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A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this

end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to

annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures

are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a su-

pervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically

significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsuper-

vised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather

appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random

forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spec-

tral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may

indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at

http://www.mathworks.de/matlabcentral/fileexchange/46608-frcoloc.

1 Introduction

Identifying overlapping observations between different micro-

scopic images of one and the same sample has been a recurrent

topic in microscopic image analysis. While corresponding ap-

proaches to identify colocalization patterns between two flu-

orescence microscopic images are well-established1,2, there

are essentially no established approaches for advanced mi-

croscopic setups where samples are measured across differ-

ent types of microscopes. Yet, cross-microscopy-plattform

studies are gaining popularity and relevance. One setting

where cross-platform image analysis takes an important role

is the combination of Raman microscopy with fluorescence

microscopy in order to obtain a label-free protocol to resolve

subcellular compartments of cultured cells3. A similar set-

ting is found in studies combining other types of vibrational

microscopy such as coherent anti-Stokes Raman scattering

(CARS)4 or infrared (IR) microscopy5 with either fluores-

cence or brightfield microscopy. In these applications, corre-

lating observations between vibrational spectroscopic images

and fluorescence or histopathological staining images is re-
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quired to obtain training data for supervised classifiers, which

allow to resolve compartments of cellular or tissue material

without labeling, using only vibrational microscopy.

The main step for the colocalization task is to use fluores-

cence as a means of “annotation” of spectral images, so that

representative reference spectra of different cellular compart-

ments can be collected based on an overlay between a Raman

image and a fluorescence microscopic image. These reference

spectra can subsequently be used for training a supervised

classifier4 or interpolating contributions of different compart-

ments to an observed location spectrum3. Obtaining suitable

reference spectra, however, turns out to be a delicate task.

A naive approach would be to use spectra from all positions

where the fluorescence intensity exceeds a suitable threshold

value. However, this would produce a heterogeneous data set

for several reasons. This may for instance result from small

differences in the z-layer between fluorescence and Raman

image, and leads to an imperfect overlay that generally cannot

be compensated. Also, differences in confocal volume lead

to slight morphological differences between the fluorescence

image and the Raman spectral image. To compensate these

shortcomings and obtain consistent spectra to train supervised

classifiers, one can presegment the spectral image, aiming to

identify a segment that has the best possible overlap with the

above-threshold positions in the fluorescence image.

In this work, we present a systematic computational ap-
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proach to utilize colocalization across different microscopy

platforms. This colocalization approach yields supervised

classifiers, for which we introduce an appropriate validation

measure, which allows us to systematically assess the robust-

ness across a larger set of samples. Our approach utilizes

ideas developed in the context of analyzing colocalization be-

tween two fluorescence images. Based on presegmentations,

our colocalization procedure naturally carries to constellations

involving other combinations of microscopes.

Our reference application of resolving the subcellular orga-

nization of cells is an important foundation for studying the

function of proteins, with applications ranging from identi-

fying disease related location patterns6–8 to the characteriza-

tion of drug response9. While the gold standard for identi-

fying cell organelles is fluorescence microscopy10, label-free

approaches based on Raman3 or CARS4 microscopy promise

to overcome the need for fluorescently labeling of the sam-

ple under consideration. In this contribution, we present a

systematic validation of such colocalization studies between

vibrational microspectroscopic and fluorescence microscopic

images. While one variant of this method has been investi-

gated previously4, the present contribution provides a more

general approach to colocalization involving different colocal-

ization measures including a quantitative comparison of these

measures. As a guiding example for our study, we investigate

the fully automated identification of nuclei and lipid droplets

(LD) in colon and pancreatic cancer cell lines. The knowl-

edge about these two organelles is valuable, because their size,

morphology, and amount can be signs of cancer and infec-

tions11–14.

1.1 Segmentation of Raman Microscopic Images

Raman microscopy allows to characterize cell or tissue sam-

ples with a pixel resolution of few hundred nano meters, where

each pixel location is represented by a Raman emission spec-

trum. Biologically or chemically relevant information is com-

monly obtained by high dimensional data analysis of the pixel

spectra using techniques such as supervised and unsupervised

learning or factorization methods.

