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Abstract 39 

Amino acids play essential roles in both metabolism and the proteome. Many studies 40 

have profiled free amino acids (FAAs) or proteins; however, few have connected the 41 

measurement of FAA with individual amino acids in the proteome. In this study, we 42 

developed a metabolomics method to comprehensively analyze amino acids in different 43 

domains, using two examples of different sample types and disease models. We first 44 

examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the 45 

Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic 46 

amino acid profiles were quite different, even under the same Myc-induced transfection, 47 

and their combination provided a better understanding of the biological status. In 48 

addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome 49 

amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles 50 

related to colon cancer. A penalized logistic regression model based on the amino acids 51 

from the three domains had better sensitivity and specificity than that from each 52 

individual domain. To the best of our knowledge, this is the first study to perform a 53 

combined analysis of amino acids in different domains, and indicates the useful 54 

biological information available from a metabolomics analysis of the protein pellet. This 55 

study lays the foundation for further quantitative tracking of the distribution of amino 56 

acids in different domains, with opportunities for better diagnosis and mechanistic 57 

studies of various diseases. 58 

 59 

Keywords: metabolomics, amino acid, Myc, colon cancer 60 

  61 
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1. Introduction 62 

Amino acids play an essential role in biological processes, primarily because they 63 

are extensively involved in metabolism and constitute the basic building blocks of 64 

peptides and proteins. Amino acids are of increasing interest in the field of metabolomics 65 

which aims to establish metabolic responses of living systems to external or internal 66 

perturbations.1-8 For example, in the field of cancer metabolism, the Warburg effect9-13 is 67 

being re-evaluated due to new findings on the importance of glutamine as an energy 68 

source for proliferating cancer cells.10, 14, 15 A recent study found that glycine is an 69 

important metabolite for human cancer, since it is also strongly correlated with the rate of 70 

cancer cell proliferation.16 Amino acid profiles have been used for cancer detection.17 We 71 

recently showed that the recurrence of breast cancer could be predicted 13 months (on 72 

average) before clinical diagnosis using metabolic markers that included glutamic acid, 73 

histidine, proline, and tyrosine.18 Advanced studies of amino acids may lead to 74 

significant discoveries in many research areas including disease diagnosis, drug 75 

discovery, and biological sciences, etc. 76 

As shown in Fig. 1, endogenous or exogenous amino acids in a biological system 77 

are either metabolized or incorporated into three domains that include free amino acids 78 

(FAAs), peptide amino acids, and proteome amino acids. In fact, amino acids provide an 79 

important connection between metabolism and the proteome, since the free amino acids 80 

and those to be incorporated in peptides and proteins are the same; therefore, the 81 

distribution of individual amino acids in different domains should be related to the 82 

biological status of a living system. However, although metabolomics and proteomics 83 

have been combined in previous studies,19, 20 the distribution changes of amino acids in 84 

these domains in response to different physiological status have not been investigated, 85 

and the integrated analysis of individual amino acids in various domains has not been 86 

performed.  87 
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In this study, we obtained a “snapshot” of amino acid levels in various domains (as 88 

shown schematically within the red dashed line in Fig. 1) and examined their ability to 89 

detect altered metabolism in both cancer cells and human serum. We applied the well-90 

established acid hydrolysis method to obtain individual amino acids from peptides and 91 

proteins, and used liquid chromatography tandem MS (LC-MS/MS) to measure MS-92 

detectable amino acids. First, we examined the comprehensive responses of amino 93 

acids that were due to induction of the N-Myc oncogene in Tet21N human 94 

neuroblastoma cells.21-23 Second, we investigated the ability of amino acid analysis to 95 

identify patients with colon cancer by measuring amino acids from three domains in their 96 

serum. We constructed multivariate statistical models based on the significantly altered 97 

levels of amino acids in different domains, both individually and in combination, and 98 

showed that their combination led to improved differentiation. This study lays the 99 

foundation for further quantitative tracking of the distribution of individual amino acid 100 

levels in metabolic, peptide, and proteome profiles, which can provide a new window for 101 

studying the results of perturbed metabolism in different domains. 102 

 103 

2. Experimental 104 

2.1 Chemicals 105 

The compounds purchased from Sigma-Aldrich (St. Louis, MO) included acetonitrile 106 

