performed with a potentiostat (Compact Stat; Ivium Technologies B.V., The Netherlands). An Ag/AgCl electrode and a Pt plate were used as a reference electrode and a counter electrode, respectively. The CV and the ASV were conducted with a
 140 141 142 143 144 145 	was purchased from Dow Corning Toray Co., Ltd. (Japan). The cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) were performed with a potentiostat (Compact Stat; Ivium Technologies B.V., The Netherlands). An Ag/AgCl electrode and a Pt plate were used as a reference electrode and a counter electrode, respectively. The CV and the ASV were conducted with a fabricated device using a reaction electrode (5.0 mm in diameter, Au) or a deposition

Analyst Accepted Manuscript

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
19
20
21
22
22
20
24
20
26
27
28
29
30
31
32
33
34
35
36
37
38
39
39 40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55 56
00
57 58
58
59
60

148	measured with a current amplifier (428-MAN; TFF Corporation Keithley Instruments
149	Inc., Ohio, USA). A data acquisition device (DAQ; NI USB-62ll; National Instruments
150	Japan Co., Japan) was inserted between the current amplifier and a monitoring computer
151	in order to control the measurement and data acquisition using a program written in
152	LabVIEW ver. 2010 (National Instruments Japan Co., Japan).
153	
154	2.2. Fabrication of the chip device
155	The chip device comprised a glass substrate with patterned electrodes and a
156	PDMS block with two wells to accommodate the solutions (Fig. 1B, C). A glass
157	substrate with patterned electrodes was fabricated by conventional photolithography to
158	make a reaction electrode (Au, 5.0 mm in diameter) and a deposition electrode (Au, 3.0
159	mm in diameter). Titanium, platinum, and gold were successively sputter-deposited
160	(L-332S-FH; Anelva Co., Japan) onto a glass slide (Matsunami Glass Ind., Ltd., Japan)
161	patterned with S1818 positive photoresist (The Dow Chemical Company, USA). After
162	removing the photoresist with acetone (lift-off), an insulation layer was fabricated using
163	a negative photoresist (SU-8 3005; Nippon Kayaku Co., Ltd., Japan). A PDMS block
164	with two wells (7.0 mm in diameter, 5.0 mm in depth) was made as follows. The PDMS
165	pre-polymer was poured into a mould made of acrylic resin and cured in an oven at

Analyst

90°C for 30 min. After peeling off the PDMS from the mould, we inserted a Vycor[®] glass rod (3.0 mm in diameter, 3.0 mm in length; Corning, Inc., USA) into a furrow made between the wells. To embed the Vycor[®] glass into the PDMS, PDMS pre-polymer was poured into the furrow, both ends of which were covered with cellophane adhesive tape (Cellotape; Nichiban Co. Ltd., Japan) to prevent the leaking of PDMS into undesired areas. After the PDMS was cured in the oven at 90°C for 30 min, the adhesive tape was removed. The electrode-patterned substrate and the PMDS block were then joined with PDMS.

Analyst Accepted Manuscript

2.3. Endotoxin assay using the fabricated device

To prepare LAL assay solution containing 1.0 mM LGR-pAP, we put 180 µL of assay buffer of Endospecy® ES-24S set and 20 µL of 10 mM LGR-pAP into one test vial of Endospecy[®] ES-24S set containing lyophilized LAL reagents. Just before the endotoxin assay, the fabricated chip device was treated with O₂ Plasma Asher (LTA-101; Yanaco, Ltd., Japan) at 100 W for 6 min in order to remove the contaminated endotoxin. Next, 130 µL of a 1:1 mixture of the LAL assay solution and endotoxin standard solution was placed in the reaction cell of the device. Then, 130 µL of 10 mM AgNO₃ with 0.1 M KNO₃ solution was placed in the deposition cell. After the reaction