Using Raman (and also CARS) microscopy to resolve dif-

ferent parts of subcellular architecture has proven successful

in several studies3,4,15–17, based on a large choice of either

clustering approaches or interactive segmentation tools18. In

order to obtain cellular images from the pixel spectra of a mi-

crospectroscopic image, Miljković et al. 16 compare methods

that segment the pixel spectra of one dataset into base classes,

and categorize the commonly employed approaches into crisp

clustering where each pixel is assigned one similarity class,

and soft clustering where each pixel spectrum is decomposed

into a mixture of several base spectra. Remarkably, the study

by Miljković et al. 16 as well as most other studies investigate

unsupervised approaches in the sense that the observed spectra

of one dataset are partitioned into base classes. Which of the

identified base classes corresponds to which cellular compart-

ment is then left to essentially subsequent visual inspection,

e.g. using fluorescence images of the same sample.

The first studies to shift from this unsupervised paradigm

to supervised approaches are provided by Klein et al. 3 and

Bocklitz et al. 19 . Klein et al. 3 systematically overlay a Ra-

man spectral image with fluorescence labelings of the same

sample. As each organelle to be identified is labeled by

one marker protein, they identify Raman spectral bands that

are most informative for one particular organelle by measur-

ing mutual information between spectral bands and fluores-

cence intensities. These spectral bands are utilized in a su-

pervised learning spirit to infer a nonlinear interpolation func-

tion, which can predict a fluorescence intensity from a given

pixel spectrum. This results in an intensity image in the spirit

of a soft clustering approach. Compared to unsupervised soft

clustering, and due to the supervised approach of inferring a

prediction function, the base class intensities can be assigned

to one cellular organelle. Furthermore, supervised approaches

were recently used to automatically identify colon tissue types

including adenocarcinoma in Raman spectral datasets20, fol-

lowing an annotation-based approach as it is commonly em-

ployed in IR microscopy based spectral histopathology5,21. In

the latter studies, random forests (RF) turned out to be conve-

nient tools for supervised classification of both Raman and IR

spectra due to their simplicity and efficiency as well as their

robustness against overfitting.

While in a previous contribution4 a colocalization approach

was introduced to train supervised classifiers for resolving

subcellular architecture, our present contribution provides a

systematic comparison between different correlation mea-

sures for this approach, along with a cross-validation scheme

that provides a more realistic assessment of the classification

power than conventional cross-validation. As further contri-

butions of this work, we demonstrate that the colocalization

based training of supervised classifiers originally proposed for

CARS data in the above mentioned work also performs on Ra-

man spectral images, and assess classifiers for Raman spectra,

in particular with respect to different factors such as subcellu-

lar organelle, cell type, and confounders.

Supervised classification for resolving subcellular struc-

tures has been broadly investigated on the basis of morpho-

logical features extracted from fluorescence images9,22–24. An

advantage of combining label-free Raman microscopy with

supervised classification is that once a supervised classifier

has been trained, it can be applied to new datasets to iden-

tify organelles without any fluorescence labeling or visual in-

spection of either spectra or segmentations. At the same time,

the accuracy of supervised classifiers can be quantified using

well-established methods. A complication introduced by Ra-

2 | 1–10

Page 2 of 10Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



man microscopy is that both training and, more importantly,

validating these classifiers needs to deal with the presence of

hundreds or thousands of feature vectors for each component

in each cell (namely one vector for each pixel), whereas fluo-

rescence microscopic images yield a single feature vector for

each cell and each fluorescence labeling. To deal with the

abundance of spectra for training classifiers, our approach fol-

lows the procedure typically taken in spectral histopathology

to resolve tissue structure in tissue sections5,21. In these ap-

proaches, one first collects training spectra that are represen-

tative for different tissue components. Then, based on these

spectra, a supervised classifier is trained. For the validation

of Raman spectral classifiers, we use the concept of leave-

one-sample-out cross-validation, where all spectra from one

sample are assigned to either training or validation set. This

validation scheme facilitates a systematic assessment of the

robustness across a larger set of samples, whereas validation

in previous studies was either limited to a single sample19 or

a small number of samples3, lacking a comprehensive valida-

tion measure.