(LC-MS grade), methanol (LC-MS grade), formic acid (LC-MS grade), chloroform (HPLC 107 

grade), and 20 amino acids (reagent grade; Table S1). Hydrochloric acid (HCl) was 108 

purchased from EMD Millipore (Billerica, MA). DI water was provided in-house by a 109 

Synergy Ultrapure Water System from EMD Millipore (Billerica, MA). Doxycycline was 110 

purchased from Clontech Laboratories, Inc. (Mountain View, CA). 111 

2.2 Tet21N Human Neuroblastoma Cells 112 
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The cell samples and their preparation were well documented in a study investigating 113 

N-Myc-driven tumorigenesis.24 Briefly, Tet21N cells were cultured in DMEM (Gibco, 114 

Grand Island, NY; with 10% fetal bovine serum). Doxycycline was used to repress N-115 

Myc expression. Fig. S1 shows the characterization of Myc-On and Myc-Off cells. 116 

Tet21N cells express a doxycycline-repressible N-Myc construct which allows for 117 

inducible N-Myc expression in the presence/absence of doxycycline (Myc-Off/Myc-On). 118 

Ectopic N-Myc is sufficient to induce both hyperproliferation and anchorage-independent 119 

growth in soft agar (an indicator of malignant transformation). Comprehensive amino 120 

acid profiles (3 replicates for each group) were compared between Myc-Off and Myc-On 121 

cells. 122 

2.3 Serum Samples 123 

All serum samples were collected in accordance with the protocols approved by the 124 

Indiana University School of Medicine and Purdue University Institutional Review 125 

Boards. All subjects in the study provided informed consent according to the institutional 126 

guidelines. Patients undergoing colonoscopy for CRC screening were evaluated, and 127 

blood samples from the patients were obtained after overnight fasting and bowel 128 

preparation prior to colonoscopy. Based on the analysis of biopsied tissue, individuals 129 

were categorized as either colon cancer patients or healthy controls. All colon cancer 130 

patients in this study were newly diagnosed, and the blood samples were drawn before 131 

any surgery, chemotherapy, or radiation treatment. In total, serum samples from 28 132 

colon cancer patients and 28 healthy controls were analyzed. The detailed demographic 133 

and clinical information for the patients and healthy controls was shown in Table 1.  134 

2.4 Sample Preparation 135 

In this study, we obtained 2 amino acid samples from each cell extract for further LC-136 

MS/MS experiments. Fig. 2 illustrates how amino acids were obtained from the two 137 

domains using a single cell extract, including portions for measuring FAAs (Sample 1) 138 
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and insoluble-proteome amino acids (IPAAs, Sample 2). Forty-eight hrs after 139 

transfection, 1x106 cells were plated in a 6 well plate (Thermo Scientific, Rockford, IL). 140 

After 24 hrs culture media was aspirated, and cells were washed twice in ice cold H2O 141 

and lysed in 1.5 mL of ice cold 9:1 methanol:chloroform, with the plates placed on dry 142 

ice (~-75 oC) to quench metabolism. After 5 min, cells were scraped and transferred to 143 

1.5 mL Eppendorf tubes (Hauppauge, NY). Lysates were centrifuged at 20817 rcf for 10 144 

min, and supernatants were transferred to new vials and dried using an Eppendorf 145 

Vacufuge (Eppendorf, Hauppauge, NY). The dried supernatant was used as Sample 1 146 

for FAA measurements, after reconstituting in 100 µL DI water. The protein pellet was 147 

mixed with 500 µL 6N HCl in a 1.5 mL microtube (Sarstedt Inc., Newton, NC) and baked 148 

at 110 °C using a digitally controlled dry bath (Labnet International, Inc., Edison, NJ) for 149 

24 hrs. This sample (Sample 2) was then dried and reconstituted with 1 mL DI water 150 

prior to LC-MS/MS analysis. The protein content was evaluated using the BCA Protein 151 

Assay Kit (Thermo Fisher Scientific, Rockford, IL). 152 

As shown in Fig. 2, we obtained 3 amino acid samples from each serum, including 153 

FAAs (Sample 1), IPAAs (Sample 2), and free and soluble-proteome amino acids 154 

(FSPAAs, Sample 3). We mixed 30 µL serum with 300 µL methanol, and then vortexed 155 

the mixture for 10 min. The mixture was incubated at 4 oC for 20 min and then 156 

centrifuged at 20817 rcf for 5 min to precipitate the proteins. The supernatant was 157 

collected into a new vial. To the protein pellet, we added 660 µL methanol:DI water 158 

