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Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was 

coupled to a Partial Least Squares (PLS) regression and variable selection methods to 

estimate the total acid number (TAN) of Brazilian crude oil samples 
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Abstract 

Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares 

(PLS) regression and variable selection methods to estimate the total acid number 

(TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra presents 

a power of resolution of ca. 500.000 and a mass accuracy less than 1 ppm, producing a 

data matrix containing over 5700 variables per sample. These variables correspond to 

heteroatom-containing species detected as deprotonated molecules, [M-H]
- 
ions, which 

are identified primarily as naphthenic acids, phenols and carbazole analog species. The 

TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g 
-1

. To facilitate the 

spectral interpretation, three methods of variable selection were studied: variable 

importance in the projection (VIP), interval partial least squares (iPLS) and elimination 

of uninformative variables (UVE). The UVE method seems to be more appropriate for 

selecting important variables, reducing the dimension of the variables to 183 and 

producing a root mean square error of prediction of 0.32 mg of KOH g
-1

. By reducing 

the size of the data, it was possible to relate the selected variables with their 

corresponding molecular formulas, thus identifying the main chemical species 

responsible for the TAN values.  

 

 

 

Keywords: ESI(-)FT-ICR MS; Petroleomic; Total acid number; UVE-PLS. 
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1. Introduction 

 

Petroleomics is defined as a field of petrol sciences able to elucidate the chemical 

composition of constituents present in crude oil due to its physical and chemical 

properties and reactivity. In general, crude oil is composed mainly of carbon (80 to 

90%), hydrogen (10 to 15%), sulfur (up to 5%), oxygen (up to 4%), nitrogen (up to 2%) 

and traces of other elements (e.g., nickel and vanadium). The composition of the oil is 

classified in terms of the proportion of hydrocarbons and polar aromatic compounds.
1
 

Oxygen-containing compound classes (naphthenic acids, O2 class; phenols, O1 

class), are responsible for some undesirable properties, such as acidity (caused mainly 

by the presence of naphthenic acids), coloring, odors (phenols), the formation of 

emulsions and corrosion.
2
 Among the main corrosive species, the naphthenic acids are 

evidenced in acidic crude oils, although they represent less than 3 wt %.
3
 Naphthenic 

acids are defined as organic acids with the general formula R-(CH2)n-COOH, where R 

is a radical including one or more cyclopentane or cyclohexane rings (Figure 1). Due to 

naphthenic corrosivity effects and their biological marker role in geochemistry, many 

studies were focused on the identification of the naphthenic acids structures present in 

different crude oils.
4
 This identification proved to be very difficult because naphthenic 

acids form complex mixtures. Some references mentioned that a single crude oil sample 

contains approximately 1500 different organic acids that are identified with molecular 

weights ranging from 200 to 700 Da.
3,5

 More recent works on some crude oils identified 

naphthenic acid with a mass range of 115-1500 Da and a carbon content of C20 to C80. 

The concentration of naphthenic acids in oils was one of the first tasks performed 

in the naphthenic corrosion studies. Currently, naphthenic concentrations are measured 

by titrating them with an alcoholic solution of potassium hydroxide (KOH), being 
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expressed by the total acid number (TAN) that represents the milligrams of KOH used 

to neutralize all of the acidic species in 1 g of oil sample. Crude oils with TAN > 0.5 mg 

of KOH/g may cause severe corrosion problems to refinery operations.
6-8

 However, the 

value of the TAN is not directly correlated to the corrosivity of naphthenic acids. The 

TAN value depends upon the size and structure of the naphthenic acids and their 

interaction with other compounds present in the crude oil (sulfites, carbon dioxide, 

etc.).
6 

 

 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 

offers the highest available mass resolution, mass resolving power and mass accuracy, 

which enable the analysis of complex petroleum mixtures on a molecular level.
9
 High-

resolution MS data have demonstrated that it is possible to discriminate many different 

compounds
10,11

 because of the different ionization efficiencies of the crude oil 

constituents.
12

 Accurate mass measurements
13,14 

allow unambiguous elemental 

composition (CcHhNnOoSs) assignment and DBE (double bond equivalents), facilitating 

material classification by the heteroatom content and the degree of aromaticity.
15,16 

Naphthenic acids can be analyzed by negative-ion electrospray ionization, ESI(-), 

coupled to FT-ICR MS, being detected in the form of a deprotonated molecule, [M – 

H]
-
.   