As any supervised classification task, our approach involves

recruiting training data, which indeed constitutes the core of

our methodological approach. To obtain representative train-

ing spectra for different cellular compartments, we overlay

the spectral image with its fluorescence counterpart and per-

form a certain colocalization analysis. For this colocalization

analysis, we employ ideas that have been extensively and suc-

cessfully utilized to determine and quantify colocalization be-

tween two fluorescence images in previous studies1,2,25–27. In

our setting, one of the two fluorescence images is replaced by

a presegmented version of the spectral image. As it is ini-

tially unclear what presegmentation of the spectral image will

resolve a particular cellular compartment, we systematically

utilize the hierarchy yielded by hierarchical cluster analysis

(HCA), as illustrated in Fig. 1. Our approach to identify rep-

resentative spectra for one cellular compartment in fact reads

as identifying a branch in the HCA that exhibits the highest

degree of colocalization with the corresponding fluorescence

image.

1.2 Colocalization Schemes

In order to quantify which area exhibits the highest degree

of colocalization between segments obtained by HCA and

a thresholded fluorescence image, we employ colocalization

schemes that have been established for measuring colocaliza-

tion between fluorescence images. Several such approaches

have been proposed in the past1,25,26, as surveyed in Bolte and

Cordelieres 2 . Among these measures, the Pearson correlation

coefficient (PCC) has gained significant popularity. The PCC

is defined as

PCC =
∑i(Ri −Ravg) · (Gi −Gavg)

√

∑i(Ri −Ravg)2
·∑i(Gi −Gavg)2

, (1)

where Ri denotes the intensity of the first color channel (red)

at position i, and Ravg the average intensity of the red channel;

correspondingly, Gi and Gavg represent the pixel and average

intensities for the second color channel (green).

This motivates us to introduce the following procedure: For

every possible combination of a cluster and a color channel,

the degree of colocalization is calculated according to the PCC

(see Fig. 1). As every possible cluster from every level of the

dendrogram is checked for colocalization, the clusters with the

highest PCC found for the two or three color channels might

overlap, which means that they are sub- or supernodes of each

other. If this is the case, only the one with the highest value is

kept in this round and for the remaining color channels a new

cluster has to be found.

Note that the first cluster chosen may cover a large area of

the image, which may be much larger than the area covered

by fluorescence foreground. This may prevent the identifca-

tion of best matching clusters for other organelles. When as-

sessing the suitability of a colocalization measure, it will thus

be of crucial importance to determine the number of uniden-

tifiable clusters, which should be as small as possible for an

appropriate measure.

2 Methods

2.1 Experimental Materials and Methods

2.1.1 Cell culture. Human pancreatic cancer cells

MIA PaCa-2 (CRl-1420) as well as human colon adenocarcin-

moa cells HT29 (HTB-38) were obtained from the American

Type Culture Collection (kindly provided by Stefan Hahn’s

laboratory at Ruhr University Bochum). They were treated as

described previously4.

2.1.2 Confocal Raman microscopy. Raman hyperspec-

tral data sets were acquired using a confocal Raman micro-

scope (Alpha300AR, WITec Inc., Ulm, Germany) coupled

to a frequency doubled solid state laser operating at 532 nm

(Nd:YAG, max. 40 mW, Reno, USA), using a laser power of

10 mW. A 25 µm diameter single-mode optical fiber was used

to couple the laser radiation into a Zeiss microscope. The in-

cident laser beam was collimated via an achromatic lens and

passed through a holographic band-pass filter before being fo-

cused into the sample through a 60x/1.00 NA water immer-

sion objective (Nikon, Japan). The Raman scattered light is

collected with the same objective and passed through a holo-

graphic edge filter onto a multi-mode optical fiber (50 µm di-

ameter) to a spectrometer equipped with a back-illuminated

electron multiplying charge coupled device (emCCD) camera
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Fig. 1 Dendrogram from HCA including exemplary overlays of clus-

ters with the fluorescence color channel representing the nucleus. In

the cell overlay plots the overlay of cluster and fluorescence is shown

in yellow, the rest of the fluorescence in red, the rest of the cluster

in green and the rest of the cell (neither cluster nor fluorescence) in

black. (A) The best matching cluster (colocalized with a PCC of 0.89)

shown in a cell overlay plot and labeled in blue in the dendrogram.

(B) The least matching cluster (anti-colocalized with a PCC of -0.43)

shown in a cell overlay plot and labeled in orange in the dendrogram.

(C) The last cluster consisting of both the best and least matching

clusters, barely colocalized with a PCC of 0.11.

