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INTRODUCTION 
While overall cancer incidence in the US has decreased in 

recent years the number of new cases of esophageal cancer 

is increasing [1]. There are two major histological sub-types 

of esophageal cancer, squamous cell carcinoma and ade-

nocarcinoma; the latter of which has seen an alarming in-

crease in incidence in Western countries over the past sev-

eral decades [2]. Early diagnosis of esophageal adenocarci-

noma is of the utmost importance to allow curative interven-

tion, as prognosis for patients with symptomatic and ad-

vanced adenocarcinoma is very poor. However late presen-

tation is frequent, and overall 5-year mortality rates exceed 

80%. Patients who are fit for radical surgical intervention 

have a median survival of 1 year and 5-year survival rates of 

10% [3]; this makes esophageal adenocarcinoma one of the 

most lethal cancers. 

Esophageal adenocarcinoma typically arises in the dis-

tal one-third portion of the esophagus and its primary risk 

factor is Barrett’s esophagus; a metaplastic transformation 

of the esophageal mucosa that is thought to arise as a pro-

tective response to tissue inflammation as a result of chronic 

gastro-esophageal reflux disease (GERD) [4].  Barrett’s 

esophagus is recognized by the transition from stratified 

squamous epithelial cells to specialized columnar cells and 

is present in about 15% of patients undergoing endoscopy 

for symptoms of GERD [5]. Although these columnar cells 

appear to be more resistant to acid reflux they are predis-

posed to carcinogenesis. With continued regurgitation of 

gastric acid the columnar epithelium may become dysplas-

tic, leading to the possibility of adenocarcinoma [6]. 

The increased risk of esophageal adenocarcinoma in 

patients with Barrett’s esophagus has lead to the develop-

ment of endoscopic surveillance programs in many coun-

tries worldwide, recommending periodic upper-

gastrointestinal endoscopy every 2-3 years to detect dys-

plastic change or early cancer [7].  

Endoscopic surveillance is limited by the difficulty of de-

tecting dysplasia or early cancer using white light endosco-

py, with over 20% of lesions missed even by expert endos-

copists using a high-resolution endoscope [8]. Consequently 

guidelines advocate random biopsy sampling of the mucosa 

ABSTRACT 
We report results from a study utilizing infrared spectral cytopathology (SCP) to detect abnormalities in exfoliated 

esophageal cells. SCP has been developed over the past decade as an ancillary tool to classical cytopathology. In SCP, 

the biochemical composition of individual cells is probed by collecting infrared absorption spectra from each individual, 

unstained cell, and correlating the observed  spectral patterns, and the variations therein, against classical diagnostic 

methods to obtain an objective, machine-based classification of cells. 

In the past, SCP has been applied to the analysis and classification of cells exfoliated from the cervix and the oral cavity. 

In these studies, it was established that SCP can distinguish normal and abnormal cell types. Furthermore, SCP can dif-

ferentiate between truly normal cells, and cells with normal morphology from the vicinity of abnormalities. Thus, SCP 

may be a valuable tool for the screening of early stages of dysplasia and pre-cancer. 

 
Figure 1: (a) White light image of a cellular region and (b) its 

corresponding binary mask generated in PapMap. Contiguous 

white areas correspond to cellular regions. (See text for details) 
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in 4 quadrants at 2 cm intervals throughout the region of 

Barrett’s [9]. This results in lengthy endoscopic procedures 

and a high workload for pathologists. 

The problem of accurate detections is further com-

pounded by inter-observer variation in histopathology as-

sessment. Inter- and intra- observer studies have demon-

strated that, when dividing into 4 clinical categories (nega-

tive for dysplasia; indefinite for dysplasia and low-grade 

dysplasia; high-grade dysplasia; and adenocarcinoma), 

there are astonishingly poor levels of agreement among 

pathologists with intra-observer kappa values of 0.64; and 

inter-observer kappa values of 0.43 [10]. 

Another major challenge in the early detection of 

esophageal adenocarcinoma is that less than 10% of cases 

arise in patients with a prior diagnosis of Barrett’s esopha-

gus [11]. This has led to consideration of screening pro-

grams to identify those with Barrett’s esophagus at in-

creased risk. However, endoscopic screening would be in-

vasive and expensive, and consequently unlikely to be cost-

effective for a large population. This problem has driven 

searches for non-endoscopic methods of detection of Bar-

rett’s. Esophageal cytology is a possible approach, with one 

such collection device (the cytosponge
TM

) that has shown 

acceptability in a primary care setting [12]. If applied in clini-

cal practice, assessment of esophageal cytology would re-

quire cytological expertise and consume significant patholo-

gy resources.  