(10:1, v:v), which was then vortexed for 10 min. After centrifuging at 20817 rcf for 5 min, 159 

the supernatant was added to the previous vial. The combined supernatant was dried 160 

and then reconstituted in 60 µL DI water. The first half (30 µL) of the sample was mixed 161 

with 120 µL DI water and used as Sample 1. The other half (30 µL) of the sample was 162 

mixed with 500 µL 6N HCl and baked at 110 °C for 24 hrs. This sample was then dried 163 

and reconstituted in 150 µL DI water to obtain Sample 3. In addition, the protein pellet 164 
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was suspended in 500 µL 6N HCl and incubated at 110 °C for 24 hrs to prepare Sample 165 

2. Sample 2 was then dried and reconstituted in the same manner as that for Sample 3 166 

except that it was diluted 50-fold with DI water. Notably, different volume parameters 167 

were used for Sample 1, 2, and 3. In our initial experiments we found that IPAA 168 

concentrations in the original cell/serum samples were generally much higher than those 169 

of the FAAs and FSPAAs (FSPAAs were a little bit higher than FAAs). Volumes were 170 

adjusted to maintain somewhat similar MS intensities. 171 

2.5 LC-MS/MS Measurements 172 

All experiments were performed using an Agilent 1260 LC-6410 Triple Quad MS 173 

system (Agilent Technologies, Inc., Santa Clara, CA). The LC separation was carried out 174 

on an Agilent Eclipse XDB-C18 (100x3 mm, 1.8 um) column. The flow rate was 0.5 175 

mL/min. Mobile phase A was 0.2% formic acid in H2O, and mobile phase B was 0.2% 176 

formic acid in acetonitrile. For each run, the content of mobile phase A was kept 177 

constant at 97% for the first 1 min, and then decreased to 10% during the next 4 min. 178 

The mobile phase A content was then kept at 10% for 4 min until the end of the gradient 179 

(a total of 9 min). The MS spectrometer was operated under the multiple reaction 180 

monitoring (MRM) mode using positive (+) ionization. We used 20 amino acid standards 181 

to optimize the MRM transitions and to validate their detection. For each amino acid, the 182 

transition producing the highest signal was selected. Table S1 (Supplementary 183 

Information) shows the optimized MS parameters to measure each amino acid in this 184 

study.  185 

2.6 Data Analysis 186 

Agilent MassHunter QQQ Quantitative Analysis software (version B.03.01) was used 187 

to extract MS peak areas. The integrated areas and BCA values for cell and serum 188 

samples are provided in the Supplementary Information. The integrated areas for the 189 

amino acid signals were normalized to the BCA assay values. We further performed 190 
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principal component analysis (PCA) on the total-spectral-sum normalized cell data using 191 

the PLS toolbox (Version 6.2, Eigenvector Research, Inc., Wenatchee, WA) in Matlab 192 

(Version 7.0.4, Mathworks, Natick, MA). For the serum data after further normalizing to 193 

the quality control samples, similar to previous studies,18, 25-28 we used penalized logistic 194 

regression to construct multivariate statistical models based on amino acid levels 195 

measured in the three domains, both individually and in combination. The R statistical 196 

software (version 2.8.0) was installed with the gplots package for heatmap plotting and 197 

the glmpath package for penalized logistic regression calculations.29 Ten-fold cross 198 

validation was used for model building. The output of this procedure was a ranked set of 199 

markers according to the prediction probability of validation samples (some less 200 

important variables could be omitted).30-32 Thereafter, logistic regression was used to 201 

build a statistical model based on the selected variables. The verification package 202 

installed in R was used to generate receiver operating characteristic (ROC) curves, and 203 

to calculate the sensitivity, specificity, and the area under ROC curve (AUROC). 204 

 205 

3. Results and Discussion 206 

Isoleucine and leucine had the same optimized MS parameters (Table S1), and they 207 

could not be base-line separated in the LC separation, so their combined signal was 208 

used in the analysis. Glutamine and lysine had different optimized MS parameters 209 

(Table S1), but our analytical assay could not differentiate them (they co-eluted and the 210 

