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 33 

Abstract 34 

This study proposes a comparative investigation of different linear and non-linear 35 

chemometrics methods applied to the same database of infrared spectra for filamentous fungi 36 

discrimination and identification. The database was comprised of 277 strains, (14 genus, 36 37 

species), identified and validated by DNA sequencing, and analyzed by high-throughput 38 

Fourier Transform Infrared (FTIR) spectroscopy in the 4000-400 cm
-1

 wavenumber range. A 39 

cascade of 20 supervised models based on taxonomic ranks was constructed to predict classes 40 

until the species taxonomic rank. The cascade modeling was used to test 11 algorithms (5 41 

linear and 6 non-linear) of supervised classification methods. To assess these algorithms, 42 

indicators of classification rates and McNemar’s tests were defined and applied in same way 43 

to each of them. For non-linear algorithms, the KNN (K Nearest Neighbors) method proved to 44 

be the best classifier (78%). Linear algorithms, PLS-DA (Partial Least Square - Discriminant 45 

Analysis) and SVM (Support Vector Machine) showed better performances than non-linear 46 

methods with the best classification potential (~93%). SVM and PLS-DA were comparable 47 

and a possible complementarity between these two algorithms was highlighted. 48 

 49 

Keywords: Supervised classification, cascade models, infrared spectroscopy, fungi 50 

identification 51 

  52 

Page 3 of 38 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

4 

1 Introduction 53 

 54 

Spectrometric techniques play an important role in both research and industrial applications. 55 

The development of these techniques has continuously progressed in order to exploit at best 56 

their capacities. Among these, infrared spectroscopy has emerged as a promising approach for 57 

rapid analysis. In mid-infrared spectroscopy, the molecular fundamental vibrational modes are 58 

measured and involve wavelengths between 2.5 and 25 micrometers corresponding to the 59 

wavenumber range of 4000-400 cm
-1

. It relies on the absorption of mid-infrared light by 60 

vibrational transitions in covalent bonds. Fourier transform infrared (FTIR) spectroscopy has 61 

high molecular sensitivity and reveals numerous types and modes of vibrations. It is fast, 62 

label-free, cost-effective, easy to use, and applicable to various fields. However, it is 63 

perturbed by aqueous states and by the atmospheric water vapor and carbon dioxide. In near-64 

infrared (NIR) spectroscopy, the sample receives wavelengths in the range of 800-2500 nm, 65 

whereby molecular overtone and combination vibrations are measured. The spectra are more 66 

complex and it can be difficult to assign specific features to specific chemical components. 67 

The molar absorptivity in the NIR region is typically quite small but NIR has the advantage 68 

that it can typically penetrate much farther into a sample than mid infrared radiation. NIR 69 

spectroscopy is, therefore, not a particularly sensitive technique, but it can be very useful in 70 

probing bulk material with little or no sample preparation. Numerous analytical attempts have 71 

been described in the literature with their advantages and disadvantages [1]. FTIR and NIR 72 

approaches have proved to be very effective in the characterization, differentiation, and 73 

identification of various fungi [2,3,4,5]. Another analytical method that has emerged as a new 74 

discovery tool for bacterial characterization (Lay, 2001) is matrix-assisted laser 75 

desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). It is an analytical 76 

tool sensitive to molecular composition and distinct mass signals can be observed in a mass-77 
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to-charge (m/z) ratio. It allows molecular profiling such as protein profiling. Its potential to 78 

discriminate filamentous fungi of clinical origin at the species level has been demonstrated 79 

giving comparable results as with molecular identification methods (Cassagne et al., 2011; De 80 

Carolis et al., 2012). However, MALDI-TOF spectrometric databases for filamentous fungi, 81 

particularly from the food industry, are still under development (Santos et al., 2010b). A 82 

recent work, reports on the useful integration of different analytical imaging techniques, 83 

including FTIR and MALDI-TOF, in a multimodality platform for a deeper characterization 84 

of the potential medicinal fungus Hericium coralloides [6]. 85 

 86 

The progress in analytical spectroscopy and speed of data acquisition has also led to the 87 

construction of large and complex datasets. In order to exploit these large datasets 88 

sophisticated statistical methods were developed [7,8,9]. The field of chemometrics has thus 89 

emerged as a powerful approach for data mining, interpretation, and understanding; 90 

specifically for extracting relevant molecular information in different fields of spectroscopy. 91 

Recent advances in computing and chemometric allow choosing a wide variety of statistical 92 

algorithms to analyze the same spectral data bank. 93 

The aim of this study was to compare the discriminating potential of 11 algorithms on the 94 

same dataset of 5960 FTIR spectra of filamentous fungi collected from 277 fungal strains 95 

belonging to 14 genera and 36 species. Among these, 194 strains (4159 spectra) were used for 96 

the model optimization and calibration steps and 83 strains (1801 spectra) were used for the 97 

external validation step. The assessed methods were all supervised discrimination methods 98 

requiring a calibration step and grouped in two categories. The first category concerns the 99 

linear methods with the Factorial Discriminant Analysis (FDA) method which is the most 100 

famous method and was introduced by Fisher in 1936 [10]. Then comes the Linear 101 