Infrared spectroscopy has been shown to discriminate 

between pathological cell types in a number of other disease 

states, such as oral, bladder and cervical cancer [13-15]. 

The current study investigated whether this application can 

be applied in the esophagus as a potential automated, ob-

jective diagnostic tool for detection of Barrett’s esophaghus. 

 

MATERIALS AND METHODS 

Exfoliation 

All cell samples for this study were collected during routine 

endoscopic or surgical procedures at the Department of 

Surgery at the Gloucestershire Royal Hospital, Gloucester, 

UK. The cell samples were exfoliated from regions of normal 

squamous, Barrett’s esophagus and dysplasia using a 

standard cytological brush attached to the endoscope. 

Samples on cytological brushes were fixed in 2% formalin 

solution and shipped to the Laboratory for Spectral Diagno-

sis at Northeastern University (Boston, MA, USA) for data 

acquisition. Cells were vortexed off the brushes, filtered to 

remove debris, and deposited onto ‘low-e’ microscope slides 

(Kevley Technologies, Chesterland, OH, USA) using cyto-

centrifugation (CytoSpin, Thermo, Waltham, MA, USA).  

Samples studied are described in Table I. Ethical ap-

proval for this study was provided by Gloucestershire Re-

search Ethics Committee ReCAD1. 

 

Data Collection 

Infrared hyperspectral data sets were collected from a 4 mm 

x 4 mm area on low-e slides in imaging mode using a Perkin 

Elmer Spectrum One/Spotlight 400 imaging IR micro-

spectrometer (Sheldon, CT, USA) in the Laboratory for 

Spectral Diagnosis. The problems reported with the use of 

the low-e sample substrates [16] were accounted for by 

methods reported in the literature [17, 18].The instrument 

bench, the IR microscope, and an external microscope en-

closure box were purged with a continuous stream of dry air 

(-40 C° dew point) to reduce atmospheric water vapor spec-

tral contributions in the spectra. Data were acquired in re 

flectance mode with the following parameters: 4 cm
-1

 spec-

tral resolution, 6.25 µm
2
 pixel size, 2 scans/pixel, Norton-

Beer apodization, and 1 level of zero filling. The co-added 

interferograms for each pixel were Fourier transformed to 

yield spectral vectors, each with a range of 4000-700 cm
-1

 at 

Table I: List of  the original pathological diagnosis at the time of 
exfoliation for each sample in this study, as well as the number of 
individual cells from each respective pathological group.  

 

Pathology 
No. 

Samples 
No. Cells 
studied 

 

Normal 
Squamous 

9 2339  

Barrett’s 
Esophagus 

12 3197  

Dysplasia 5 1161  

 

 
Figure 2: (a) PCA scores plot of diagnosed cells by a pathologist. 
Squamous are shown in green, Barrett’s in red and dysplasia in 
blue. (b) Mean second derivative, vector normalized spectra 
showing distinct spectral differences between the disease states. 
(c) 40 x visual images of annotated cells some different patholog-
ical groups: (top) squamous, (middle) Barrett’s and (bottom) dys-
plasia. 
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2 cm
-1

 intervals. Background spectra for all 16 detector ele-

ments were collected using 128 co-added interferograms. 

Raw data sets consist of 409,600 spectra and occupy ap-

proximately 2.54GB each. 

 

Image Processing 

Raw data sets were imported into software written in-house 

referred to as PapMap [19]. This program is written in 64-bit 

MATLAB (Mathworks, Natick, MA, USA) to accommodate 

the large data matrices. PapMap reconstructs the spectra of 

individual cells collected in mapping mode from between 10 

and 100 individual pixel spectra (corresponding to 400 and 

4000 µm
2
) for each raw cell area. To this end, PapMap first 

establishes which spectra belong to a given cell in the IR 

image map by constructing a binary mask in which contigu-

ous regions belonging to individual cells are identified. This 

mask is based on raw amide I peak intensities that generally 

vary between 0.01 OD units for the cytoplasm to more than 

0.1 OD units in the nucleus of a dried cell. Such a mask is 

shown in Figure 1b in which white regions correspond to 

cellular regions. There is a good correspondence between 

these regions and the visible image of the sample shown in 

Figure 1a; furthermore, the elimination of cell clums (red 

arrow) and overlapping cells (blue arrow) is demonstrated 

by the fact that these regions are absent in the binary mask. 