Analyst Accepted Manuscript

Analyst

184	cell and the deposition cell were electrically connected, the chip device was incubated at
185	37°C for 60 min. During the incubation, the PDMS well was covered with Parafilm
186	(Pechiney Plastic Packaging, Inc., Chicago, USA) to avoid contamination of the
187	endotoxin and evaporation of the solvent. After the electrical connection was cut, the
188	solution in the deposition cell was exchanged to 130 μL of 0.1 M KNO3 solution. The
189	reference electrode and the counter electrode were inserted into the deposition cell to
190	perform ASV using the deposition electrode as the working electrode. The scan rate for
191	ASV was set to 20 mV s^{-1} to improve its productivity and accuracy. ⁹ From the ASV
192	voltammogram, the total electrical charge (Q) was calculated with following equation:
193	$Q = \int I dt , \tag{1}$
194	where I is the current observed on ASV, t is the elapsed time from the start of the ASV
195	measurement, and Q is the total electrical charge produced by oxidation at the reaction
196	electrode while it was connected to the deposition electrode.
197	

3. Results and Discussion

3.1 Comparison of formal redox potential of pAP, LGR-pAP, and AgNO₃ solution

200 As mentioned in the introduction, the driving force of the deposition step of 201 SSV is the potential difference between the reaction electrode and the deposition

202	electrode. Therefore, we first checked the formal redox potential of LGR-pAP, pAP and
203	silver in the deposition system using cyclic voltammetry. Figure 2A shows cyclic
204	voltammograms of 1.0 mM LGR-pAP and 1.0 mM pAP solutions in ES-24S assay
205	buffer using the reaction electrode as a working electrode. The scan rate was 20 mVs^{-1} .
206	As a reference, a cyclic voltammogram of the assay buffer is also shown in the same
207	graph. Peaks shown around -0.30 V indicate the reduction of dissolved oxygen in the
208	solutions. When the potential of the Au working electrode was scanned upward from 0.0
209	V, LGR-pAP began to be oxidized at +0.35 V. The oxidation current reached a peak at
210	+0.47 V, and no obvious reduction current of the oxidized LGR-pAP was observed on
211	the reversed potential sweep from +0.80 V to -0.60 V. The reason for missing the
212	reduction current, which was clearly observed in our previous paper ⁷ , was due to the
213	difference in reactivity of the substrate. The reduction of the oxidized LGR-pAP in the
214	reversed scan was difficult at the Au surface in the present potential range compared
215	with that at the carbon surface in the previous paper. On the other hands, pAP showed
216	clear oxidation and reduction peaks at +0.12 V and -0.06 V, respectively. This indicates
217	a reversible reaction of pAP/QI redox couple. The formal redox potential of pAP/QI
218	was estimated to be +0.03 V from this result. Figure 2B shows a cyclic voltammogram
219	of 10 mM AgNO $_3$ in 100 mM KNO $_3$ solution using the deposition electrode as a

Analyst Accepted Manuscript

Analyst

220	working electrode. When the potential of the working electrode was scanned downward
221	from +0.80 V, silver ions began to be reduced to silver at +0.39 V. On the reverse sweep,
222	the deposited silver on the electrode was oxidized back to silver ions at +0.39 V. No
223	obvious redox current was observed above +0.65 V. This means that the deposited silver
224	was completely stripped away during the potential scan from $+0.39$ V to $+0.65$ V.
225	Importantly, Fig. 2B indicates that the deposition of silver begins at +0.39 V. Therefore,
226	LGR-pAP, of which oxidation begins at +0.35 V, cannot promote silver deposition in the
227	deposition step, while pAP, of which oxidation begins above +0.03 V, promotes the
228	silver deposition. These results indicate the possibility to use LGR-pAP as an LAL
229	substrate for endotoxin detection with SSV.