MS spectrometer has unit mass resolution). We could not obtain good sensitivity or peak 211 

shape for cysteine, and therefore it was excluded from the analysis in this study. 212 

Therefore, we obtained 17 variables from the LC-MS/MS measurements of the FAA 213 

profile (Sample 1), after adding the isoleucine/leucine and glutamine/lysine signals 214 

together, respectively. In addition, during HCl hydrolysis tryptophan was completely 215 

destroyed, and asparagine was completely hydrolyzed to aspartic acid. Glutamine 216 
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became glutamic acid, in which case lysine could be separately measured. Thus, we 217 

had 15 LC-MS/MS variables from Sample 2 (IPAAs) and Sample 3 (FSPAAs).   218 

3.1 Tet21N Human Neuroblastoma Cells  219 

For quality control (QC) samples, we used a FAA sample and an IPAA sample, and 220 

they were run 3 times throughout the experiments. The average coefficient of variation 221 

(CV) of the QC FAA measurements was 5.9%. The IPAA QC measurements were also 222 

very reproducible, with an average CV of 4.1%. In addition, we examined the variation of 223 

each biological group (Myc-Off and Myc-On). The average CV for the FAA 224 

measurements (3 replicates for each group) was 5.6%, including both analytical and 225 

biological variation. The average CV for the IPAA measurements was 13.6%. Therefore, 226 

our LC-MS/MS measurements for both FAAs and IPAAs are relatively reliable for this 227 

method development study. 228 

Table 2 shows the P-values for amino acid levels in the two domains when 229 

comparing Myc-Off vs Myc-On cells. Interestingly, we found that the profile of FAAs was 230 

much more perturbed than that of IPAAs, since in general FAAs had lower P-values. 231 

Fourteen out of 17 FAAs had P-values<0.05 when comparing Myc-Off vs Myc-On, while 232 

only one of the IPAAs was significantly different (proline with a P-value of 0.021).  233 

Fig. 3a and 3b show the heatmaps of FAA and IPAA levels, respectively, comparing 234 

Myc-On and Myc-Off cells. Consistent with Table 2, FAAs showed larger changes than 235 

IPAAs (Fig. 3a vs Fig. 3b). Nevertheless, the two groups were correctly classified in both 236 

Fig. 3a and Fig. 3b. This indicates that although individual amino acids in the proteome 237 

had relatively large P-values (Table 2), their combination could still successfully reflect 238 

Myc-induced variations, which matches well with the fact that global gene and protein 239 

expression are significantly altered by Myc.21-23 In Fig. 3c, we examined the Pearson 240 

correlation among the 12 amino acids that were detected in both FAAs and IPAAs 241 

(glutamic acid, glutamine/lysine, and aspartic acid were not included because of 242 
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reactions during hydrolysis). Proline (0.89) had the largest positive autocorrelation in 243 

FAAs and IPAAs (in Fig. 3c), while methionine had the lowest negative autocorrelation (-244 

0.73). Although a number of correlations were large among different amino acids 245 

between FAAs and IPAAs (the highest value is 0.88 between arginine in FAAs and 246 

proline in IPAAs), more than half of the FAAs had negative correlations with IPAAs (-247 

0.97 between glycine in FAAs and proline in IPAAs). Our results indicate that metabolic 248 

and proteome amino acids in many cases had highly correlated (either positive or 249 

negative) responses to Myc.    250 

Fig. 4 shows the PCA score plots for different cell groups based on the FAA and 251 

IPAA data. Not surprisingly, excellent classification using FAAs was obtained in Fig. 4a, 252 

with the PC1 direction carrying 99.37% of the total variation in the data. There was no 253 

separation between Myc-On and Off cells along PC1 in Fig. 4b; however, the different 254 

cell groups were clearly separated along PC2 direction which carried 14.53% of the total 255 

variation. This further proved that, in addition to individual FAAs, different combinations 256 

of amino acids in the proteome (i.e., different proteins) could also be an indicator of Myc-257 

induced perturbations. Our results fit well with previous studies demonstrating that the 258 