For each contiguous area occupied by a cell, the cellular 

spectrum is calculated, starting from the spectrum with the 

largest amide I intensity. This spectrum is assumed to be 

from the nucleus of the cell, which always exhibits the 

strongest protein intensity. 

All spectra within the areas defined by the binary mask 

are subsequently co-added and subject to several con-

straints to eliminate spectra from the edges of the cell that 

may exhibit weak spectra with poor signal-to-noise, or spec-

tra confounded by scattering artifacts [20]. The latter spectra 

were identified by lowered amide I frequencies. Subsequent-

ly, PapMap averages all spectra within the masked region to 

obtain one spectrum per cell. Cellular coordinates and 

nametags of each cell are also recorded so that correlation 

with standard pathology is possible. Subsequently, spectra 

are exported for further data analysis. 

 

Staining 

After IR data collection, the cells on a slide were manually 

stained using standard cytological stain combinations, as 

described in the literature [21]. Tap water and solutions of 

ethanol were used for the washing steps. Finally, to avoid 

degradation, slides are dipped in xylene and covered-

slipped for cytological analysis. Using the cellular coordi-

nates and nametags provided by PapMap, cell images are 

obtained using an Olympus BX40 microscope fitted with a 

computer-controlled stage and a QImaging GO3 3MB digital 

color camera. The images and cellular spectra are linked 

together and stored in a database for easy identification. 

Cellular images from 10 samples (8 Barrett’s, 2 dysplastic) 

were analyzed by a pathologist at the Gloucestershire Royal 

Hospital. 

 

 

Data Analysis 

Data analysis was performed using both supervised 

and unsupervised methods of multivariate analysis. In the 

latter category, principal component analysis (PCA) was 

used to determine whether or not there are distinct spectral 

differences between cellular spectra. The principal compo-

nents (PCs) are obtained from the eigenvectors of the corre-

lation matrix of the data set, and represent a completely 

unbiased decomposition of cellular spectra. PCA was car-

ried out using the PLS Toolbox 402 in MATLAB (Eigenvec-

tor Research, Wenatchee, WA, USA) on the spectral range 

1800-900 cm
-1

 after second derivative calculation and sub-

sequent vector normalization in this spectral range.. This 

method is not suitable for diagnostic purposes since it mere-

ly displays the variance within a dataset, therefore super-

vised methods of analysis are required to predict class 

membership.  

Artificial neural networks (ANNs) were used as super-

vised algorithms for diagnostic data analysis. The spectral 

database was split into independent training and testing sets 

by randomly selecting 400 spectra from each class for the 

training. Training and internal validation are carried out on 

the training spectra with known class assignments. Fifty 

 
 

Figure 3: (a) PCA scores plot of all spectra. (b) Same plot as (a) 

however the cells not within 1% of the mean annotated spectra 

are invisible. Squamous are shown in green, Barrett’s in yellow 

and dysplastic in light blue. (c) PCA scores plot of spectra in (a) 

with cells falling within 5% of the mean necrosis vector, shown in 

(d), highlighted in light blue in panel c. 
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(intensity) features were selected in each spectral vector via 

entropy-based feature selection, using ‘rankfeature’ function 

in MATLAB. The MATLAB ‘feed-forward’ ANN function was 

employed for ANN construction, utilizing 50 inputs, one hid-

den layer with two nodes and one output neuron (binary 

classification of normal/abnormal). The ANN ‘learns’ to cor-

relate spectral features of the training set with the diagnostic 

outcome by assigning ‘weights’ to each of the features [22]. 

External validation (testing) is carried out on equal numbers 

of spectra from each class. ANN performance is described 

in terms of sensitivity, specificity and overall accuracy. 

 

 

 

RESULTS   
We report SCP results from a relatively large annotated data 

set of individual cellular spectra: 299 squamous, 145 Bar-

rett’s and 14 dysplastic cells, totaling 458 diagnosed cells 

from 10 samples. The most abundant cell type found in each 

sample and disease class are the squamous cells of the 

esophagus, which are more easily exfoliated than the co-

lumnar cells. 

