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Abstract 

To discover the potential biomarkers that may be closely related to diseases is a major 

purpose of metabolomics data analysis. Hence, it is expected to explore some effective methods 

for screening these informative metabolites from large amounts of dataset. In this paper, we 

propose an effective strategy named sparse linear discriminant analysis (SLDA) which can 

perform classification and variable selection simultaneously to analyze complicated metabolomics 

datasets. Compared with two other approaches partial least squares discriminant analysis 

(PLS-DA) and competitive adaptive reweighted sampling (CARS), SLDA relatively obtains better 

results and can select some informative metabolites which are proved to be in consistent with the 

biochemical study. Furthermore, by building a model based on the selected features SLDA could 

be applied to the high dimensional small sample cases where linear discriminant analysis (LDA) 

fails to work. To sum up, SLDA is a very useful method to explore and process metabolomics 

data. 

 

Keywords: sparse linear discriminant analysis; variable selection; classification; metabolomics; 

potential biomarkers 

 

1. Introduction 

Metabolomics is a systemic approach for analyzing metabolites released by living organisms 

                                                             

Abbreviations: SLDA, sparse linear discriminant analysis; PLS-DA, partial least squares 

discriminant analysis; CARS, competitive adaptive reweighted sampling;  
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during the metabolic process 
1
. All the low molecular weight metabolites in special physiological 

period produced by an organism or a cell can be studied qualitatively and quantitatively 

simultaneously
2
. So the main purpose of metabolomics data analysis is to discover the potential 

biomarkers that provide information about disease diagnosis and treatment, drug toxicity and new 

drug development and many other fields 
3
. While the information contained in metabolomics 

datasets becomes more and more complicated with the widely use of advanced analysis 

instruments such as GC-MS 
4, 5

, LC-MS 
6, 7

 and NMR 
8
 and so on. Hence, it is in sore need of a 

great variety of analytical tools to screen valuable metabolites from the complex information. 

So far, numerous statistical methods and chemometrics approaches like principal component 

analysis (PCA) 
9, 10

, partial least squares discriminant analysis (PLS-DA) 
11

, competitive adaptive 

reweighted sampling (CARS) 
12

, subwindow permutation analysis (SPA) 
13

 and model population 

analysis random forests (MPA-RF) 
14

 have been applied in metabolomics work. Whereas, it still 

exists many problems. For example, supervised approach PLS-DA may perform poorly when the 

variance or covariance of some features is large in spite of their little contribution to the 

classification. These uninformative and noise features perhaps lead to the absence of optimal 

variables in complex cases 
15

. For CARS, the weight coefficient of a feature will change when we 

repeat the operation process, so the variable importance will be unstable. And this may cause the 

consequence that irrelevant features are chosen while informative features are lost 
13

. 

In order to deal with these issues, we propose an effective method called sparse linear 

discriminant analysis (SLDA) by performing discriminant analysis with penalty coefficients to get 

sparsity 
16, 17

. The main idea of SLDA is to perform the classification by the selected variables 

which are obtained via the sparse discriminant vectors. When it is applied to three metabolomics 

datasets, the results show that SLDA is an effective classification approach and can be also 

suitable for the situation where the features is more than the samples. Meanwhile, it can screen 

some potential biomarkers which may be related with the disease. 
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2. Materials and methods 

2.1 Description of metabolomics datasets 

In order to compare the performance of three methods PLS-DA, CARS and SLDA, three 

metabolomics datasets are used. In these models all variables are normalized to have mean zero 

and standard deviation one. All these three methods are implemented by MATLAB. 

Dataset 1: “ESTE” dataset, which is made up of endogenous substrates to enzymes from 6 

wild-type mice and 6 mice lacking the enzyme fatty acid amide hydrolase (FAAH), each with 409 

variables. The ESTE samples are profiled using a liquid chromatography-mass spectrometry 

(LC-MS). The dataset is taken from the paper 
18

. 

Dataset 2: “TLS” dataset, which is made up of the urinary metabolite profiles of 25 patients 

with mild tubulointerstitial lesions and 25 patients with severe tubulointerstitial lesions, each with 

200 variables. The urinary samples are obtained from the Department of Nephrology of the 

University Hospital of Ioannina, and profiled using a 
1
H NMR. The dataset is taken from the paper 

19
. In this article, the author mentioned that "All study participants gave informed consent for the 

investigation, which was approved by the Ethical Committee of the University Hospital of 

Ioannina." 