Myc oncogene induces changes in amino acid catabolism,33 and we recently provided 259 

additional evidence that Myc together with MondoA (a nutrient-sensing transcription 260 

factor that is closely related to Myc regulation) cooperatively regulate metabolism during 261 

tumorigenesis in Tet21N cells.24 Our current results, using Tet21N cells expressing high 262 

and low levels of Myc show that levels of metabolic and proteome-associated amino 263 

acids respond differently to changes in Myc abundance, and examination of both 264 

responses may lead to a better understanding of the biological changes. 265 

3.2 Serum Samples 266 

A similar analysis was performed on serum samples from patients with colon cancer 267 

and healthy subjects. Table 3 shows the amino acids in the three domains with 268 
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significant differences (P-values<0.05) when comparing the two groups. As shown in 269 

Table 3, there were 10, 9, and 14 amino acids with low P-values (<0.05) in FAAs, 270 

FSPAAs, and IPAAs, respectively. Histidine in FAAs had the lowest P-value of 0.00013. 271 

Interestingly, glutamic acid/glutamine/lysine, histidine, isoleucine/leucine, threonine, and 272 

valine were changed significantly in all the three domains; asparagine/aspartic acid 273 

(FAAs and IPAAs), methionine (FAAs and FSPAAs), serine (FASPAAs and IPAAs), and 274 

tyrosine (FSPAAs and IPAAs) were altered in two profiles. This indicates that colon 275 

cancer not only changes amino acids individually in metabolism, peptides, or proteins, 276 

but also affects the amino acid distribution in these domains. Notably, the average CV of 277 

the amino acid measurements for 12 injections of the QC sample (4 injections in each of 278 

the 3 batches) was 3.7%, ranging from 2.0% (alanine) to 10.4% (tryptophan). 279 

Penalized logistic regression models were then constructed based on the amino 280 

acids in Table 3 with low P-values (<0.05). We first examined the performance of amino 281 

acids in different domains individually for detecting colon cancer patients. Fig. 5a shows 282 

the ROC curve for the logistic regression model using the FAAs. This model had an 283 

AUROC of 0.86. The sensitivity was 28% when the specificity was 95%. Penalized 284 

logistic regression selected 4 important variables from 10 candidates (FAAs in Table 3), 285 

including aspartic acid, glutamic acid, glutamine/lysine, and histidine. 286 

Similarly, Fig. 5b shows the ROC curve for the penalized logistic regression model 287 

based on the FSPAAs in Table 3. An AUROC of 0.75 was obtained, which was less than 288 

that (0.86) of Fig. 5a. The sensitivity was 32% (>28% in Fig. 5a) when the specificity was 289 

95%. The selected amino acids from the 9 FSPAAs were lysine and valine. Fig. 5c 290 

shows the ROC curve for the penalized logistic regression model based on the 14 IPAAs 291 

in Table 3, and the AUROC was determined to be 0.88. The significant amino acids 292 

included alanine, arginine, aspartic acid/asparagine, glycine, proline, serine, threonine, 293 

tyrosine, and valine. This model (Fig. 5c) had better performance in differentiating colon 294 
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cancer than those of Fig. 5a and 5b, especially when the specificity was between 80%-295 

100%. For example, the sensitivity was 43% when the specificity was 95%. 296 

Furthermore, we performed penalized logistic regression on all the selected variables 297 

from the 3 models above. An AUROC of 0.91 was achieved for the ROC curve in Fig. 298 

5d. In particular, this model had a sensitivity of 65% when the specificity was 95%. The 299 

important amino acids selected in Fig. 5d were aspartic acid, glutamic acid, 300 

glutamine/lysine, and histidine from FAAs (4 out of 4 variables), lysine from FSPAAs (1 301 

out of 2 variables), and arginine, serine, and tyrosine from IPAAs (3 out of 9 variables). 302 

Fig. S2 shows the box-and-whisker plots for the amino acid marker candidates in 303 

constructing the model shown in Fig. 5d. Aspartic acid and glutamic acid in FAAs were 304 

increased in the colon cancer patients, while the rest of amino acids were decreased. 305 

This further confirmed that the distribution of amino acids in the three domains was 306 

altered under the biological stress of colon cancer. 307 

To further evaluate the colon cancer-related variation in the data, we used Monte 308 

Carlo Cross Validation (MCCV)34, 35 to validate the penalized logistic regression 309 

modeling in Fig. 5d. In each iteration (100 in total), all the samples were randomly 310 

divided into two sets, 70% as the training set and 30% as the test set. Penalized logistic 311 

regression was performed on the training set, and then the resulting model was used to 312 

predict the classification of the test set samples. The sample membership could be 313 

either correctly assigned, referred as true class, or randomly assigned (permutation). 314 