The PCA ‘scores’ plot in Figure 2a shows the annotated 

set of spectra with squamous (green), Barrett’s (red) and 

dysplasia (blue). In such a scores plot, each dot represents 

the spectrum of one cell, plotted in a coordinate system that 

indicates the contribution of each PC to a given spectrum. 

The PCs are ‘basis’ spectra calculated from the covariance 

within a data set and give indication of where significant 

biochemical differences occur in the spectra of cells [23]. In 

this scores plot, all the squamous cells diagnosed were from 

samples with disease. The cluster of squamous cells sepa-

rating along PC2 was found to be cells from a dysplastic 

sample. Although the pathologist diagnosed these cells as 

healthy squamous their spectra may suggest that they are 

displaying early signs of disease. Previous studies using 

SCP have shown that morphologically normal cells from 

patients with disease already show abnormal spectra pat-

terns [24]. This is a testament to the sensitivity of SCP since 

it detects cells that have not yet displayed signs of morpho-

logical abnormalities as conventional cytopathology re-

quires.  

Although the majority of the cells appear morphological-

ly normal, they share some compositional variations, which 

deviate from the biochemistry of normal cells. These com-

positional differences can be observed by analysis of the 

spectral data: we find that, in PCA, abnormal cells cluster 

together with cells with normal morphology from patients 

with disease. This is also supported by the ANN results 

which accurately classify morphologically normal cells with 

abnormal spectra into their correct pathological group. 

Figure 2b depicts an overlay of the averaged second 

derivative, vector normalized spectra of the annotated cells.  

There is a significant trend in intensities of the amide I and 

phosphate bands: as disease progresses, the amide I de-

creases in intensity as the phosphate bands (PO2
-
) generally 

increase. The decreased absorbance in the amide I mani-

fold is most likely due to degradation in proteins and chang-

es in the overall proteome of the cells which are shown to be 

reproducible throughout our spectra. In addition to protein 

degradation the formation of new proteins in the diseased 

samples is indicated by a shoulder apparent at 1514 cm
-1

 in 

the amide II region.
1
 The dysplastic cells show a considera-

ble increase in the phosphate bands at 1230 and 1080 cm
-1

 

which may be indicative of increased rates proliferation and 

DNA replication.  

Although there is some separation between the different 

classes discernible in Figure 2a the small size of the dataset 

does not permit a good visual discrimination. When using 

the entire dataset, as shown in Figure 3a, some separation 

is apparent but it is masked by the presence of a large num-

                                                           
1
 It was pointed out by a reviewer that this frequency is generally 

associated with a tyrosine ring vibration. However, the intensity  

and width of the observed signal suggest that it is due to the am-

ide II manifold. 

 
Figure 4: Raw second derivative, vector normalized squamous 
spectra displaying the necrosis signal at 1635 cm

-1
 (top) and 

filtered squamous cell spectra (bottom).  
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ber of non-diagnostic squamous cells. This plot can be sim-

plified substantially by including only cells that fell within a 

correlation coefficient of 0.99 of the mean annotated cell 

spectral classes. To achieve this, the mean spectra of the 

three annotated classes were computed, and only cells that 

were within 1% of the mean spectra were included in the 

PCA analysis shown in Figure 3b. Thus, Figures 3a and 3b 

represent the same PCA analysis, but in Figure 3b only the 

cells are included that fall within a narrow range of agree-

ment with the annotated spectra shown in Figure 2a. Thus, 

Figure 3b may be viewed as a display of all cells in the da-

taset (annotated cells as well as non-annotated cells), but 

only cells that exhibit spectra very similar to the mean spec-

tra of the annotated classes are shown, while less diagnos-

tic cells were omitted from this plot. These ‘non-diagnostic’ 

cells will be discussed later in this paper. 

Figure 3a also shows that the squamous cells exhibit a 

diffuse cluster, indicating large variance in the cell spectra. 

This was also evident upon inspection of the spectra of all 

the squamous cells, shown in Figure 4a. This spectral plot 

indicates the presence of an amide I shoulder at 1635 cm
-1

 

that is generally associated with apoptosis or necrosis (see 

below). This shoulder is apparent in the spectra trace shown 

in Figure 3d. Thus, a spectral filter was written to eliminate 

all spectra with the feature at 1635 cm
-1

; the filtered dataset 

is shown in Figure 4b, which shows vastly improved homo-

geneity. Thus, the diffuse cloud of squamous cells shown in 

Figure 3a is due to the presence of apoptotic or necrotic 

cells. 