Discriminant Analysis (LDA) method, with a discrimination rule quite equivalent to that of 102 
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FDA [11]. The Partial Least Square-Discriminant Analysis (PLS-DA) method is more recent, 103 

ensues from the PLS algorithm, and was reported by Wold and Martens in 1983 [12]. The 104 

Soft Independent Modeling of Class Analogies (SIMCA) method was described by Wold and 105 

Sjöström in 1977 [13], which is a less used method. The second category concerns the non-106 

linear methods comprised the Support Vector Machine (SVM) method was proposed by 107 

Vapnik et al. in 1963 [14]. The K-Nearest Neighbors (K-NN) methods, introduced by J. H. 108 

Friedman in 1975 [15], was developed to answer discrimination challenge with various kind 109 

of data. The Probalistic Neural Network (PNN) method is relatively recent and was presented 110 

by Specht in 1990 [16]. It is based on the analogy with the functioning of the brain of superior 111 

organisms. Networks are formed by small units, called neurons connected them. Quadratic 112 

Discriminant Analysis (QDA) method, proposed by Wold in 1976, is based on a quadratic 113 

function to apply the discrimination law [9].  114 

 115 

The chemometrics question raised in this study was to select the most appropriate statistical 116 

method able to discriminate and identify an unknown strain of filamentous fungi from its 117 

FTIR spectrum and using a pre-established and non-exhaustive spectral library recently 118 

generated in our group [2,3].  119 

In order to assess these supervised discrimination methods in terms of statistical significance, 120 

indicators of classification rates and McNemar’s tests were defined and applied in same way 121 

to each of the studied algorithm.  122 

 123 

 124 

2 Materials and Methods 125 

 126 

2.1 Sample preparation and FTIR analysis 127 
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 128 

Two hundred and seventy-seven fungi strains belonging to 14 genera and 36 species and 129 

yielding 5960 spectra were used in this study. They were from the Université de Bretagne 130 

Occidentale and Centraalbureau voor Schimmelcultures culture collections and were 131 

identified by sequencing of specific DNA region like the rDNA internal transcribed spacer 132 

(ITS) region.  133 

Cryopreserved strains were first sub-cultured on Sabouraud agar slants (Becton Dickinson, Le 134 

Pont de Claix, France) and incubated for 4 to 7 days at 25 °C depending on the strain. The 135 

cultures were transferred to an M tube, each sample was dissociated using a cycle of 100 136 

seconds. Two milliliters of dissociated mycelia suspension were then transferred into an 137 

Eppendorf tube. The culture medium was then eliminated by centrifugation, the mycelia were 138 

washed and suspended in 1 ml of 0.9 % physiological saline and the supernatant was 139 

eliminated by another centrifugation. The mycelia pellets were recovered in 300 µl of 140 

physiological saline. Finally the samples were deposited on an IR-transparent 384-well silicon 141 

plate and dried into thin films. For reproducibility concerns, 3 independent cultures of each 142 

strain prepared on 3 different days (biological replicates), were performed and for each 143 

culture several instrumental replicates were recorded. The plate was then analyzed with a 144 

high-throughput module (HTS-XT) coupled with a Tensor 27 FTIR spectrometer (Bruker 145 

Optics, Etlingen, Germany). 146 

The FTIR acquisition parameters were 64 accumulations per well with a spectral resolution of 147 

4 cm
-1

, in the spectral range of 4000-400 cm
-1

. The spectral recording and preprocessing 148 

procedures were carried out by the OPUS 6.5. The preprocessing included baseline correction, 149 

second derivative, and vector normalization. The wavenumber ranges selected for the data 150 

bank were 800-800 cm
-1

 and 2800-3200 cm
-1

. Details of the experimental protocol were 151 

reported recently [2,3]. 152 
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 153 

2.2 Cascade modeling and building of the calibration and validation sets 154 

 155 

For FTIR spectroscopic data, the establishment of a single model of discrimination, 156 

parameterized by more than around thirty clusters is quite challenging, particularly for linear 157 

algorithms. Such one-model procedure is difficult to implement since the zones of variance 158 

and co-variance overlap and become inconsistent with the number of clusters. For this reason, 159 

a modeling called “in cascade” has been developed [17] to circumvent the problem in this 160 

study (figure 2). The particularity of the cascade modeling is that it is parameterized from a 161 

reference arborescence and for the study presented here, it is the taxonomic classification of 162 

fungi that is used in this respect. At every taxonomic rank, samples were distributed in 163 

subphylum, class, order, family, genus, subgenus, section, serial, and species. In so doing, 164 

several “subgroups” were established at every rank and for each model the number of clusters 165 

was around 3 and so on, until the last rank called “species” rank is reached. The taxonomic 166 

tree is thus used to structure the data matrix in a subgroup and cluster cascade. We call 167 

"taxonomic nodes" the subgroups highlighted by the taxonomic tree. For every taxonomic 168 

node, a discrimination model was built. So, this technique allowed constructing the 169 

discrimination model in cascade including not less than 20 models with a maximum of 7 170 

models required to reach the species taxonomic rank as regards to Camemberti strains. 171 