Fig. 5e shows the sensitivities at the specificities of 0.95, 0.85, and 0.75, respectively, for 315 

the true class models and permutation models in a ROC space. The true class models 316 

were clearly separated from the permutation models, with significantly higher 317 

sensitivities. For example, the average sensitivity of true class models was 71% (±14%) 318 

at a specificity of 0.95, while it was 12% (±13%) for the permutation models. This result 319 

Page 12 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



13 
 

testifies to the fact that amino acids from the three domains in the serum samples 320 

contain variations related to colon cancer. 321 

Although biological analysis is beyond the scope of this paper, it is well known that 322 

both metabolic and proteomic profiles of amino acids are altered by colorectal cancer 323 

(CRC).17, 28, 36, 37 Carcinogenesis of CRC is a complex process involving multiple genetic 324 

abnormalities such as mutations in both tumor suppressor genes and oncogenic 325 

mediators.38-41 An important consequence of this complex progression could be the 326 

altered uptake and usage of amino acids, which have been recognized in metabolomics 327 

as putative markers for diagnosing colon cancer.42, 43 Colon cancer also induces a wide 328 

range of altered protein synthesis/degradation.44 Stable isotope labeling with amino 329 

acids in cell culture (SILAC) is used to study the incorporation of amino acids and 330 

degradation of proteins;45-49 however, the analysis of individual amino acids composing 331 

proteins/peptides has rarely been combined with those in metabolism. From the present 332 

results it is clear that colon cancer changes amino acid levels in both the FSPAA and 333 

IPAA domains (Table 3), and thus the amino acid distribution is changed among free 334 

amino acids, peptides, and proteins. In addition, the combined analysis of amino acids in 335 

the three domains helps improve the diagnostic power of logistic regression modeling to 336 

detect colon cancer (Fig. 5). Our study indicates that it is useful to evaluate the network 337 

of amino acids in metabolism, peptides, and proteins (Fig. 1) in order to gain a deeper 338 

understanding of colon cancer.  339 

While it is valuable to incorporate amino acids in peptides and proteins, our approach 340 

does not provide the ability to identify specific proteins/peptides related to Myc or colon 341 

cancer. In addition, many amino acids underwent some degree of loss during hydrolysis; 342 

therefore, in this semi-quantitative study we prepared the samples using a traditional 343 

hydrolysis method (incubation in 6N HCl under 110 oC for 24 hrs). Correction factors can 344 

be employed if a precise quantification is desired.50, 51 In principle, stable isotope-345 
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resolved metabolomics (SIRM)5, 52 and SILAC45-49 can quantitatively track the distribution 346 

of each amino acid in different domains (Fig. 1), although quantitative isotope tracing 347 

can be challenging. For our colon cancer study, we measured 168 samples (FAAs, 348 

FSPAAs, and IPAAs) from 56 subjects, which limited our ability to perform analyses 349 

related to other important factors such as cancer stage. External validation with a 350 

separate test set using samples from additional subjects is highly preferred for further 351 

validating the statistical models.  352 

 353 

4. Conclusions 354 

We introduced the concept of, and developed a new method for, performing a 355 

combined analysis of amino acids in three different domains: FAAs, FSPAAs, and 356 

IPAAs. We used acid hydrolysis to obtain individual amino acids from peptides and 357 

proteins, and LC-MS/MS was utilized to measure the cell and serum samples of different 358 

groups. Using Tet21N cells as an example, we showed that the metabolic and proteomic 359 

amino acid profiles were different, even under the same stress provided by the N-Myc-360 

oncogene. The combined investigation of metabolic amino acids together with proteome 361 

amino acids (for both cell and biofluid samples) provides a more comprehensive view of 362 

biological changes, although currently it is rarely performed (e.g., protein pellets are 363 

often thrown away in metabolomics studies). It was shown that Myc/colon cancer 364 

changed the amino acid profiles and their relative distribution in different domains. Using 365 

13C2-glycine as the tracer, we recently performed a quantitative study, and our results 366 

showed that N-Myc was able to change the balance between metabolism and proteome 367 

biomass (data not shown). Furthermore, the combined analysis performed here helped 368 

improve the sensitivity and specificity of the penalized logistic regression model for 369 

detecting colon cancer. This study aims to link metabolism and proteome through the 370 