The signal at 1635 cm
-1

 has prominently been observed 

for necrotic tissues [25], and may be due to the unfolding 

and precipitation of proteins. This signal was first reported 

by Jamin, et al. [26] as a broad low frequency shoulder on 

the amide I peak. The second derivative spectra used in the 

present study displayed the ‘necrosis’ signal as a sharp 

shoulder ca. 1635 cm
-1

 in the protein amide I manifold. The 

appearance of this peak is coupled with an increase of the 

peak at ca. 1690 cm
-1

, see Figure 4d. Whereas helical pro-

teins exhibit a strong amide I peak at 1650-1658 cm
-1

, the 

combination of peaks at 1635 and 1690 cm
-1

 is typically for 

β-sheet proteins. Upon precipitation of these protein sheets, 

the low component of the amide I manifold may shift to as 

low as 1620 cm
-1

[27]. 

We found that the cells displaying this ‘necrotic’ signal 

clustered together in PCA as shown in Figure 3c. We hy-

pothesize that the necrotic signature is the result of proteins 

unfolding into β-sheets and precipitating. This signal was 

found to be so prominent in the spectra of some cells that 

classification into their correct disease classes was impossi-

ble. After removing the necrotic spectra the PCA ‘scores 

plot’ (Figure 5a) showed significant spectral differences 

among the cells from patients with healthy cells, Barrett’s 

esophagus and dysplasia.  

This separation between the classes indicates that 

there are identifiable biochemical differences between the 

disease states. Clearly these changes become more pro-

nounced as the cells progress from healthy to Barrett’s and 

to dysplasia. The biochemical variation occurring along PC1 

is shown to be primarily due to changes in the amide I band, 

attributed to changes in protein composition (data not 

shown). This trend in the amide I may be due to degradation 

of proteins as cells respond to the disease. The major 

changes occur in the carbohydrate composition observed 

between 1350 and 900 cm
-1

(Figure 5b). The separation ob-

Figure 5: (a) PCA scores plot of data set shown in Figure 3a after removal of cells showing necrotic signatures. (b) Mean second deriva-
tive spectra of the three cell classes shown in Figure 5a. 
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served in these ‘scores plots’ may be partially due to the fact 

that in normal patients, a much higher percentage of squa-

mous cells are harvested, and that the distinction of cell 

types is mostly due to the size difference between squa-

mous and columnar cells. Cell-size based distinction of cells 

has been reported before by Romeo et al. [28], and it was 

argued that the spectral discrimination arose from different 

nucleus-to-cytoplasm ratios of small vs large cells; however 

this is not the case here as demonstrated by the similarity of 

the mean 2
nd

 derivative spectra of the cell types. Further-

more the majority of cells in this data set are found to be 

morphologically normal and have approximately the same 

cell size. 

Subtle changes in cellular biochemistry of the patholog-

ical classes can be followed in the class mean spectra (not 

shown). Each spectral trace is the mean of the second de-

rivative, vector normalized spectra in each dataset. They 

represent ‘snapshots’ of the unique biochemistry of each 

pathological group. The Barrett’s and dysplasia cells display 

slight intensity variations in both the amide I and amide II 

regions compared to cells exfoliated from squamous areas 

of the esophagus.The amide I band has a maximum at 1655 

cm
-1

, and is somewhat decreased in the mean spectra of the 

diseased classes. The lower wavenumber shoulder of the 

amide II band is found at 1514 cm
-1

 and is also shown to be 

slightly increased in both of the disease samples. The slight 

change in appearance of the amide I and II bands are most 

likely due to degradation of proteins and the expression of 

new proteins respectively. It is clear that as the disease pro-

gresses from Barrett’s to dysplasia more pronounced 

changes in the protein region occur within the cells, which is 

supported by known biochemical evidence of protein con-

formational changes during carcinogenesis as well as 

changes in the overall proteome [29].  

 

More evident variations occur in the 1350-900 cm
-1

 re-

gion between all cell types and are emphasized by the low 

frequency region plot in Figure 5b. The blue spectrum 

shows slightly enhanced nucleic acid (DNA) features at ca. 