The main advantage of the cascade modeling is that it allows obtaining a strong method of 172 

discrimination although the final number of clusters is high. On the other hand, this method is 173 

completely parameterized and thus totally dependent on the cascade reference to which it is 174 

associated. Yet, the fungal taxonomy is in constant evolution and consequently training 175 

variation on taxonomic nodes can influence the outcome in a significant way. 176 
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The data matrix was split into 2 sets; about 4159 spectra (194 strains) of samples were 177 

attributed to the calibration set and the rest (1801 spectra, 83 strains) to the validation set. In 178 

fact, one third of strains of each of 36 species represented in spectral data bank was randomly 179 

selected to constitute the validation spectral data set and to ensure that the relative variance of 180 

the validation set is inferior to that of the calibration set [18]. 181 

 182 

2.3 Partial cross validation for parameter optimization 183 

 184 

Fundamentally, cross validation was developed for chemometrics experiments with a low 185 

sample population [19]. Because of this low population it is impossible to split the data matrix 186 

into calibration and validation sets while keeping a representative sample set. Thus, the cross 187 

validation allows to estimate the accuracy and robustness with one sample set only. For the 188 

present study, the calibration set was used with cross validation to optimize chemometrics 189 

parameters of all the studied algorithms presented in table 1 [20]. 190 

A large number of spectra are available in the calibration set. However, although the number 191 

of samples is quite high, the proportion between the number of strains (194) and that of the 192 

number of species (36) is close to five. But many species present in the calibration set is 193 

represented by only 2 different strains. Therefore, the use of cross validation is justified. The 194 

cascade structure of all models is complex and the calibration set is constituted of biological 195 

and technical replicates. These two features must be taken into account in the implementation 196 

of the cross validation.  197 

The partial cross validation by culture was chosen and scripted such that in every cross 198 

validation iteration, all replicate spectra associated to the same culture were removed, then 199 

used as test in the validation phase. By applying this partial cross validation, it was able to test 200 

all cultures of the calibration set. The partial cross validation by culture allows estimating 201 
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(partially) the intra-species, intra-strains, and intra-cultures co-variances. Further, concerning 202 

the species represented by only 2 strains, this cross validation algorithm was more stable less 203 

over-fitted than partial cross validation by strains. 204 

 205 

2.4 Percentage of Good Prediction (PGP) and McNemar test 206 

 207 

The accuracy of each used algorithm was computed during the three following steps: the cross 208 

validation step to explore the algorithm’s parameters, the computing model step to build 209 

discrimination models with optimized parameters, and the validation step to evaluate the final 210 

expected accuracy. 211 

The statistical indices here called the Percentage of Good Prediction (PGP) were calculated at 212 

the end of these three steps. This index was calculated by dividing the number of well 213 

identified spectra by the total number of spectra to predict. They allowed estimating the 214 

accuracy of the discrimination models at each step. It is possible to calculate for these three 215 

steps the PGP for each model independently. However, during the validation step and for 216 

better presentation, the PGP was calculated only by taxonomic rank.  217 

McNemar’s test is a statistical procedure that allows estimating if the prediction powers of 218 

two methods are significantly different. This test is based on a χ² with one degree of freedom 219 

because the sample number of each model is always higher than twenty (α: type I error). The 220 

χ² critical value with a 95% level of significance, written          
  is equal to 3.8414.  221 

The McNemar’s test was chosen because a unique training set was used for each model and 222 

each algorithm. In this condition, the McNemar’s test allows low probability of Type I error 223 

and presents a powerful ability to differentiate between two algorithms. [21]. 224 

 225 

2.5 Linear and non-linear chemometrics methods 226 
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 227 

The methodological rules of these two categories are entirely different and the data are not 228 

visualized in the same way. For linear methods, the variance of the explanatory variables is 229 

considered as linear and a proportionality relationship between them and the variables to 230 

explain is assumed. Non-linear methods take into account two types of variances, the global 231 

variance of the explanatory variables and variance of variables to explain, and then try to 232 

correlate these by means of a non-linear function such as the polynomial Kernel function for 233 

SVM algorithm. Also, for these two categories of algorithms, chemometrics models were not 234 

built around the same statistical rules. For supervised discrimination studies, the variety of 235 

chemometrics methods available is quite diverse. The linear methods are generally the most 236 

used with spectroscopic data. Indeed, the linearity relationship put forward by the Beer-237 

Lambert expression, linking concentration and absorption, implies that the linear approach 238 

appears better [22]. However, the evolution of non-linear methods has allowed the elaboration 239 

of effective approaches such as SVM or Neural Network, which have been successfully 240 

applied to numerous experimental cases, including complex biological spectral data [23].  241 

In order to optimize data mining and improve the understanding of biological phenomena 242 

from spectral results, it becomes essential to evaluate both linear and non-linear methods. 243 

Many of these linear and non-linear algorithms were declined in various specific algorithms, 244 

e.g., for the PLS algorithm, it was declined in robust or double PLS, quadratic PLS, splines 245 

function PLS or GIFI-PLS and many algorithms were combined such as the neural networks 246 