(1600 x 200 px) operating at -60◦C. The sample was located

on a piezoelectrically driven scanning stage. Raman data sets

were obtained by raster-scanning with a pixel size of 0.5 µm

for regions of around 60 µm × 60 µm and exposure time of

0.3 s per pixel.

2.1.3 Fluorescence staining and imaging. After

permeabilization with 0.2% Triton X-100 for 5 min at

room temperature, the cells were washed with PBS and

blocked with 1% bovine serum albumin for 30 min. The

cells were incubated for 10 min with LD540 (4,4-difluoro-

2,3,5,6-bis-tetramethylene-4-bora-3a,4a-diaza-s-indacene),

washed with PBS-buffer and incubated with 1,5-bis[2-(di-

methylamino)ethyl]amino-4,8-dihydroxyanthracene-9,10-

dione (DRAQ-5; Cell Signaling Technology, Danvers, USA).

The excess fluorescence dyes were removed by PBS-buffer.

The fluorescence measurements were performed all the time

sequentially on double stained specimen with a confocal laser

scanning microscope (Leica TCS SP5 II) using a Leica HCX

IRAPO L (25x / 0.95 W) water immersion objective. In order

to enable an optimal match with Raman images, stacks of

fluorescence images were recorded and the distance between

each layer was 0.5 µm.

2.2 Algorithms and Data Analysis

2.2.1 Preprocessing. Cosmic spikes were removed by

impulse noise filter28 and the spectra were interpolated to

a reference wavenumber scale. Further data analysis was

performed on the normalized data in the region between

700 cm−1 and 1800 cm−1 and between 2600 cm−1 and

3100 cm−1. Spectra from each image data set were hierar-

chically clustered based on Ward’s algorithm using Pearson’s

correlation distance to obtain a dendrogram.

The fluorescence images were scaled, clipped and manually

registered to the spectral images.

2.2.2 Colocalization Scheme. After hierarchical cluster-

ing, each branch in the dendrogram is associated with one

area in the spectral image comprising a group of similar spec-

tra. For each branch in the dendrogram, a colocalization index

with the foreground locations of each corresponding fluores-

cence image was computed using PCC. The branch exhibit-

ing the highest colocalization index was considered the best

matching cluster, as formally defined in Supplement 4.1.

Training spectra were extracted from the best matching

cluster based on several post-processing steps, aiming on a

restriction of the training spectra area to a “condensed” core

region. First, 100 intensity thresholds were tested on the flu-

orescence images ranging from 1% to 100% intensity. The

image was binarized by each of these thresholds, and the PCC

computed. The threshold achieving the highest PCC was kept

as the best colocalizing threshold. In other words, the HCA

is also utilized in order to find an optimal fluorescence thresh-

old for each fluorescence channel. With the binarized version

of the fluorescence and the best matching clusters, additional

enhancements are possible, starting with a connected compo-

nents filter: The number of nuclei in the image was given and

it is tested whether reducing the number of connected com-

ponents (keeping the biggest ones) to the number of nuclei

alters the degree of correlation (without deleting more than

half of the pixels). Then isolated pixels are filtered out by

grain filtering. Finally, lipid droplets were identified by their

specific marker band at wavenumber 1750 cm-1, and masked

out whenever they were not covered by corresponding fluores-

cence foreground.

2.2.3 Implementation. All data processing was imple-

mented in MATLAB Version 8.2 along with the Image Pro-

cessing and Statistics toolboxes (The MathWorks, Natick,

MA).

3 Results and Discussion

3.1 Comparison of Correlation Coefficients

We compared the values of Pearson correlation coefficient

(PCC)25, Mander’s overlap coefficient (MOC)1, intensity cor-
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relation quotient (ICQ)29, and mutual information (MI)3 on a

series of synthetic images involving two color channels (re-

ferred to as red and green, respectively). The image series

starts with 0% overlap between the red and the green channel,

and overlap between the channels was gradually increased to

100%, see Supplementary Video 1 for an illustration. To illus-

trate the effect of varying overlap on the different coefficients,

binary images were used, while relative intensities result in a

similar pattern (Data not shown). The results of these coeffi-

cients are plotted against the percentage of red pixels overlap-

ping with green pixels (see Fig. 2 A). The ratio of background

versus foreground pixels is 1:1, which leads to the desired ef-

fect that every coefficient ranges from its minimal to its max-

imal possible value. While for the PCC and the ICQ, a nega-

tive value indicates anti-colocalization, the MOC has no cor-

responding anti-colocalization indicator as it yields only pos-

itive values, which are identical to the percentage of overlap.