1235 and 1080 cm
-1

; furthermore, a peak at 1020 cm
-1

 is 

missing in the blue spectrum. This latter peak is generally 

assigned to the C-O stretching and C-O-H deformation co-

ordinates in carbohydrates, either in glycogen or glycopro-

teins. We observe a consistent decrease in the carbohy-

drate bands for Barrett’s and dysplasia whereas we observe 

extremely strong absorption bands in the squamous cells; in 

fact the glycogen signal at 1020 cm
-1

 is nearly absent in the 

dysplastic cells and decreased in the Barrett’s cells.  This 

decrease in glycogen tends to agree with known biochemi-

cal changes leading to tumor development such as in-

creased energy consumption from cell division and has 

been reported previously for Barrett’s associated changes 

by Stone, et al. [30, 31]. The diminished glycogen signal of 

cancerous and diseased cells has also been reported previ-

ously in the analysis of cervical cells [32].  

Unsupervised analysis of the spectral data demon-

strates that there are interpretable and reproducible chang-

es that occur between the spectra of normal and diseased 

samples. In order to achieve a classification supervised, or 

trained algorithms, are used to predict class membership for 

individual cells. Here we used Artificial Neural Networks 

(ANN) to establish the sensitivity for this method when 

screening for esophageal disease.   

The ANN was set up as follows: 400 randomly selected 

spectra from each class were assigned to a ‘training set’.  

The remaining spectra in each class were subject to random 

selection and assigned to the ‘testing set’. Spectra were 

selected so that equal numbers of spectra were present for 

each class in the ‘testing set’. Training spectra were not 

used in testing. However, due to the small number of pa-

tients in this study, the training and test spectra were not 

separated by patient; thus, cell spectra from the same pa-

tient were included in the training and test subsets. Fifty 

(intensity) features were selected in each spectral vector via 

entropy-based feature selection, using ‘rankfeature’ function 

in MATLAB. The MATLAB ‘feed-forward’ ANN function was 

employed for ANN construction, utilizing 50 inputs, one hid-

den layer with two nodes and one output neuron (binary 

classification of normal/abnormal). The results of this ANN 

are expressed in terms of sensitivity, specificity and overall 

accuracy. Table II shows the results for the ANN classifica-

tion. 

The results from the ANN are a clear indication of the 

sensitivity and specificity that can be achieved with spectral 

methods. The overall accuracy is found to rival that of im-

munohistochemical staining, which is the most sophisticated 

and sensitive method conventional pathology has to offer; 

however this method still relies on the distribution of stains 

whereas spectral cytopathology does not. We wish to high-

light that these results here were obtained from samples that 

contained mostly morphologically normal cells; that is, from 

cells that make up the vast majority in exfoliated samples. 

The observations here re-emphasize that SCP is able to 

detect biochemical changes associated with disease before 

morphological changes become apparent. 

 

 

 

Table II: Binary classification sensitivity, specificity and overall 
accuracy of ANNs trained for supervidsed analysis.. 

 Sensitivity Specificity Accuracy 

BE vs SQ 95.5% 94.7% 95.1% 

BE vs DYS 88.7% 91.4% 90.0% 

SQ vs DYS 93.4% 90.9% 92.1% 
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DISCUSSION 
Spectral Cytopathology (SCP) provides a non-destructive 

photonic approach, which takes a rapid measurement of a 

sample’s biochemistry and reveals intrinsic biochemical 

changes that occur during the onset and progression of dis-

ease. SCP is a cytology based approach to identify disease 

in unstained cells using the principles of vibrational spec-

troscopy for analysis. An infrared spectrum from a single cell 

provides a biochemical snapshot, or immediate ‘health sta-

tus’ of that particular cell. Molecular signatures, reflected in 

the infrared spectrum, are analyzed by unsupervised multi-

variate statistical methods, namely principal component 

analysis, to identify spectral patterns that exist between dis-

ease states. Biochemical components of a cell absorb infra-

red radiation at frequencies characteristic to particular bond 

types and functional groups present. Compounds such as 

proteins, nucleic acids and phospholipids have uniquely 

defined absorption bands within the 1800-900 cm
-1

 range, 

and give what is known as a spectral ‘fingerprint’ for that 

given cell. 