PLS or the least squares SVM [24]. For this study, only the “classical” (not “declined”) 247 

algorithms were used in order to assess the fundamental computing methodology of each of 248 

the following described algorithms. 249 

 250 

2.5.1 Linear algorithms 251 
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 252 

LDA is a linear method of supervised discrimination that can improve the spreading of the 253 

sample distribution. The aims of this method are to maximize the ratio of the inter- to intra-254 

class distances and to find a linear transformation allowing to achieve the maximum class 255 

discrimination. However, for the classical LDA the scatter matrices must be non-singular, 256 

which is well-known as the under sampling problem. To get round this problem many 257 

solutions exist. One of them is to precede LDA by a Principal Component Analysis (PCA) in 258 

order to extract the discriminant information. For this study PCA-LDA was tested although 259 

this algorithm may lead to a loss of discriminant information during the PCA step [25].  260 

FDA aims at finding the subspace of the original variable space that best separates clusters by 261 

maximizing the inter-class variance with regard to the total variance [26]. This descriptive 262 

analysis builds a discriminant model to determine which cluster a new sample belongs to. 263 

This is simply done by projecting this sample onto the eigenvectors space and by selecting the 264 

nearest cluster. Several distances can be used for this decision, the Euclidean distance was 265 

preferred. 266 

Wold and Sjöström were the first to describe the SIMCA chemometrics method [13]. It is a 267 

supervised classification method which considers every “cluster of samples” or “groups” 268 

separately. This method is very useful for classifying high-dimensional observations because 269 

it incorporates PCA for dimension reduction. So for every cluster, decomposition into 270 

principal components (PC) is carried out providing a matrix of scores and loadings for each. 271 

The most practical interest of this analysis is that each cluster can be reduced to a set of PCs 272 

[27] and during the calibration step, the optimal PCs are determined by means of their 273 

explained variance. After PCA steps, the discrimination models are built using Euclidean 274 

distance between clusters and PCA subspaces, taking into account the information and 275 

properties of clusters.  276 
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PLS-DA is a supervised classification method based on the multivariate PLS regression 277 

algorithm [28]. This algorithm allows to mathematically maximize the variance-covariance 278 

between the explanatory variable matrix and the property variable matrix. PLS-DA applies the 279 

multivariate PLS algorithm to establish discrimination rules by means of a binary matrix. The 280 

validation samples were attributed by means of the predicted binary code. The highest 281 

predicted binary code variable gives the predicted cluster [29].  282 

 283 

2.5.2 Non-linear chemometrics methods 284 

 285 

QDA is non-linear algorithm because it is based on a quadratic function but it is not very 286 

much different from LDA except that it is assumed that the covariance matrix can be different 287 

for each cluster, where it is estimated separately as a Gaussian distribution. The Gaussian 288 

parameters for each cluster are computed from training points with maximum likelihood 289 

estimation [30]. For this study, this method was applied on the PCA scores of the data matrix.  290 

KNN techniques were developed to answer challenges about density estimation and pattern 291 

classification [31]. Processing of this algorithm consists of basically ordering the training 292 

samples in a d-dimensional unit hypercube by means of a metrics distance measure. Then, for 293 

each tested sample, the training matrix is examined in the order of their projected distance 294 

from the tested sample on the sorted coordinate. The prediction of the unknown sample is 295 

determined by the most representative cluster of the k nearest neighbors [32]. To optimize the 296 

training model, the k integer and the metrics of distance can be adjusted. 297 

Neural networks were successfully used to solve complicated pattern recognition and 298 

classification problems in different domains. The probabilistic neural networks (PNN) method 299 

presents a few advantages over the conventional neural network [33]. It provides a robust 300 

classification with noisy data. PNN combines different concepts: neural computing, Bayes 301 
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classification rule, and non parametric estimation of the probability density function. In this 302 

study, the PNN method was employed on the eigenvalues of the data matrix, after PCA 303 

preprocessing, and the Mahalanobis method was used for distance computing. 304 

SVM is a supervised method originally proposed by Vapnik et al. in 1963. Fifty years later, 305 

many publications reporting on SVM and its extensions as a multiclass classification method 306 

can be found in literature [34]. The SVM algorithm classifies data by finding the best 307 

hyperplane that separates all data points of one class from the others classes. The best 308 

hyperplane for an SVM corresponds to the one with the largest margin between the two 309 

classes. In this study, the nu-SVM algorithm was employed and this algorithm could be used 310 

with many Kernel functions (table 1). When the SVM was used with a linear Kernel function, 311 

this algorithm was considered as a linear algorithm, and for this study, the results of SVM 312 

with a linear Kernel function, also called linear SVM, were associated with the results 313 

obtained by other linear methods.  314 

 315 

2.6 Computing 316 

 317 

All the chemometrics analyses were performed with Matlab R2013a (32-bit) (Mathwork, 318 

USA) and was used to classify the samples using their explanatory variables. The algorithms 319 

used for LDA, QDA and KNN were available in the pure Matlab. The algorithms used for 320 

SIMCA were developed by Cleiton A. Nunes, Brazil (available on Mathwork/matlabcentral). 321 

The algorithms used for SVM called lib-SVM were developed by Chih-Chung Chang and 322 

Chih-Jen Lin, China [34]. The algorithms used for FDA, PLS-DA and PNN were developed 323 

by Dominique Bertrand and Christophe Cordella, INRA, France [35]. 324 

The computing was realized on a personal computer with 2Go RAM, an Intel Core2 Duo 325 