The MI is also limited to positive numbers. Furthermore, the

image series demonstrates a more severe disadvantage of MI,

namely that it does not differentiate between the overlap of

foreground and background pixels. In other words, the same

MI value is obtained for the same degree of colocalization and

anti-colocalization.

In a second series of synthetic images, the ratio of back-

ground versus foreground pixels was increased to 1000:1 (see

Fig. 2 B). This high proportion of background pixels, which is

realistic as far as small organelles inside cells are concerned,

produces very high ICQ values and very low MI values, mak-

ing them uninformative. The PCC, however, is sensitive to

this ratio, whereas MOC does not adapt at all when changing

the ratio, as it does not consider the probability of the colocal-

ization.

To confirm these findings on non-synthetic data, we inves-

tigated an additional set of 75 Raman microscopic images

with fluorescence counterparts. Beside the nucleus, the cor-

responding fluorescence images label two further organelles,

including 29 measurements with a combination of the endo-

plasmic reticulum (ER) and Golgi apparatus, 13 with ER and

mitochondria, 9 with Golgi and peroxisomes, 4 with mito-

chondria and peroxisomes, and 20 with Golgi and mitochon-

dria. These membrane-rich organelles were used here instead

of lipid droplets as they are more challenging to differentiate4

due to their strong functional and physical connection. There-

fore, they are better suited than the more regular morphologi-

cal (and also spectral) patterns of lipid droplets to demonstrate

the differences of the four measures.

As it turns out, the differences between colocalization mea-

sures are reflected by the number of samples in which it was

not possible to collect training data for at least one of the la-

beled organelles represented by a fluorescence color channel,

because the better matching organelles did not leave enough

unmatched area in the HCA for the lesser matching ones. For

Fig. 2 Comparison of four different correlation coefficients. The

values of Pearson correlation coefficient (solid), mutual information

(dashed), Mander’s overlap coefficient (dotted), and intensity corre-

lation quotient (dash-dotted) are plotted against the percentage of red

pixels overlapping with green pixels. (A) The ratio of background

versus foreground pixels is 1:1. It can be seen, that only PCC and

ICQ indicate anti-colocalization. (B) The ratio of background versus

foreground pixels was increased to 1000:1 for a further test. This

high proportion of background pixels produces very high ICQ values

and very low MI values, making them uninformative. PCC adapted to

the new ratio, whereas MOC does not change, as it does not consider

the probability of the colocalization.
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PCC, this was the case in 29 out of the 75 images (38.6%). On

using the MI, this number of organelles without training data

rose to 43 (57.3%), with the ICQ it was 50 (66.7%) and for the

MOC even 61 (81.3%).

This issue is more or less pronounced for different com-

binations of organelles, where the worst case occurs for ER

with Golgi, which are both parts of the endomembrane sys-

tem. Here, in 55.2% of the images training data cannot be

found using the best method (PCC), while it is even 93.1%

using MOC. These numbers can be explained by the average

size of the best matching clusters found by the different mea-

sures: 625 pixels by PCC, 652 by MI, 666 by ICQ and 729

by MOC. On average the biggest cluster (the nucleus) is four

times bigger than the next biggest organelle when identified

by the PCC, but six times bigger when selected by the MOC.

Identifying too large areas as the best matching cluster for the

organelle affects identification of best matching clusters of the

smaller organelles, as the matching clusters already occupy a

(too) large area for the nucleus cluster. This problem becomes

particularly obvious for MOC, as its value is determined only

by the amount of overlap without taking into account back-

ground at all. This behavior favors the identification of larger

overlapping areas than the PCC does, where a simultaneous

reduction of the two overlapping areas (while keeping the per-

centage of overlap) increases the value of the coefficient, while

it does not change the MOC. While this property of MOC may

be desirable under other circumstances, it is inadequate in the

context of determining best-matching clusters.

It is important to notice that the effect of unidentified best

matching clusters is not represented in the validation of super-

vised classifiers, as no training data to be (mis-)classified will

be contributed to the training data set. This implies that when

assessing the quality of a colocalization-based classifier, the

number of unidentified clusters for each class is an important

quality indicator.