3.2 Measurement of deposition current

To confirm the strategy of LAL-based SSV endotoxin detection using LGR-pAP, the current in the deposition process was measured using the current amplifier connected to the reaction electrode and the deposition electrode. The mixture solution containing the LAL reagent, 0.5 mM LGR-pAP, and endotoxin was put into the reaction cell, and 10 mM of $AgNO_3$ was put into the deposition cell. The recording of the current was started a few minutes before the electrical connection between the

238	reaction and deposition cell. After putting the device covered with the Parafilm into the
239	incubator which was maintained at 37°C, we connected the cells through the current
240	amplifier. It takes less than 3 min to start the recording from the mixing of the endotoxin
241	and reagents. Figure 3A shows a comparison of the deposition current with and without
242	endotoxin. The arrow shows the time to connect the cells. When the reaction mixture
243	contained 1000 EU L^{-1} endotoxin, the deposition current increased rapidly about 20 min
244	after mixing the endotoxin and reagents. In contrast, no obvious increase of the
245	deposition current was observed without endotoxin. These results indicate that the most
246	of the deposition current is induced by endotoxin activating the LAL reaction to release
247	free pAP. After measuring the deposition currents, the amount of silver deposited on the
248	deposition electrode was measured with ASV (Fig. 3B) at a scan rate was 20 mV s ⁻¹ . A
249	characteristic peak of silver stripping was observed when the sample containing 1000
250	EU L^{-1} endotoxin was tested. The stripped amount of silver was calculated to be 3616
251	$\mu C,$ which was consistent of the deposited amount of silver ions calculated from the
252	result shown in Fig. 3A (4126 $\mu C).$ In contrast, only a small stripping peak was
253	observed when the reaction mixture without endotoxin was tested. These results also
254	indicate the consistency of our strategy of LAL-based SSV endotoxin detection using
255	LGR-pAP.

Analyst Accepted Manuscript

256	

257	3.3 Quantitative endotoxin assay with SSV using the fabricated device
258	Quantitative endotoxin detection with SSV was performed using the fabricated
259	chip device. The reaction cell containing LAL reagent, 0.5 mM LGR-pAP, and 0-1000
260	EU L^{-1} endotoxin was electrically connected to the deposition cell containing 10 mM
261	AgNO ₃ for 60 min. After disconnecting from the reaction cell, the deposition cell was
262	filled with new 0.1 M KNO ₃ solution for ASV. Figure 4A shows the results of ASV with
263	different concentrations of endotoxin. The oxidation currents in ASV increased with the
264	concentration of endotoxin, indicating that this oxidation response resulted from
265	stripping the silver deposited via oxidation of pAP released by the endotoxin-induced
266	LAL reaction. Multiple peaks observed in the voltammograms of 0.1–100 EU L^{-1} were
267	caused by the difference in the bonding force "between the electrode and deposited
268	metals (E-M bond)" and "between atoms of deposited metals (M-M bond)". ^{13, 14} The
269	stronger E-M bond dissociates at a higher potential than does the weaker M-M bond.
270	Figure 4B shows the calibration plot for the quantitative endotoxin assay based on the
271	total electrical charge of the ASV response calculated by Eq. (1). Each point
272	corresponds to the mean value, and error bars indicate the standard deviation obtained
273	from independent measurements. Electrical charges increased with the increase in

274	endotoxin concentration in the range of $0.1-1000$ EU L ⁻¹ . The shape of calibration
275	curve was not linear because the LAL reaction is a cascade reaction constructed with
276	multiple proenzyme activated in order. The cascade reaction makes the progress of LAL
277	reaction to follow the sigmoidal curve with time and also causes the nonlinear
278	relationship between the current values and LPS concentrations at a given time point.
279	The detection limits (adapting 3σ of the blank) and minimum limit of determination
280	(adapting 10 σ of the blank) of this study were 0.5 EU L ⁻¹ and 100 EU L ⁻¹ , respectively,
281	calculated by the IUPAC recommended methods ¹⁵ . The limit of determination would
282	have been improved if more detailed test had been performed at the range of 10 EU L^{-1}
283	and 100 EU L^{-1} . The measurement range was 0.5-1000 EU L^{-1} . Compared with our
284	previous study ⁷ , the detection limit was improved from 10 EU L^{-1} to 0.5 EU L^{-1} on
285	using the chip type device. With the improvement of the detection limit, the
286	measurement range was widened from 10-1000 EU L^{-1} to 0.5-1000 EU L^{-1} . This range
287	satisfactorily covers endotoxin levels of less than 30 EU L^{-1} , which is defined as
288	ultrapure dialysis water by the Associated for the Advancement of Medical
289	Instrumentation (AAMI). Considering the fact that the detection limit of commonly
290	used LAL reagent is 30 EU L^{-1} , ¹⁶ our novel method innovatively improves endotoxin
291	assay. We should emphasize that our system ensures the safety of long-term dialysis