2.66GHz as processor and Microsoft Vista (32 bit). The required time for models computing 326 
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step and validation step was negligible (only few decades of seconds) compared to that of the 327 

optimization step. The number of parameters to optimize was the factor which had the most 328 

influence on the total required time. For example, the PLS-DA algorithm required to optimize 329 

only one parameter and took twelve hours to explore this parameter from 1 to 35, 330 

corresponding to 1 845 900 computing models (20 models x 35 range parameter x 879 total 331 

cross validated strains x 3 cultures per strain). On the other hand, for polynomial SVM, four 332 

days were needed to optimize four parameters (113 127 300 computing models).  333 

 334 

 335 

3 Results and discussion 336 

 337 

For all linear and non-linear methods described previously, the results obtained took into 338 

account the three following steps: optimization of the chemometric parameters, model 339 

computing, and validation in cascade. The details of the models are presented in table 2 and 340 

each model was validated taking into account the taxonomic tree as described in figure 2. 341 

Twenty models were built to complete the cascade and one cascade was built for each tested 342 

algorithm (a total of 220 optimized models). During the optimization and computing steps, the 343 

models were built independently by means of the calibration set (or part of the calibration 344 

set), but during the validation step, the models were tested by the validation set and were 345 

interlocked into each other.  346 

 347 

3.1 Optimization of chemometric parameters and model computing 348 

 349 

The various methods of discrimination compared in this work required an optimization of 350 

parameters. These parameters were different from each other and were directly associated to 351 
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the chemometrics method used (table 1). They naturally have a strong influence on the final 352 

results and it was thus essential to optimize these parameters in the most rigorous way. 353 

The parameters were optimized by means of the calibration set only and for each algorithm, 354 

the influence of the variability of the various parameters or combination of parameters (e. g., 355 

SVM with polynomial Kernel function) was explored culture wise by partial cross validation. 356 

In the scope of this study, it is not possible to describe all the chemometric parameters for all 357 

algorithms and all models. Thus, we have therefore chosen to illustrate with the PLS-DA 358 

algorithm. 359 

Concerning this algorithm, the parameter to optimize was the used number of latent variables 360 

(LV). It corresponds to the number of computed regression vectors. In this study, the LV 361 

parameter varied from 1 to 35. The limit of 35 was chosen principally for computing reasons. 362 

These parameters were optimized by partial cross validation and each LV was tested with 363 

each culture. The average of Percentage of Good Prediction (PGP) as a function of the LV 364 

was computed and plotted highlighting a maximum of PGP (figure 3). The LV corresponding 365 

to this maximum was taken as the best parameter. In fact, the LV optimization was important 366 

in order to minimize model under- and over-fitting [9]. All of the LV optimal number were 367 

defined for each model of the cascade and each model was built with its appropriate LV as 368 

presented in table 3 (see the LV column). It was possible to observe that the LV parameters 369 

highlighted the complexity of the model because the more the model took into account a high 370 

number of clusters, the higher was the LV parameter. 371 

After parameter optimization, the models were computed taking into account these optimized 372 

parameters. During the model computing step, the discrimination abilities of each model and 373 

each algorithm was evaluated by means of the PGP of calibration. The calibration results 374 

concerning PLS-DA and linear SVM algorithms are presented in table 3.  375 

 376 
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3.2 Validation step 377 

 378 

The prediction capacity of all the classification models was evaluated by means of the sample 379 

validation set. This step allowed observing, in real conditions, the behavior of the various 380 

models tested in this investigation. Figures 4.1 and 4.2 show the broken curves corresponding 381 

to the PGP of validation spectra of each tested algorithm versus the taxonomic rank. 382 

Concerning the linear methods, the best results were obtained with the PLS-DA method 383 

(Figure 4.1). This method allowed reaching a PGP of 98.9% for the genus taxonomic rank and 384 

93.2% for the species taxonomic rank. The LDA and FDA methods respectively gave a PGP 385 

around 3% and 6% less than the PLS-DA method, with 96.4% and 95% for the genus 386 

taxonomic rank and 89.6% and 85.8% for the species taxonomic rank. The broken curve of 387 

SIMCA is not shown so as to preserve the best scale for PGP. This method showed the worst 388 

results with PGP of 66.5% for the genus taxonomic rank and less than 50% for the species 389 

taxonomic rank. The linear SVM gave very good results with a PGP of 99.8% for the genus 390 

taxonomic rank and 91.3% for the species taxonomic rank. This algorithm was able to reach 391 

the second best PGP for the last taxonomic rank and it appears also adapted to the 392 

identification of fungi described in this study. 393 

The PLS-DA and linear SVM algorithm were equivalent and showed a superior ability for 394 

correct identification than the other linear methods. This is because LDA and FDA methods 395 

use a mathematical algorithm based mainly on variance of the spectral data matrix, whereas 396 

the PLS-DA and SVM algorithms are based on combination of the spectral and the reference 397 

matrices. Concerning LDA and FDA algorithms, the validation results showed a relative 398 

similarity for both methods. This particularity could be explained by the methodology 399 

employed, which is based on minimization of the Euclidian distance between validation 400 

samples and the cluster barycenters. On the opposite, the SIMCA method uses the internal 401 
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variance of each cluster separately. The pertinent variance searched for each model becomes 402 