Overall, our observations on both real data and the two syn-

thetic image series clearly support the PCC coefficient as the

method of choice to determine colocalization in this work.

3.2 Supervised Classification of Cell Images

Subsequent to identifying best matching clusters for all fluo-

rescence channels, these clusters were used to extract repre-

sentative training spectra for training a supervised classifier.

As shown in Fig. 3 A-D, the colocalization provides a best

matching cluster for every organelle, in this case the nucleus

in blue and the lipid droplets in red. By superimposing these

clusters with the corresponding fluorescence color channels an

area of overlap appears (shown in yellow), which is the main

goal of this procedure: Using this as a mask to recruit the un-

derlying spectra from the Raman image produces a relatively

homogeneous data set. The mean spectra of the training data
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Fig. 3 Colocalization of Fluorescence with HCA and Random Forest.

(A) The best matching clusters for nucleus (blue) and lipid droplets

(red). (B) The corresponding fluorescence image. (C) The over-

lay (yellow) of the LD fluorescence color channel (red) and its best

matching cluster (green), colocalized with a PCC of 0.79. (D) The

overlay of the nucleus fluorescence color channel and its best match-

ing cluster, colocalized with a PCC of 0.93. (E) The false color im-

age produced by the RF trained on the spectra derived from C&D.

(F) The corresponding fluorescence image. (G) The overlay of the

LD fluorescence color channel and the corresponding RF class, colo-

calized with a PCC of 0.7. (H) The overlay of the nucleus fluores-

cence color channel and the corresponding RF class, colocalized with

a PCC of 0.96.

sets for lipid droplets, nucleus and the rest class (consisting

of all remaining organelles and the cytoplasm) are shown in

Fig. 4. The spectra gained from the colocalization method are

used as training data for a random forest classifier30 using 300

trees.

Note that in Fig. 3, the best matching clusters as well as the

agreement between random forest versus fluorescence based

segmentations are indicated by their PCC. In order to addition-

ally assess the statistical significance, we computed p-values
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Fig. 4 Mean spectra of organelles in the training data set. Lipid

droplets, nucleus, and the rest class, consisting of the other organelles

and the cytoplasm, are presented. These spectra were automatically

collected by the colocalization method to obtain a homogeneous data

set for training a random forest.

based on the hypergeometric distribution underlying randomly

scrambled pixels as a null hypothesis26. For all clusters in

our dataset, this p-value turns out to be 0, indicating that the

correlation is significantly different from randomly scrambled

pixels and therefore rejecting the null hypothesis of random

overlap.

3.3 Validation of Classification Results

In general, supervised classifiers can be validated in a

straightforward manner using different variants of cross-

validation such as leave-one-out, k-fold, or Monte-Carlo

cross-validation. However, in the case of vibrational mi-

crospectroscopy, training data are in a sense more structured

because each sample contributes not one, but a large number

of training spectra for each class. In other words, each class

in the training data set is further subdivided into samples (see

Fig. 5). In this situation, an important question to be addressed

through a suitable validation scheme is whether spectral vari-

ability between samples – e.g. due to variability during sample

preparation – is a potential confounding factor when classify-

ing for subcellular compartments. Note that this question is

generally not addressed by conventional cross validation. To

illustrate this, assume an “outlier” sample where all spectra

are biased, e.g. through a strong baseline effect affecting all

spectra from the sample. As spectra from this same sample

will be contained in both the training and the validation set,

they can be classified with high accuracy during cross valida-

tion. However, in case no spectra from the biased sample are

contained in the training data set, classification of the biased

spectra will fail during validation.

In order to validate our random forest classifiers appropri-

ately with regard to sample variability, we performed valida-

tion using two different approaches (Fig. 5). First, we per-

formed conventional k-fold cross validation (k = 6) on train-

ing data obtained from all six available samples. Next, we per-

formed leave-one-out cross-validation on a per sample basis,

i.e., the validation set was established from all spectra belong-

ing to one particular sample (see Fig. 5 for an illustration).