Dataset 3: “CHOB” dataset, which is made up of the metabolic profiles of 16 healthy 

children and 13 overweight children, each with 30 variables. The plasma samples are got from the 

Xiangya Hospital in Changsha City, Hunan Province, China, and profiled using a GC–MS. The 

dataset is taken from the paper
20

. In this article, the author made a statement that" All clinical 

experiments were approved by Xiangya Institutional Human Subjects Committee." 

2.2 Linear discriminant analysis 

In this study, LDA we mentioned is seen as typical Fisher’s discriminant analysis 
21

. We 

define a data matrix n pX which has n observations belonging to one of k classes and p features. 

And let ijx , j=1,2,3,..., in , denote the vector falls into the ith class, set ix be the mean of the ith 
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class and x be the mean of the whole data. Then the within-class covariance matrix is 

1 1

( )( )
ink

T
iw ij ij i

i j 

   x x x x                     (1) 

And the between-class covariance matrix is 

1

( )( )
k

T

b i i i

i

n


   x x x x                        (2) 

Fisher’s discriminant problem is to find appropriate discriminant vectors 1 2 1, ,..., k    which 

are able to make the between-class covariance matrix is maximal relative to the within-class 

covariance matrix: 

 max
i

T

i b i


   , subject to 1T

i w i                         (3) 

The problem (3) can be settled by considering it as the eigenvalue problem. Since the upper bound 

for the rank of the matrix b
Σ is min (p, k-1), so there are no more than q (q≤ min(p, k-1)) 

discriminant vectors. Fisher’s discriminant analysis can reduce the dimension of 
n pX by 

projecting it onto the q-dimensional space. Hence it is very conducive to the classification and the 

visualization of the original data matrix. 

In this study, we use a series of scoring 
22

 to transform classification analysis into regression 

analysis. We define a data matrix n kY  consists of dummy variables, i  is a k-vector of scores 

for the k classes, i  is a p-vector representing variable coefficients for the p features. So the 

criterion of the optimal scoring problem is defined as follows: 

 2

,
min

i i
i iYθ Xβ

 
                           (4) 

Since i  in formula (4) is proportional to that in formula (3) 
23

, so we can see i  as the 

discriminant vector. 

2.3 Sparse linear discriminant analysis 

Although LDA is widely used because of its simplicity and predictive ability 
24

, it fails to 

work when the features is more than the observations 
25

. To cope with this problem, we can 
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impose a penalty coefficient on the L1 norm of discriminant vectors 
16, 26

. So the lasso is defined as 

follows: 

 2

1min  y Xβ


                          (5) 

When   is large sufficiently, some values in   will be shrunk to zero and the sparse 

discriminant vector will be obtained. So it can realize variable selection through this way. To 

better reveal the grouping information of correlated features which lasso couldn’t do, we also 

impose a penalty   on the L2 norm of   which is named the elastic net 
17

. 

 2 2

1min +  y Xβ


                        (6) 

It is proved to have great ability to select variable and high prediction accuracy 
27

. Combining the 

optimal scoring with the elastic net, the sparse linear discriminant analysis (SLDA) is defined as: 

 2 2

1
,

min +
i i

i i i i  Yθ Xβ
 

                     (7) 

The problem (7) is solved by using an iterative algorithm 
23

. Figure 1 shows how exactly the 

SLDA works. 

(Insert Figure 1) 

2.4 Partial least squares discriminant analysis 

Partial least squares discriminant analysis(PLS-DA) is a discriminant analysis that y consists 

of dummy variables corresponding to the category of the observations in X
28

. The original goal of 

PLS is not for discriminant analysis, but there are connections between PLS and DA which have 

been discussed in the literature
29

. PLS-DA is widely used for classification and the stability of 

classification results is also assessed in studies 
30

. The PLS-DA is implemented in the following 

steps. First, we recode the vector y with dummy variables which are consistent with the response 

categories. Then, the PLS model is built with the training set obtained from cross validation. After 

that, we compute the predicted category variables of the test set through this model. By comparing 

the predicted category variable and the actual variable we get the error rates of different numbers 

of components. So, according to the minimum error we can choose the optimal set of components. 