finer when the modeling is near to the taxonomic species rank. When the SIMCA method 403 

estimates the internal variance of each cluster, the variance of interest is probably occulted by 404 

other internal cluster variances.  405 

 406 

In figure 4.2, the 3 non-linear SVM (RBF, sigmoid, and polynomial) showed PGP values near 407 

to 100% only down to the family taxonomic rank. For the following ranks, these PGP 408 

decreased strongly, at the genus taxonomic rank (92%, 82% and 43%) and at species 409 

taxonomic rank (42%, 51% and 25%). Concerning the other non-linear algorithms, the best 410 

result was obtained with the KNN algorithm and gave a PGP of 90.4% and 78.2% 411 

respectively for genus and species taxonomic ranks. The PGP of this algorithm was close to 412 

100% down to the family taxonomic rank and was about 15% less than the PLS-DA algorithm 413 

from the genus to the species rank. The second best non-linear algorithm was the QDA 414 

algorithm. This algorithm gave PGP values close to the KNN algorithm, nearly 5% less, with 415 

a PGP of 71.5% for the species taxonomic rank. Finally, the PNN algorithm gave the worst 416 

results, comparable to SVM with the polynomial Kernel function, with PGP values around 417 

50% for the class taxonomic rank, which then decreased substantially down to the species 418 

taxonomic rank.  419 

Non linear SVM did not perform very well probably because the variance of interest was not 420 

adapted to these parameters. The optimization step could also induce an over-fitting in the 421 

model. In addition, the interlocked cascade models could most certainly exacerbate this effect. 422 

Concerning the other non-linear algorithms, a plausible explanation is that the variance of 423 

interest could not be efficiently extracted by these non-linear algorithms probably due to the 424 

linearity rules associating the spectral data matrix with the taxonomy. 425 

 426 
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In order to evaluate if the prediction power of two methods was significantly different, the 427 

McNemar’s test was applied to the investigated methods pairwise. The results are displayed in 428 

table 4 in the form of a two-dimension correlation matrix. The tests were computed for the 429 

species taxonomic rank. This test showed that all these algorithms were significantly different 430 

except for LDA versus linear SVM and PNN versus SVM (polynomial Kernel function). 431 

For the linear and non-linear methods all the curves presented in figure 4.1 and 4.2 showed a 432 

decreasing tendency. This decrease could be correlated with the variance sought at each 433 

taxonomic rank. We noticed that the change from the genus to the subgenus and from the 434 

section to the taxonomic species rank induced complications. These may be associated firstly, 435 

to the morphological proximity at the subgenus rank and to the closeness of the biochemical 436 

structures at the species rank. These observations seemed to converge with difficulties 437 

encountered during morphological identification, in particular for Aspergillus 2, Camenberti, 438 

Chrysogena and Roquefortorum species models [36, 37, 38]. 439 

 440 

3.3 Combined cascade 441 

 442 

Table 3 underlines some problematical models for both PLS-DA and linear SVM algorithms. 443 

The concerned models were principally Aspergillus 2, Camemberti, Chrysogena, and 444 

particularly Roquefortorum, presenting respectively validation PGP values of 85.7, 83.3, 86.5 445 

and 61% for PLS-DA and 0, 37.5, 75 and 59% for SVM. These 4 models gave, during the 446 

calibration step, a PGP of 100% (or close to 100%) but their validation was low and 447 

illustrated a lack of accuracy. These inconveniencies could be explained for Aspergillus 2, 448 

Chrysogena and Camemberti models, by the low number of strains and by the high number of 449 

needed taxonomic nodes. For the Roquefortorum model, the taxonomy of strains concerned 450 

by this model is still in evolution [36] and the difficulties to discriminate by sequencing and 451 
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the genetic proximity of these concerned strains were real and correlated with the outcome of 452 

our chemometrics models. 453 

On other hand, a complementarity between PLS-DA and linear SVM algorithms was 454 

suggested through the data presented in figure 4.1. At the subgenus rank, these two algorithms 455 

gave similar accuracy with respectively PGP of 98.9 and 99.0%. At the genus rank, the PGP 456 

of these two algorithms were 98.9 and 99.9% respectively, and at the species rank, 93.2 and 457 

90.1% respectively. The remarkable intersection point between these two broken curves is 458 

pointed by a circle in figure 4.1. Due to this singularity between these two algorithms, a 459 

“combined cascade” model was built. The linear SVM algorithm was used to elaborate the 460 

first 8 models from the subphylum to the genus taxonomic ranks while the PLS-DA algorithm 461 

was used to build 12 models from the sub-genus to species taxonomic ranks. The validation 462 

results of this combined cascade are presented in figure 5. 463 

The "combined cascade" model showed the best performances compared to all the previous 464 