Both approaches lead to nearly identically high accuracies. In

order to simulate high spectral variability between samples,

we artificially perturbed all spectra in one of the six samples,

and re-evaluated both types of cross-validation. Remarkably,

conventional cross-validation was hardly affected by this ar-

tifact. While the maximal accuracy of the two versions was

identical (100%) and the mean was similar at least (99.5%

for k-fold vs. 91% for sample-based), the minimal accuracy

differed clearly as it was 99.1% for k-fold and only 55% for

leave-one-sample-out. Compared to conventional cross val-

idation, this indicates that leave-one-sample-out provides a

more realistic assessment of the quality of a spectral classi-

fier that also assesses spectral variability between samples, as

there is no overlap of data from the same measurement be-

tween the validation and the training data set.

Nonetheless, the classifier achieved sensitivity and preci-

sion values of 97-100% and an accuracy of 99.3% on the orig-

inal dataset, proving the reliability and consistency of its re-

sults and that the colocalization method did produce suitable

training data sets. Interestingly, these values for the classifier

trained with spontaneous Raman spectral data sets are higher

than that of the classifier trained with CARS results4. This can

be explained in terms of higher spectral resolution of the Ra-

man data sets. In addition, the current Raman spectra provide

more spectral information (700-1800 and 2700-3100 cm-1)

than that of CARS spectra (2700-3000 cm-1). The data set

involving Golgi, ER, peroxisomes and mitochondria achieves

a per-sample cross validation accuracy of 91.2%.

Furthermore, the random forest was additionally tested to-

wards its ability to reproduce the results of fluorescence. The

degree of correlation between the organelle localization pre-

dicted by the random forest and the fluorescence is presented

on one of these cells (see Fig. 3 E-H), where a high correlation

between the results of the two methods can be seen. While in

this case a PCC of 0.96 for the position of the nucleus could be

observed, the average on 71 cells was 0.86 (standard deviation

0.08). Even when this random forest was tested on a colon

cancer cell line (HT29), although being trained on MIA PaCa-

2 pancreatic cancer cells, the correlation was at least 0.6 for

both organelles on average. This proves the quality of the

supervised classifier in reproducing the fluorescence images
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Fig. 5 Comparison of conventional and sample-based leave-one-out cross validation. Upper Left. For conventional leave-one-out cross vali-

dation each validation round uses one data point from the original training data set for validation, while the remaining data points are used for

training. Lower Left. In leave-one-sample-out cross-validation the validation data set always consists of all spectra from a complete sample,

whereas training data are recruited from all remaining samples. Confusion Matrices. The confusion matrices are based on six measurements

including training spectra of Lipid Droplets, Nucleus and Rest class. Artificially perturbing spectra in one sample are hardly visible in conven-

tional k-fold cross-validation (upper matrices). In leave-one-sample-out validation, however, sensitivities for different organelles are strongly

affected (lower right matrix).

without the necessity of using labels or other chemical alter-

ations itself.

Relevance of performing HCA. In order to assess the rel-

evance of using training spectra obtained from the overlap

between fluorescence foreground and the best matching clus-

ter, we trained a classifier based on spectra from fluorescence

foreground positions for nucleus and lipid droplets, without

any utilization of HCA. In this setting, a global threshold

in the fluorescence images was determined using the well-

established method of Otsu31. As it turns out, the accuracy

in leave-one-sample-out cross validation drops from 99.3% to

80% in this setting, while the average PCC between the pre-

dicted nucleus position and the unthresholded nucleus fluo-

rescence drops from .97 to .62 (refer to Supplementary Fig-

ure 5 for an example). This can be explained by mismatches

in the fluorescence foreground and the best matching cluster,

which seem to be unavoidable und not correctable by registra-

tion (see Supplementary Figures 3). Obviously, the utilization

of HCA avoids false training spectra in the training data set

as also indicated by Supplementary Figure 4 and thus leads to

significantly higher accuracy.

3.4 Organelle specificity, cell line specificity, and con-

founders

Beside the specificity with respect to subcellular organelles,

Raman spectra may also distinguish other conditions. To as-

sess this, we trained classifiers to distinguish subcellular or-

ganelles of different cell lines. As it turns out, organelles

of MIA PaCa-2 cells are spectrally distinguishable from their

counterparts in HT29 cells (Supplement 1, classifier C1). Fur-

thermore, a classifier may distinguish spectra from the non-

cellular surroundings of samples from the two cell lines (clas-

sifier C2). However, as classifier C3 indicates, Raman spectra,

in particular those observed in areas not covered by any cell,

might as well reflect different experimental conditions such

as fluctuation of laser power or different laser focus. Yet, the

transferability of the organelle classifier between cell lines de-

scribed above suggests that the spectral differences between

different organelles is sufficiently big not to be overshadowed

by the spectral differences between cell lines or instrumental

conditions. Related phenomena regarding fluorescence sig-

nals in non-cellular surroundings have recently been observed

for fluorescence markers of subcellular components32,33.