Page 14 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



15 
 

measurement of individual amino acids, and our approach has the potential to bring new 371 

insights to the diagnosis and mechanistic understanding of cancer and other diseases. 372 

  373 
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Tables 386 

Table 1. Demographic and clinical information for the patients and healthy controls 387 

included in this study. 388 

 Healthy Controls Colon Cancer 

Subjects  28  28 
Age, median (range) 58 (18-80) 56 (29-88) 
BMIa, median (range) 30.0 (21.1-43.2) 27.5 (17.8-32.2) 
Gender   

Male 14 14 
Female 14 14 

Stage   
I - 1 

II - 2 
III - 6 
IV - 19 

Ethnicity   
Caucasian 13 15 

African American 2 2 
Hispanic or Latino 0 1 

NA 13 10 

 389 

a13 controls and 9 colon cancer patients do not have BMI data.  390 

391 

Page 17 of 30 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



18 
 

Table 2. The Student's T-Test P-values comparing amino acids of different domains 392 

from Tet21N human neuroblastoma cells. 393 

 394 
 395 
 396 
 397 
 398 
 399 
  400 

                Myc-Off vs Myc-On 

       FAAs    IPAAs 

tyrosine 0.00034 0.13 
arginine 0.042 0.48 
phenylalanine 0.0016 0.83 
histidine 0.0038 0.11 
methionine 0.0079 0.14 
isoleucine/leucine 0.000070 0.92 
threonine 0.0041 0.68 
valine 0.00081 0.25 
proline 0.000010 0.021 
serine 0.17 0.47 
alanine 0.037 0.099 
glycine 0.0089 0.64 
tryptophan 0.061 N/A 
asparagine 0.00061 N/A 
glutamic acid 0.00011 N/A 
glutamine/lysine 0.54 N/A 
aspartic acid 0.0023 N/A 
glutamic acid/glutamine N/A 0.40 
lysine N/A 0.52 
aspartic acid/asparagine N/A 0.85 
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Table 3. Amino acids in the three domains with P-values<0.05 when comparing colon 401 

cancer patients and healthy controls. 402 

Amino Acid  P-Values  

FAAs 

asparagine  0.031  
aspartic acid  0.018  
glutamic acid  0.032  
glutamine/lysine 0.0045  
histidine 0.00013  
isoleucine/leucine 0.026  
methionine  0.0050  
threonine  0.042  
tryptophan 0.044  
valine 0.0078  

FSPAAs 

glutamic acid/glutamine  0.015  
histidine  0.042  
isoleucine/leucine  0.010  
lysine  0.0017  
methionine 0.036  
serine 0.022  
threonine 0.0041  
tyrosine 0.023  
valine 0.0032  

IPAAs 

alanine 0.00099  
arginine 0.00089  
aspartic acid/asparagine 0.0045  
glutamic acid/glutamine 0.0016  
glycine  0.048  
histidine  0.0022  
isoleucine/leucine 0.0013  
lysine 0.00066  
phenylalanine 0.00037  
proline  0.0071  
serine  0.014  
threonine  0.0057  
tyrosine  0.00042  
valine  0.0094  

 403 

  404 
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Figure Captions 405 

Fig. 1 The distribution of amino acids in a biological system. Endogenous or exogenous 406 

amino acids are either metabolized or incorporated into three domains that include free 407 

amino acids, peptide amino acids, and proteome amino acids.  408 

 409 

Fig. 2 A schematic illustration of sample preparation to obtain amino acids in different 410 

domains, including free amino acids, FAAs (Sample 1), insoluble-proteome amino acids, 411 

IPAAs (Sample 2), and free and soluble-proteome amino acids, FSPAAs (Sample 3). 412 

 413 

Fig. 3 a) The heatmap of 17 FAAs comparing Myc-Off vs Myc-On cells, b) the heatmap 414 

of 15 IPAAs comparing Myc-Off vs Myc-On cells, and c) the Pearson correlation among 415 

12 amino acids detected in both FAAs and IPAAs comparing Myc-Off vs Myc-On cells. 1. 416 

tyrosine; 2. arginine; 3. phenylalanine; 4. histidine; 5. methionine; 6. isoleucine/leucine; 417 