The petroleomic MS characterization of crude oils has highlighted the 

compositional trends to elucidate important crude oil properties. A fundamental goal of 

petroleomics is to link such detailed crude oil compositions to its properties. To relate 

the measured spectra to specific parameters, uni- and multi-variate calibration are often 

used, which are especially useful with parameters that are difficult to measure 

directly.
17,18

 In addition, the use of mass spectrometry can reduce waste, minimizing the 
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consumption of raw materials and energy, thereby diminishing the environmental 

impact.  

The aim of this work was the utilization of ESI(-)-FT-ICR MS technique in 

conjunction to PLS regression to find a relationship between the mass spectra and the 

TAN value. After that, by using variable selection methods, the dimension of the MS 

data was reduced and, most important, the main chemical species responsible for the 

relationship was identified. Then, it was possible to link the crude oil composition with 

the TAN parameter that is the fundamental goal of petroleomics. 

 

2. Data Analysis 

 

2.1. Partial Least Squares 

  

In the partial least squares (PLS) approach, the matrix of instrumental responses 

(X) is related to the vector of property of interest (y) by the liner relationship presented 

in Equation 1:
19

 

y = Xb                                                                                                               (1) 

The arrays X and y are decomposed into latent variables, similar to the principal 

component analysis (PCA)
20

, as represented by Equations 2 and 3, 

ETPX += t    (2) 

fTqy += t    (3) 

where T is the matrix of scores, P
t
 and q

t
 are the loadings, and E and f are the residues. 

The scores T are estimated from the weight coefficient W that is obtained to minimize 

the vector f and to maximize the relationship between X and y given by Equation 1, 

     XWT =                                                                                                             (4) 
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 The regression coefficients used to relate X and y, are calculated according to 

Equation 5:  

( ) ( ) yTTTWpWb ttt 11 −−
=             (5) 

 

2.2. Variables Selection Methods  

 

 The variable selection methods have been used to produce simpler, robust and 

interpretable models. In this paper, the variables selection methods tested were: 

uninformative variable elimination (UVE), variable importance in projection (VIP) and 

interval partial least squares (iPLS). 

 

2.2.1. Uninformative variable elimination (UVE) 

 

 The UVE proposed by Centner
21

 is a method of variable selection based on the 

reliability analysis of regression coefficients (b) that represent the contribution of each 

variable to the established model, which is calculated through a leave-one-out validation 

method. The principle of UVE is to add noise (artificial variables) to the matrix of 

instrumental responses and develop a PLS model for the data set containing the 

experimental and the artificial variables. The reliability criterion jc (for each j variable) 

is calculated based on the ratio of the regression coefficient )( jbmean  and )( jbstd , 

which are the mean and the standard deviation, respectively, of the regression 

coefficients (Equation 6).  

         
)(

)(

j

j

j
bstd

bmean
c = ,        for    j = 1,..., 2p                                                                                 

(6) 
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where p is the number of variables of the instrumental responses. To estimate a cutoff, 

i.e., the limit for the included and excluded variables, a criterion of informative or 

uninformative variable is formulated and presented in Equation 7: 

        ))(max(* noisecabskcutoff =                                                                      (7) 

where k  is an arbitrary value (normally 2), cnose are the values for the artificial 

variables, and ))c(absmax( noise
 is maximum absolute value of the reliability criterion.

22
 

  

2.2.2. Variable importance in projection (VIP) 

 

VIP is a combined measure of how much a variable contributes to describe the 

two datasets as PLS regression.
23

 The idea is to accumulate the importance of each 

variable j being reflected by weight wh from each latent variable. The VIP measure jv  is 

defined by the Equation 8, 

( )[ ]∑ ∑
= =

=
H

h

H

h

hhhjhj SSwwSSpv
1 1

2
)(//    (8) 

where hSS  is the sum of squares described by the h latent variables. Hence, the jv  is a 

measure of the contribution of each variable according to the variance described by each 

PLS component, where ( )2
/ hhj ww  represents the importance of the variable j. The jv < 

1 (average of ν ) condition indicates a non-important variable that could probably be 

removed. 