While subcellular organelles and cell types are biologi-

cally relevant factors, spectral classifiers may also at the same

time distinguish factors that are commonly considered con-
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founders. For example, two different days of experiment can

be distinguished in spectra from areas not covered by cells

(classifier C3). For details on the aforementioned classifiers,

we refer to Supplement 1.

4 Conclusion

Our approach extends label-free microscopy for live cell imag-

ing in several directions. It can be seen as the first appli-

cation of Raman microscopy following a completely super-

vised paradigm. Furthermore, our approach predicts a crisp

segmentation, which makes the result accessible to cross-

validation, while soft segmentations are difficult to validate

quantitatively. Along the line of quantitative validation, we

have shown that sample-based cross validation may uncover

problematic effects of spectral variability in the training data

and should be preferred as a more realistic assessment of clas-

sification power. The results shown in Fig. 5 clearly indicate

that leave-one-sample-out cross validation can uncover the us-

age of unsuitable samples that would have stayed hidden if

conventional k-fold cross validation had been applied. More

generally, leave-one-sample-out validation as a more rigid va-

lidity measure may also indicate whether the number of sam-

ples in the training data set is sufficient to match the spectral

variability between samples. At the same time, the ratio of

unidentified best matching clusters for each class should be

taken into account when assessing the quality of a classifier.

While it would be of interest for future work, currently no

objective and quantitative validation scheme for either unsu-

pervised or supervised soft segmentations is available, neither

on a per-spectrum nor on a per-sample basis.

Beside the specificity towards organelles, we could demon-

strate that Raman spectra are at the same time specific towards

other factors, including factors that are commonly considered

as confounders. We also find that Raman subcellular clas-

sifiers are transferable (with a loss of accuracy), which has

been an issue of investigation recently for fluorescence-based

approaches34. As the two cell lines under consideration are

both epithelial cells, it may need to be answered in the fu-

ture whether classifiers are also transferable to less similar cell

types, for instance stem cells or immune cells. It may also be

of future relevance to use our colocalization approach to dis-

tinguish cell types, which may be a useful tool for Raman (or

CARS) based cell sorting.

Both our present case study of identifying nuclei and

lipid droplets, as well as the previous study of identify-

ing other cellular compartments4 utilizing our novel colo-

calization scheme, support the claim that colocalization ap-

proaches are an important ingredient for obtaining label-free

microscopy protocols. Beyond the identification of cellular

compartments, colocalization schemes may in general also be

useful for resolving tissue structure. In fact, colocalization

studies between immunohistologically stained tissue sections

and corresponding IR or Raman microscopic images promise

a label-free alternative to immunohistochemistry, which is an

important tool for tissue diagnostics35. Yet, carrying our au-

tomated colocalization approach from cells to tissue requires

to deal with artifacts of fluorescence microscopy, which are

much more pronounced in tissue than they are in cells36.

Just as the quantitative approaches for colocalization in flu-

orescence microscopy helped to obtain more reliable con-

clusions from fluorescence-based studies, our colocalization

scheme to align observations between fluorescence and Ra-

man microscopic images promises an objective and highly re-

producible approach for label-free microscopy. As correlat-

ing observations on one sample across different types of mi-

croscopes has gained popularity recently19,37, colocalization

measures provide objective and quantitative means to corre-

late observations in settings involving other combinations of

microscopes.

Finally, utilizing colocalization measures provides further

support to utilize hierarchical clustering in a more advanced

manner. Conventionally, the dendrogram of hierarchically

clustered image spectra is cut “horizontally” to obtain a seg-

mentation into a fixed number of clusters. In Zhong et al. 38 ,

however, it has been shown by one of the authors that cut-

ting dendrograms through “non horizontal” cuts yields bio-

logically more meaningful segmentations for IR image spec-

tra. As our newly contributed colocalization scheme generally

also identifies such non-horizontal cuts, the present study sup-

ports this claim also for Raman spectral image segmentation.
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16 M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus and
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