Analyst Accepted Manuscript

Analyst

292	patients by meeting the stricter standard (less than 1 EU L^{-1}) for ultrapure dialysis fluid
293	defined by The Japanese Society for Dialysis Therapy ¹⁷ within 60 min with a small
294	device applicable to the onsite monitoring. Higher sensitivity will be available by taking
295	longer connection time because the longer connecting time is, the more LAL reaction
296	progresses as well as the more Ag deposits (Fig. S3), resulting in the larger ASV signal.
297	As the presented method involves a trade-off between the sensitivity and detection time,
298	the selection of the optimal detection time should be considered in the practical use by
299	taking the required detection limit and allowed detection time into account.

301 4. Conclusions

In this study, we developed a novel endotoxin detection method based on LAL assay and SSV. In this method, the generation of free pAP by endotoxin-induced LAL reaction is substituted to the integration of silver deposition which is then quantified by ASV. First, we checked the redox potential of LGR-pAP, pAP and silver using cyclic voltammetry in order to estimate the driving force of the deposition step in SSV. The result showed that pAP, of which oxidation begins above +0.03 V, promotes the silver deposition beginning below +0.39 V, while LGR-pAP, of which oxidation begins above +0.35 V, does not promote the silver deposition in the deposition step. Then, we

Analyst

measured the current in the deposition process on the fabricated chip device to ensure the strategy of LAL-based SSV endotoxin detection. The deposition current was observed only when the reaction mixture contained endotoxin. The total charge observed in the detection process was consistent of the charge observed in the subsequent stripping process. Finally, we performed quantitative endotoxin assays using the fabricated chip device. The electrical charges obtained from the silver stripping current increased with the concentration of endotoxin in the solution. The detection limit was 0.5 EU L^{-1} for a LAL reaction time of 60 min. This method will provide simple quantitative analysis tools for extra-low-concentration endotoxin in dialysis water and on medical instruments.

322 Acknowledgements

This research was supported by Grant-in-Aid for Young Scientists (B) (No. 23750073) from the Japan Society for the Promotion of Science (JSPS), and the Supporting Industry Project of the Ministry of Economy, Trade and Industry. It was also partly supported by a Grant-in-Aid for Scientific Research (A) (No. 22245011) from JSPS, and by Special Coordination Funds for Promoting Science and Technology,

2 3 4 5 6 7		
5 6 7	328	(
8 9 10	329	f
11 12		
13 14 15		
16 17 18		
19 20		
21 22 23		
24 25 26		
27 28		
29 30 31		
32 33 34		
35 36		
37 38 39		
40 41 42		
43 44 45		
46 47		
48 49 50		
51 52 53		
54 55		
56 57 58		
59 60		

from the Japan Science and Technology Agency.