SCP has several advantages over conventional micros-

copy. Among them are its ability to provide an objective and 

reproducible diagnosis based on physical measurements of 

cellular biochemistry and, perhaps the most significant ad-

vantage, the ability to detect disease in cells before they 

have begun to display morphological changes. These ‘mor-

phologically normal’ cells from patients with disease already 

show spectral abnormalities that can be related to the spec-

tra of cells that were diagnosed as diseased. Thus, SCP is 

shown to identify spectral patterns that can aide in the earli-

est detection of cellular abnormalities. 

This technique is ideal for diagnostics since it is a label-

free method, requires minimal sample preparation, and is 

non-destructive, meaning that cells and tissues can be 

stained subsequent to infrared data acquisition, thus allow-

ing spectral and classical pathology to be correlated. 

In the author’s laboratory, SCP has been used in sev-

eral studies to establish the sensitivity of this method, such 

as screening for oral cancers, cervical and urinary and blad-

der cancers [13-15]. In all these studies, it was found that 

morphologically normal cells from patients with pre-

cancerous disease exhibited spectra that resembled those 

of abnormal cells. Similar results had been obtained previ-

ously by Raman spectra methods [33]. Also, the spectral 

differences between cell types was established, for exam-

ple, between squamous cells from the distal urethra and 

urothelial cells. These spectral differences were particularly 

pronounced in the second derivative spectra.  

In this preliminary study we investigated SCP’s potential 

as an enhancing screening method for esophageal disease. 

The aim of this study was to develop a methodology to be 

used in conjunction with conventional cytopathology that 

would assist cytopathologists in the diagnosis of esophageal 

disease through collaborative work between clinicians and 

spectroscopists.  

We report a relatively largest annotated data set of indi-

vidual cellular spectra: 299 squamous, 145 Barrett’s colum-

nar and 14 dysplastic cells, totaling 458 diagnosed cells 

from 10 samples. The most abundant cell type found in each 

sample and disease class were squamous cells, which are 

more easily exfoliated than columnar cells.  

Cells exfoliated from the esophagus of patients with 

healthy mucosa, Barrett’s esophagus, and dysplasia were 

analyzed to establish the sensitivity of SCP when screening 

for esophageal disease. The biochemical signatures of dis-

ease are found to be reproducible throughout the majority of 

cells from each sample. Cells were subsequently stained 

and examined by an expert pathologist in order to build 

classification models to aid cytologists in rapid diagnosis of 

esophageal disease. We find that SCP of the esophagus 

works best when applied in conjunction with conventional 

pathology.  

This study has demonstrated the ability of SCP to dif-

ferentiate between esophageal cell types based on intrinsic 

molecular signatures. SCP provides a rapid measurement of 

cellular biochemistry and identifies reproducible spectral 

patterns that exist between disease states. Due to the in-

herent sensitivity towards changes in the biochemical com-

position of cells, SCP can provide additional unbiased diag-

nostic information to complement conventional pathology. 

These spectral changes can be used to distinguish between 

healthy and diseased specimens by analyzing large num-

bers of cells and training computer algorithms to differentiate 

between the two classes.  

In this study we took a new approach in developing a 

synergistic methodology that would complement conven-

tional cytopathology by accurately identifying diseased cells 

based on global changes in their biochemical composition. 

We report for the first time, findings, which indicate that SCP 

detects disease in cells from the esophagus that have no yet 

undergone any morphological changes associated with dis-

ease yet. The ability to reproducibly detect this spectral sig-

nature of disease in morphologically normal cells from ab-

normal samples adds a whole new dimension to the distinc-

tion of early stages of esophageal disease.  We find that 

normal appearing cells from diseased samples still share the 

same biochemical characteristics as their abnormal coun-

terparts. SCP was able to differentiate between all three of 

the pathological groups: healthy squamous, Barrett’s 

oesphagus and dysplasia. Trends in the PCA ‘scores’ plots 

give clear indication on the progression of the disease from 

healthy to dysplastic and are reflected in the IR spectra. 

These spectral changes are found to be reproducible re-

gardless of the morphological status of the cells. We find 

that the first changes that become apparent in the transition 

from healthy to Barrett’s occur in the proteome of the cell. 

Further changes occur in the progression from Barrett’s to 
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dysplastic as changes in DNA, RNA and carbohydrate com-

position. These biochemical changes agree with well known 

trends in tumor formation and carcinogenesis.  

The ability of SCP to differentiate between disease 

states is evidence of the superior sensitivity of spectral 

methods over conventional pathology and can offer much 

needed improvements in the screening process for esopha-

geal disease.   
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