 

 

2.2.3. Interval Partial Least Squares (iPLS) 
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The interval Partial Least Squares (iPLS) is a method introduced by Norgaard
24 

, 

in which the matrix of instrumental response is divided in a defined number of intervals, 

and a PLS model is developed for each one of them. The sub-interval (or more than one 

sub-interval) that presented the smallest cross-validated error was selected. The iPLS 

can be an effective tool to determine the importance of different parts of a data set. 

 

3. Experimental 

 

3.1. Reagents and samples 

 

 Anhydrous propanol, toluene and potassium hydroxide, each with a purity 

higher than 99.5%, were purchase from Vetec, Brazil and used for the TAN 

determinations. Ammonium hydroxide (NH4OH) and sodium trifluoroacetate (NaTFA) 

were purchased from Sigma–Aldrich, USA and used for the ESI(-)-FT-ICR MS 

measurements. In this study, thirty four crude oil samples from sedimentary basin of the 

Brazilian coast were used. 

 

3.2. TAN determination   

 

TAN measurements were performed according to the standard ASTM method 

(ASTM D664-09)
25 

using a potentiometer (Metrohm Analytical Instruments and 

Accessories, USA) with a reproducibility of pH ± 0.005 mg KOH g-1. In 250 mL 

beakers, the crude oil samples (5 ± 0.5 g) were weighed, dissolved in 125 mL of 

water/anhydrous propan-2-ol/toluene (0.5/49.5/50 % in volume), and then titrated with a 

0.1 mol L
-1

 alcoholic KOH solution. Silver/Silver chloride (Ag/AgCl) reference 
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electrode built into the same electrode body and a magnetic stirrer were used during the 

titration. The results are expressed as milligrams of potassium hydroxide per gram of 

sample required to titrate a sample in a solvent to a specified end point (see Table 1). 

The TAN values ranged from 0.06 to 3.61 mg KOH g
-1

. 

 

3.3. ESI(-)-FT-ICR MS measurements  

 

Petroleum samples were analyzed by ESI(-). Briefly, the crude oil samples were 

diluted to ≈ 1.2 mg mL
-1

 in 50:50 (v/v) toluene/methanol (which contained 0.1% w/v of 

NH4OH for ESI(-)). The resulting solution was directly infused at a flow rate of 5 µl 

min
-1

 into the ESI(-) source. The mass spectrometer (model 9.4 T Solarix, Bruker 

Daltonics, Bremen, Germany) was set to operate over a mass range of m/z 200-1300. 

The ESI(-) source conditions were as follows: a nebulizer gas pressure of 1.0 bar, a 

capillary voltage of 3.0-3.5 kV and a transfer capillary temperature of 250 °C. The ions 

are accumulated in the hexapolar collision cell over a time period of 0.15-0.20 s, 

followed by transport to the analyzer cell (ICR) through the multipole ion guide system 

(another hexapole). Each spectrum was acquired by accumulating 200 scans of time-

domain transient signals in four mega-point time-domain data sets. The front and back 

trapping voltages in the ICR cell were - 0.60 V and - 0.65 V, respectively, for ESI(-). 

All mass spectra were externally calibrated using a NaTFA solution (m/z from 200-

1200) after they were internally recalibrated using a set of the most abundant 

homologous alkylated compounds for each sample. A resolving power (m/∆m50% ≈ 450 

000, in which ∆m50% is the full peak width at half-maximum peak height) of m/z 400 

and a mass accuracy of < 1 ppm provided the unambiguous molecular formula 

assignments for singly charged molecular ions. The mass spectra were acquired and 
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processed using a custom algorithm developed specifically for petroleum data 

processing, Composer software (Sierra Analytics, Pasadena, CA, USA). The MS data 

were processed, and the elemental compositions of the compounds were determined by 

measuring the m/z values. To help visualize and interpret the MS data, a typical plot was 

constructed, such as a heteroatomic-containing compounds diagram and a carbon 

number versus the double bond equivalents (DBE) plot, where DBE is defined as the 

number of rings plus the number of double bonds in a molecular structure. The 

aromaticity of a petroleum component can be deduced directly from its DBE value 

according to Equation 9, 

                             DBE = c – h/2 + n/2 + 1                      (9) 

where c, h and n are the numbers of carbon, hydrogen and nitrogen atoms, respectively, 

in the molecular formula. 