330	References
331	1 E. T. Rietschel, T. Kirikae, F. U. Schade, U. Mamat, G. Schmidt, H. Loppnow, A
332	Ulmer, U. Zähringer, U. Seydel, F. D. Padova, M. Schreier and H. Brade, FASEB
333	1994, 8 , 217–225.
334	2 R. B. Yang, M. R. Mark, A. Gray, A. Huang, M. H. Xie, M. Zhang, A. Goddard, V
335	Wood, A. L. Gurney and P. J. Godowski, <i>Nature</i> , 1998, 395 , 284–288.
336	3 S. Iwanaga, Proc. Jpn. Acad. Ser. B, 2007, 83, 110–119.
337	4 P. Miao, <i>RSC Adv.</i> , 2013, 3 , 9606–9617.
338	5 K. Y. Inoue, K. Ino, H. Shiku and T. Matsue, <i>Electrochem. Commun.</i> , 2010,
339	1066–1069.
340	6 K. Y. Inoue, S. Takahashi, K. Ino, H. Shiku and T. Matsue, <i>Innate Immun.</i> , 2011,
341	343–349.
342	7 K. Y. Inoue, S. Takano, S. Takahashi, Y. Ishida, K. Ino, H. Shiku and T. Mats
343	Analyst, 2013, 138 , 6523 – 6531.
344	8 T. Horiuchi, O. Niwa, M. Morita and H. Tabei, <i>Anal. Chem.</i> , 1992, 64 , 3206–3204
345	9 T. Horiuchi, O. Niwa and H. Tabei, Anal. Chem., 1994, 66, 1224–1230.
346	10 M. Morita, O. Niwa and T. Horiuchi, <i>Electrochim. Acta</i> , 1997, 42 , 3177–3183.

347	11	T. Yasukawa, Y. Yoshimoto, T. Goto and F. Mizutani, Biosens. Bioelectron., 2012,
348		37 , 19–23.
349	12	E. P. Gil, H. T. Tang, H. B. Halsall, W. R. Heineman and A. S. Misiego, Clin.
350		<i>Chem.</i> , 1990, 36 , 662–665.
351	13	S. P. Perone, Anal. Chem., 1963, 35 , 2091–2094.
352	14	M. M. Nicholson, Anal. Chem., 1960, 32, 1058–1062.
353	15	IUPAC ANALYTICAL CHEMISTRY DIVISION, Spectrochim. Acta B, 1978, 33,
354	,	241-246.
355	16	J. Bommer and B. L. Jabert, Semin. Dial., 2006, 19, 115–119.
356	17	I. Masakane, Y. Tubakihara, T. Akiba, Y. Watanabe and K. Iseki, Ther. Apher. Dial.,
357	,	2008, 12 , 457–463.
358		
359		
360		
361		
362		
363		
364		

365	Figure Captions
366	
367	Figure 1. (A) Principle of the LAL-based SSV endotoxin assay. (B) Photograph of the
368	chip device. (C) Diagram of the chip device structure.
369	
370	Figure 2. (A) Cyclic voltammograms of assay buffer, 1.0 mM LGR-pAP, and 1.0 mM
371	pAP obtained with the reaction electrode on the chip device. LGR-pAP and pAP were
372	dissolved in the assay buffer. (B) Cyclic voltammogram of 10 mM AgNO ₃ in 100 mM
373	KNO ₃ obtained with the deposition electrode on the chip device. Potentials were swept
374	upward from 0.0 V Fig. A and downward from +0.8V in Fig. B at a scan rate 20 mVs^{-1} .
375	
376	Figure 3. (A) Deposition currents observed with 1000 EU L^{-1} and without endotoxin in
377	sample solutions. (B) Anodic stripping voltammograms of the deposition electrode after
378	observing the deposition current shown in Fig. A.
379	
380	Figure 4. (A) Anodic stripping voltammograms obtained with the deposition electrode
381	on the chip device after 60 min of deposition with endotoxin concentrations of 0, 0.5, 1,
382	10, 100 and 1000 EU L^{-1} . (B) Calibration curves for quantitative detection of

383	SSV-based electrochemical assay with the chip device. Electrical charges calculated
384	from the voltammograms of ASV are plotted versus endotoxin concentration. Error bar

indicate \pm standard deviations (n = 3-6).

Fig. 1 (Continued)

В

Page 27 of 29

Analyst Accepted Manuscript

Fig. 3