7. threonine; 8. valine; 9. proline; 10. serine; 11. alanine; 12. glycine. 418 

 419 

Fig. 4 PCA score plots comparing Myc-Off and Myc-On cells using a) FAAs and b) 420 

IPAAs. Red triangles: Myc-Off cells; green stars: Myc-On cells.  421 

 422 

Fig. 5 The ROC curves of the penalized logistic regression models based on the amino 423 

acids with P-values <0.05: a) FAAs, b) FSPAAs, c) IPAAs, and d) the selected amino 424 

acids by penalized logistic regression in a)-c). e) MCCV of the penalized logistic 425 

regression modeling in a ROC space. True class models, blue diamonds; random 426 

permutation models, brown squares.  427 
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Figures 428 

 429 

Fig. 1  430 

  431 
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 432 

Fig. 2  433 

  434 

HCl
Hydrolysis

Sample 1

Sample 3
(only for serum)

HCl
Hydrolysis

Sample 2Cell/SerumSupernatant Proteins

Extraction

Page 22 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



23 
 

 435 

 436 

 437 

ty
ro

s
in

e

a
rg

in
in

e

p
h

e
n

y
la

la
n

in
e

h
is

ti
d

in
e

m
e

th
io

n
in

e

g
lu

ta
m

ic
.a

c
id

g
lu

ta
m

in
e

.l
y
s
in

e

a
s
p

a
rt

ic
.a

c
id

a
s
p

a
ra

g
in

e

is
o

le
u

c
in

e
.l
e

u
c
in

e

th
re

o
n

in
e

v
a

lin
e

p
ro

lin
e

s
e

ri
n

e

a
la

n
in

e

g
ly

c
in

e

tr
y
p

to
p

h
a

n

Myc On1

Myc On2

Myc On3

Myc Off1

Myc Off2

Myc Off3

0.8 1.1

Value

Color Key

a

ty
ro

s
in

e

a
rg

in
in

e

p
h

e
n

y
la

la
n

in
e

h
is

ti
d

in
e

m
e

th
io

n
in

e

g
lu

ta
m

ic
.a

c
id

g
lu

ta
m

in
e

.l
y
s
in

e

a
s
p

a
rt

ic
.a

c
id

a
s
p

a
ra

g
in

e

is
o

le
u

c
in

e
.l
e

u
c
in

e

th
re

o
n

in
e

v
a

lin
e

p
ro

lin
e

s
e

ri
n

e

a
la

n
in

e

g
ly

c
in

e

tr
y
p

to
p

h
a

n

Myc On1

Myc On2

Myc On3

Myc Off1

Myc Off2

Myc Off3

0.8 1.1

Value

Color Key

ty
ro

s
in

e

a
rg

in
in

e

p
h

e
n

y
la

la
n

in
e

h
is

ti
d

in
e

m
e

th
io

n
in

e

g
lu

ta
m

ic
.a

c
id

g
lu

ta
m

in
e

.l
y
s
in

e

a
s
p

a
rt

ic
.a

c
id

is
o

le
u

c
in

e
.l
e

u
c
in

e

th
re

o
n

in
e

v
a

lin
e

p
ro

lin
e

s
e

ri
n

e

a
la

n
in

e

g
ly

c
in

e

Myc Off3

Myc Off2

Myc Off1

Myc On2

Myc On1

Myc On3

0.8 1.1 1.4

Value

Color Key

b

ty
ro

s
in

e

a
rg

in
in

e

p
h

e
n

y
la

la
n

in
e

h
is

ti
d

in
e

m
e

th
io

n
in

e

g
lu

ta
m

ic
.a

c
id

g
lu

ta
m

in
e

.l
y
s
in

e

a
s
p

a
rt

ic
.a

c
id

is
o

le
u

c
in

e
.l
e

u
c
in

e

th
re

o
n

in
e

v
a

lin
e

p
ro

lin
e

s
e

ri
n

e

a
la

n
in

e

g
ly

c
in

e

Myc Off3

Myc Off2

Myc Off1

Myc On2

Myc On1

Myc On3

0.8 1.1 1.4

Value

Color Key

Page 23 of 30 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



24 
 

 438 

Fig. 3 439 
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Fig. 4 442 
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Fig. 5  448 
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We present a metabolomics method to comprehensively analyze amino acids in different 3 

domains, which could better understand the biological status.    4 
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