 

3.4. Models development 

 

After the mass attribution by the Composer software, the data set was 

transformed to a data matrix in the software Matlab. The optimization of the PLS 

models was performed using a k-fold cross-validation, and the best results were 

obtained using auto-scaling as a preprocessing step. In this study, 25 samples for 

calibration and nine samples for prediction were used. To facilitate the spectral 

interpretation, three different variables selection methods were tested: UVE, VIP and 

iPLS. The best method was chosen based on the error of prediction (RMSEP) 

determined using Equation 10, the number of selected variables and the region of the 

image corresponding to the original image obtained from the DBE vs. carbon number 
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plots. All of the PLS models were development in the software PLS Toolbox version 

6.7 for Matlab. 

 

( )

n

y- ŷ

=RMSEP

∑
n

1=i

2

ii

         (10) 

where ŷ is the predicted TAN value by the PLS model and y is the reference TAN value 

given by ASTM D664-09.
 

 

4. Results and discussion 

 

4.1. ESI(-) FT-ICR MS 

 

Figures 2a-c displays the mass spectra of three typical Brazilian crude oils with 

different TANs: S1 (Figure 2a, TAN = 3.61 mg KOH g
-1

), S4 (Figure 2b, TAN = 1.90 

mg KOH g
-1

) and S21 (Figure 2c, TAN = 0.17 mg KOH g
-1

). The ESI(-)-FT-ICR MS 

technique was able to identify 5703 variables per sample (the number of molecular 

formula assignments from the Composer software). In general, the ESI(-)-FT-ICR mass 

spectra have Gaussian profiles from m/z 200 to 800 with an average molar mass 

distribution (Mw) centered from 520 (sample S4, 2b) to 550 Da (sample 2c). 

Heteroatom-containing species were detected as deprotonated molecules, [M-H]
- 

ions, 

corresponding primarily to naphthenic acids, phenols and carbazole-analog species.  

The naphthenic acid species concentration changes as a function of the TAN 

values. The enlarged area around m/z 417 (Figures 2a-c) highlights the decrease of the 

intensity of the ion [C28H50O2 – H]
-
, which has an m/z of 417.3738 and DBE of 4; 

whereas the ions [C29H38O2 - H]
-
 and [C30H42O - H]

-
 of m/z 417.2799 and 417.3164, and 

DBEs of 11 and 10, respectively, increases in function of TAN.  
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Generally, petroleum samples have chemical compositions that differ 

significantly from one another. One way to display the similarities or differences 

between the signal patterns of crude oil samples is to build certain types of plots, such 

as plots of the relative abundances of different classes of compounds. In the present 

study, for the class profile diagrams shown in Figure 3, the relative amounts of each 

class were calculated by summing the abundances in one compound class and dividing 

by the total abundance of all species. The relative amounts of N, N2, NO, NO2, O and 

O2 class compounds present in the samples S01, S04 and S021 are shown in Figure 3. 

For sample S01 of higher acidity (TAN = 3.61 mg KOH g
-1

), the O2 class, composed 

primarily of naphthenic acids,
26 

was the most abundant class. The N class (carbazole 

analog species) was the second most abundant, followed by the O and NO2 classes 

(analogous to phenols and carbazoles with one carboxylic acid group or two hydroxylic 

groups). For sample S04 of intermediary TAN value, (TAN = 1.90 mg KOH g
-1

), an 

increase of the relative abundance of non-basic nitrogen-containing compound classes is 

observed (N, N2, NO and NO2 classes), with the majority presence of phenol analogous 

compounds, O class, also evident for sample S21 of TAN = 0.17 mg KOH g
-1

. As 

consequence of the relationship observed between the TAN values and the relative 

abundance of the O2 class, a plot of the relative abundance of the O2-containing acids 

species versus the TAN value was built for the 34 samples analyzed, as shown in Figure 

4, where a clear relation is observed similar to reported in literature.
18

 Although these 

acids are the primary contributors to the overall acidity of the crude oils, other non-basic 

nitrogen compounds, phenols and non-polar sulfur components (not detected by ESI-

FT-ICR MS), also contribute to the TAN value of the crude oils.  