"regular cascades", with 94.2% of PGP at species taxonomic rank. The spectra that were 465 

wrongly predicted by PLS-DA were then correctly predicted by linear SVM at genus 466 

taxonomic rank, and were almost all correctly identified until the species taxonomic rank. The 467 

gain of one percent (illustrated by ε in figure 5), due to the combined cascade, was maintained 468 

from the genus down to the species taxonomic ranks. The “combined cascade” model 469 

revealed that linear SVM appeared to be the most pertinent algorithm to discriminate fungi 470 

strains until the genus taxonomic rank. This suggested that linear SVM could be better 471 

adapted than PLS-DA algorithm for voluminous sample sets. On the other hand, PLS-DA 472 

appeared as the most pertinent method to identify fungi at the species taxonomic rank, 473 

suggesting that PLS-DA could be adapted for reduced and clustered sample sets. Thus, the 474 

combination of both methods indicated an improvement of the identification capacity. 475 

 476 
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 477 

4 Conclusion 478 

 479 

This is the first study that compares eleven linear and non linear supervised classification 480 

algorithms on such a large dataset of food-related fungi FTIR spectra. The results obtained 481 

highlight the suitability of the linear classification methods, in particular the PLS-DA and 482 

linear SVM algorithms, for discriminating and identifying from the family to the species 483 

taxonomic ranks. These findings are promising but also pointed out the dependence due to the 484 

taxonomic references and consequently the limits of the supervised cascade computing for the 485 

application to spectral data. These observations seem to corroborate with difficulties 486 

associated with the morphological and biochemical identification. The “combined cascade” 487 

modeling including the two well suited models, PLS-DA and linear SVM, gave an 488 

improvement of the identification accuracy from the subphylum to the species taxonomic 489 

ranks. This study also highlights the interest of the concept of cascade modeling based on 490 

taxonomy because of the size and nature of the data set. Indeed, extending a complex 491 

discrimination problem into several steps allowed to distribute the studied variance on several 492 

models and thus to target the adequate variance on every taxonomic node. Further, the 493 

supervised cascade model amplifies the discrimination capacity of each tested algorithm by 494 

means of the interlocked models. The McNemar’s results pinpoint that the choice of the 495 

supervised cascade to develop chemometrics discrimination methods was appropriate to 496 

assess many discrimination algorithms. To perform knowledge about abilities of these 497 

supervised discrimination algorithms, linear and non-linear algorithms need to be assessed 498 

using other types of data, such as bio-morphological data or using other study cases. Also, the 499 

fungi spectral data bank could be used in a non-supervised way to define new clustering or 500 

new cascade of classification. In addition, by means of PLS-DA regression vector, rand 501 
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feature or ANOVA (ANalysis Of Variance) algorithms, it would very interesting to study 502 

spectroscopic markers for each model in order to link spectral, biological, and chemical 503 

properties of fungi.  504 

 505 

 506 
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Table 1: Optimized parameters used for the different chemometrics methods 

 
 

Chemometrics 

methods
Used parameters

Chemometrics 

methods
Used parameters

LDA 
Kdim (positive integer included in 1 to 35): size of eigenvalues 

matrix
QDA 

Kdim (positive integer included in 1 to 35): size of eigenvalues 

matrix

maxscore (integer included in 1 to 35): size of PCA-score matrix 

allowed to the model (PCA step)

NumNeighbors (positive integer included in 1 to 30) : specifying 

the number of nearest neighbors in calibration data to find for 

classifying each point when predicting

Kdim (positive integer included in 1 to 35): size of eigenvalues 

matrix

Metric choice: function use to  specify the distance metric 

between neighbors (among 11 distances metric process)

FN (positive integer included in 1 to 35): the number of computed 

iterations

σ2 (positive real included in 0 to + ∞): "smoothing parameter" of 

the probability function estimator

Kernel function choice (among 3 K-functions: RBF, Sigmoïd 

and polynomial)

ν (positive real included in 0 to 1): "level of detail" or hyperplan 

resolution

Linear Kernel function choice
γ (positive real included in 0 to + ∞):  selected value of γ in Kernel 

function (RBF, sigmoid and polynomial choice)

coef0 (positive real included in 0 to + ∞): selected value of coef0 

in Kernel function (RBF and sigmoid choice)

d (positive integer included in 1 to 5): selected degree in kernel 

function (polynomial choice)

Non-linear methods

KNN

PNN 

SVM 

Linear methods

FDA 

SIMCA 
maxscores (positive integer included in 1 to 35): size of PCA-

score matrix allowed to each clusters (PCA step)

PLS-DA 
LV (positive integer included in 1 to 35) is the numbers of 

computed regression vector defined by the Latent Variables

SVM 
ν (positive real included in 0 to 1): "level of detail" or hyperplan 

resolution
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Table 2: Details of the 20 discrimination models tested. 

 

Optimization 

& calibration

External 

validation

Pezizomycotina
Mucoromycotina

Eurotiomycetes

Sordariomycetes

Saccharomycetes

Dothideomycetes

Dothideales

Pleosporales

Xylariales

Hypocreales

Mucoraceae

Lichtheimiaceae

Cordycipitaceae

Nectriaceae

Rhizopus

Mucor

Actinomucor

Paecilomyces

Penicillium 1

Aspergillus 1
Penicillium 2

Aspergilloides
Flavi

Fumigati

Nidulantes

Nigri

Aspergillus 2

Brevicompacta
Fasciculata

Chrysogena
Roquefortorum

Penicillium 3

Camenberti

Verrucosa

E. nidulans 

A. versicolor

E. chevalieri
E. amstelodami

F. equiseti

F. graminearum

F. verticillioides

F. oxysporum

M. circinelloides 

M. racemosus

M. spinosus

P. biforme

P. camenberti
P. nalgiovense

P. chrysogenum

P. roqueforti

P. carneum

P. paneum

P. corylophilum

P. glabrum

P. oxalicum

1046 (45)