 

4.2. Variable selection methods 
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Figure 5a shows the original mass spectra and Figure 5b shows the spectra 

separated by classes, where the classes are organized in alphabetic order. This data 

reorganization was performed to facilitate the data analysis by chemometric methods 

and the results interpretation. Analyzing Figure 5, the need of data preprocessing is 

identified for the correction of the main differences between the intensity of the 

molecular ions. These differences were corrected by using auto-scaling as the 

preprocessing step, due to its performance in removing unwilling variation.  

Figures 6, 7 and 8 show the procedure for variable selection by UVE, VIP and 

iPLS, respectively. For the UVE, a confidence level of 99% was defined, with six latent 

variables in the model, whereas for the VIP, VIP > 5 was chosen as the threshold, with 

five latent variables. For iPLS, the spectra were split in intervals of size of 100 

variables, and four intervals with five latent variables were selected to obtain the best 

results of the RMSEP. It is important to know that the O class is 3731 to 4346 and the 

O2 class is 4347 to 5000 compound numbers.  Note that in all figures, the majority of 

variables selected were between these intervals, being the most important to be used to 

predict the TAN value in the rearranged spectrum (Figure 5b).   

Subsequently, a new PLS model was developed with the different variable selection 

methods, and the results are presented in Table 2, including the number of latent 

variables and the number of variables selected along with the respective calibration and 

validation errors. The F-test is found to exhibit a similar accuracy for all of the methods 

because Fexp <Fcrit with a confidence level of 95 %. Additionally, these errors were 

consistent with those obtained when all of the variables were used. However, now the 

model presents the advantage of the reduced number of variables generating more 

parsimonious models. Another important observation in Table 2 is that the number of 
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selected variables is similar between the VIP and UVE methods (the VIP and UVE 

methods reduced the amount of 5703 variables to 159 and 183 variables, respectively).  

 The choice of the most representative variable selection method can be based on 

the relationship of the selected variables with their respective molecular formula, thus 

identifying the species responsible for the TAN parameter (with the carbon number 

ranging from C15 to C69, and the DBEs from 3 to 8). Therefore, it is possible to plot 

DBE versus the carbon number using the selected variables, as presented in Figure 9, 

for the O2 (a) O (b) and N2 (c) classes from the three chemometric methods used: VIP 

(a1,b1,c1), iPLS (a2,b2,c2) and  UVE (a3,b3,c3). For this plot, it was chosen a sample 

with TAN of 1.18 mg KOH/g, an intermediated acidity value. For others samples, with 

different TAN values, different figures could be obtained. It is possible to see, by the 

observation of the images in Figure 9 that the region selected by UVE method for O2 

and O classes corresponds to the correct range of carbon number in comparison with the 

image with all variables. This observation demonstrates that the UVE method reduced 

the number of variables with the same error of prediction of the other tested methods, 

while retaining the chemical information; therefore, it can be considered to be the best 

method for variables reduction.  

The predicted TAN values obtained by UVE-PLS compared to the measured ones 

by ASTM method are shown in Figure 10. Note the clear correlation between the value 

of TAN obtained from ESI(-)-FT-ICR MS data and that obtained from conventional 

method. The RMSEP of 0.32 mg KOH/g (for nine validation samples) is less than the 

result obtained by the other studies
18

 of 0.77 mg KOH/g (for 10 validation samples). 

 

5. Conclusions 
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ESI(-)FT-ICR MS coupled to multivariate calibration produces a powerful 

analytical tool to predict the values of TAN for different crude oils. This approach 

combines the reliable information supplied from ESI(-) FT-ICR MS data with the 

possibility of variables reduction and the multivariate calculation supplied by 

chemometric methods, such as PLS.  

Generally, the ESI(-)-FT-ICR mass spectra produced a data matrix containing a 

total number of variables of 5703 for the different crude oils studied. Among the three 

variable selection methods studied (variable importance in the projection (VIP), interval 

partial least squares (iPLS) and elimination of uninformative variables (UVE)), the 

UVE was found to be more appropriate to select the important variables for the model, 

reducing the dimension of the variables from 5703 to 183. This result was confirmed 

from the DBE versus carbon number plot, where maximum distributions for the 

abundant species are in good agreement. The RMSEP obtained was 0.32 mg of KOH g
-

1
, which is consistent with the error when using all variables. By reducing the size of the 

data, it was possible to relate the selected compounds with their corresponding 

molecular formula, thus identifying the relationship with the TAN of the oil. 

In future works, other physical and chemical properties of crude oils will be 

predicted, such as density, viscosity, SARA method (saturate, aromatic, resin and 

asphaltene) and elemental analyses (percentage of carbon, hydrogen, nitrogen and 

oxygen), from non-polar compounds ionization, being then applied other ionization 

sources, such as laser desorption/ionization and atmospheric pressure photoionization. 
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Table 1. TAN values for the crude oil samples.  

Samples TAN (mg-KOH / g) Samples TAN (mg-KOH / g) 

S 01 3.61 S 19 0.19 

S 02 3.09 S 20 0.18 

S 03 2.64 S 21 0.17 

S 04 1.90 S 22 0.17 

S 05 1.18 S 23 0.15 

S 06 0.89       S 24 0.14 

S 07 0.72       S 25 0.13 

S 08 0.70      S 26 0.11 

S 09 0.65      S 27 0.10 

S 10 0.58 S 28 0.06 

S 11 0.51 S 29 0.06 

S 12 0.42 S 30 0.06 

S 13 0.45 S 31 0.06 

S 14 0.35 S 32 0.04 

S 15 0.32 S 33 0.04 

S 16 0.29 S 34 0.14 

S 17 0.27   

S 18 0.24   
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Table 2. RMSEP for the variable selection methods.  

Variable 

Selection 

Method 

Number 

latent 

variables 

Number 

select 

variables 

RMSEC 

(mg-

KOH/g) 

RMSECV 

(mg-KOH/g) 

RMSEP 

(mg-

KOH/g) 

*Rcal
2
 

None 6 5703 0.12 1.05 0.34 0.89 

VIP 5 159 0.13 0.80 0.35 0.98 

iPLS 6 400 0.34 0.56 0.38 0.87 

UVE 6 183 0.20 0.79 0.32 0.93 

* Determination coefficient for calibration samples set. 
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Captions for the Figures 

 

Figure 1. Some chemical structures of the naphthenic acids present in crude oil.   

 

Figure 2. ESI(-)-FT-ICR MS for the crude oil samples S01(a), S04 (b), e S21 (c). The 

insert shows that the intensity of ion [C28H50O2 - H]
-
 of m/z 417.3738 and DBE of four 

decreases, whereas the ions [C29H38O2 - H]
-
 and [C30H42O - H]

-
 of m/z 417.2799 and 

417.3164, and DBEs of 11 and 10, respectively, increases in function of TAN.  

 

Figure 3. Heteroatom-containing compound class distribution from the ESI(-)-FT-ICR 

MS data of the crude oil samples S01 (high acidity), S04 (intermediate acidity) and S21 

(low acidity). 

 

Figure 4. Percentage of the O2 class versus the TAN values for 34 crude oil samples.   

 

Figure 5. ESI(-) FT-ICR mass spectra of 34 crude oils samples. Original mass spectrum 

(a) and mass spectrum rearranged by classes (b). 

 

Figure 6. UVE results. t values for experimental (1-5703) and artificial random (5704-

11406) variables (a) and selected variables (b). The cutoff level at 0.99 is indicated by 

the dashed line. 

 

Figure 7. VIP variables of the PLS model. 
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Figure 8. Illustration of the results from iPLS. The columns denote the RMSECV 

obtained from each of the intervals. The horizontal line denotes the RMSECV of the 

full-spectrum model. 

 

Figure 9. DBE versus carbon number for O2 class (a), O class (b) and N2 class (c) 

using all variables and for variable selection methods: VIP (a1,b1,c1), iPLS (a2,b2,c2) 

and UVE (a3,b3,c3). 

 

Figure 10. Plot of predicted by UVE-PLS versus the measurement by the ASTM 

method for the TAN values. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4  
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8  
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Figure 9 
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Figure 10  
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