Subphylum Micromycetes 4159 (194)

Class Pezizomycotina 3302 (154)

Hypocreales

Serial Fasciculata 190 (9)

Genus

Mucoraceae 822 (40)

Trichocomaceae 1948 (91)

Subgenus Penicillium 1 1043 (49)

Section

Aspergillus 1 851 (39)

Penicillium 2 808 (37)

Species

Nidulantes 147 (7)

Aspergillus 2 110 (5)

Fusarium 1001 (43)

Mucor 647 (31)

Camenberti 108 (5)

Chrysogena 141 (7)

Aspergilloides 235 (11)

Roquefortorum 250 (12)

886 (42)

Taxonomic 

rank
Model name

Corresponding 

clusters names

Number of spectra 

(number of strains)

1801 (83)

1430 (66)

Order
Dothideomycetes 144 (7)

Sordariomycetes 1087 (51)

Family
Mucorales 857 (42)

39 (2)

433 (19)

371 (17)

412 (18)

355 (16)

104 (5)

441 (22)

427 (19)

337 (17)

45 (2)

57 (3)

21 (1)

392 (17)

320 (13)

24 (1)

84 (4)

119 (6)
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Table 3: Comparison of calibration and validation PGPs between PLS-DA and linear SVM models 

 
 

LV
PGP 

Calibration

PGP 

Validation
γ

PGP 

Calibration

PGP 

Validation

Subphylum Micromycetes 7 100 100 0,001 100 100

Class Pezizomycotina 12 99,9 99,2 0,01 99,8 100

Dothideomycetes 5 100 100 0,01 100 100

Sordariomycetes 10 100 99,6 0,005 99,3 100

Mucorales 16 100 100 0,005 98,4 100

Hypocreales 5 100 99,5 0,001 100 100

Mucoraceae 20 100 100 0,005 99,1 100

Trichocomaceae 25 99,9 98,8 0,05 95,7 99,9

Subgenus Penicillium 1 13 100 99,6 0,2 98,7 95,7

Aspergillus 1 20 100 97,7 0,05 99,2 99,5

Penicillium 2 15 100 95,4 0,2 94,7 84,7

Serial Fasciculata 5 100 100 0,2 100 100

Nidulantes 6 100 100 0,01 95,8 100

Aspergillus 2 5 100 85,7 0,8 100 0,0

Fusarium 20 99,1 95,5 0,2 96,1 94,5

Mucor 14 100 99,0 0,2 96,6 95,3

Camenberti 10 100 83,3 0,1 93,3 37,5

Chrysogena 5 100 86,5 0,1 95,0 75,0

Roquefortorum 20 100 66,0 0,01 100 59,0

Aspergilloides 5 100 100 0,01 100 100

Species

Taxonomic 

rank
Model name

PLS-DA models linear SVM models

Order

Family

Genus

Section
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Table 4: Correlation matrix of McNemar’s test, presenting McNemar’s value for each pair of chemometrics methods at the species level 

 
 

LDA FDA SIMCA PLS-DA
SVM 

Linear
QDA PNN KNN

SVM 

RBF

SVM 

Sigmoid

SVM 

Polyno

mial

188 LDA 0 10 703 13 0,2 150 845 71 591 454 882

255 FDA 10 0 581 45 13 87 715 29 475 349 751

1164 SIMCA 703 581 0 840 723 251 9,2 382 6,8 37 14

123 PLS-DA 13 45 840 0 10 239 987 139 722 577 1026

178 SVM Linear 0,2 13 723 10 0 162 865 80 610 472 903

514 QDA 150 87 251 239 162 0 351 16 178 99 378

1316 PNN 845 715 9,2 987 865 351 0 499 32 83 0,6

392 KNN 71 29 382 139 80 16 499 0 293 191 531

1041 SVM RBF 591 475 6,8 722 610 178 32 293 0 12 41

888 SVM Sigmoid 454 349 37 577 472 99 83 191 12 0 97

1356 SVM Polynomial 882 751 14 1026 903 378 0,6 531 41 97 0

linear methods non-linear methodsMisclassified 

sample's 

number 

(species level)

Tested 

chemometrics 

algorithms
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Figure 1: Raw and preprocessed FT-IR spectra of an Alternaria alternata strain with a tentative band assignment of major macromolecules. 
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Figure 2: Organigram of the modeling cascade based on the current mold taxonomy 
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Figure 3: Number of Latent Variables (LV) optimization (PLS-DA methods) for the Mucor species model with 3 clusters (M. racemosus, M. 

circinelloides, M. spinosus)  
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Figure 4.1: Comparison of validation PGPs by taxonomic rank between linear chemometrics methods 
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Figure 4.2: Comparison of validation PGPs by taxonomic rank between non-linear chemometrics methods 
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Figure 5: Comparison between the combined linear SVM and PLS-DA cascade with the linear SVM and PLS-DA cascades taken independently.  
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