And the approach realizes dimensional reduction through these components. PLS can be applied 

to classification in spite of the situations where there are more features than observations. 
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2.5 Competitive adaptive reweighted sampling 

Competitive adaptive reweighted sampling (CARS) is a promising approach for building a 

predictive calibration model and it can be applied for variable selection of different datasets like 

genomics data, metabolomics data and so on 
12

. The steps of CARS are briefly introduced as 

below. To begin with, we build a PLS model using the samples chosen by Monte Carlo strategy in 

every sampling run. This strategy is proposed by Stanislaw Ulam in the late 1940s and it is 

demonstrated to be a successful method for selecting the suitable model 
31

. Then we use the 

exponentially decreasing function (EDF) to perform the variable selection. The process 

encompasses the following two steps. Firstly, EDF deletes the features of no or little information 

which have relatively small weights obtained from the PLS model. At the second step, the ratio of 

the remaining features can be computed by the formula: 

ki

ir ae                                  (8) 

Where a and k are two constants calculated as below: 

1/( 1)( / 2) Na p                               (9) 

ln(p/ 2)
1

k
N




                           (10) 

Where p and N are the number of features and the sampling runs. After that, we use the adaptive 

reweighted sampling (ARS) to select features further. In this procedure, the larger the weight of 

the feature, the greater probability it will be selected. At last, we compute the root mean squares 

error of cross validation (RMSECV) of the N subsets of features and choose the optimal one 

which has the lowest RMSECV. 

3. Results and discussion 

3.1 Classification results calculated by different methods 

This section illustrates classification results on three different metabolomics datasets. 

Because the sizes of these samples are small, so we directly use 10-fold cross-validation to 

determine the training data and the test data and select the best parameters for the three methods 
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PLS-DA, CARS and SLDA. Then we build these classification models with the best parameters to 

evaluate the predictive ability. The selected variables and the results namely accuracy, sensitivity, 

specificity and AUC values for each method are listed in Table 1. And the receiver operating 

characteristic (ROC) curves are shown in Figure 2. 

(Insert Table 1) 

(Insert Figure 2) 

As it is described in Table 1, the SLDA method gets the best results as a whole. Then, also 

from the Table 1 one can firstly see that the models with feature selection can get better results 

than those which are established without choosing variables. Because the prediction assessment 

parameters including the accuracy, sensitivity, specificity got by PLS-DA is not as good as CARS 

and SLDA. Furthermore, from the ROC curves shown in Figure 2, one can see that the area under 

the curve (AUC) obtained by PLS-DA is smaller than the other two methods. As for ROC curves, 

a model whose AUC values is 0.5 has no predictive ability just like random guess. The closer 

AUC value is to 1, the better is the predictive ability. So it can be seen from the above description, 

CARS and SLDA can obtain better results than PLS-DA. It is worth noting that SLDA seems to be 

more effective comparatively compared with CARS. In Table 1, even though the accuracy, 

sensitivity, specificity and AUC values computed by these two methods for the ESTE and TLS 

datasets are the same, SLDA is more stable and can select more appropriate variables than the 

CARS (see the next section for more detail). For the CHOB dataset, SLDA achieves a higher 

predictive accuracy, specificity and AUC values than CARS. Consequently, the SLDA method has 

better discriminant ability relatively. 

What’s more, SLDA can obtain satisfied classification results for the datasets of the features 

being much more than the observations
25

. As it is known to all, some methods such as LDA can 

lead to satisfied results in low dimensional case but it fails to have good classification 

performance when the number of samples is less than the number of features relatively. However, 

the SLDA method performs well in the high dimensional small sample case. Since the SLDA 

model can get a low dimensional representation of the original dataset without missing much 

useful information by means of electing some important variables for classification and exclude 

many unrelated features. As is shown in Table 1, the three metabolomics datasets which have more 

features than samples especially in the ESTE and TLS dataset the number of variables is very 
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large relative to samples obtain good classification results. In conclusion, SLDA is a powerful 

feature selection and classification method. 

3.2Comparison of the models’ stability 

As is mentioned above, the CARS method sometimes can achieve satisfied results but it is 

unstable. The reason is that the model selects samples randomly, so it obtains different variables in 

different runs. The significance of each variable will also change. When CARS runs a few times, 

the results are different and we may not get the best result through the running process. Table 2 

shows three results for CHOB dataset by running the CARS program three times with the same 

parameters. And the corresponding feature importance is also shown in Figure 3. From both Table 

2 and Figure 3, one can see that the variables chosen by CARS are different at different times. And 

the importance of some variables will increase and others will decrease. Because of the instability 

of variable selection caused by the CARS method, the results in Table 1 and Table 2 are the 

optimum values by running the CARS program with the number of Monte Carlo Sampling is 

1000.  

(Insert Table 2) 

(Insert Figure 3) 

 When the CARS program is implemented by running much more times, we can get satisfied 

results. But the procedure is time-consuming. For example, running the CARS program 1000 

repeats and 200 runs in a repeat for CHOB dataset which consists of a matrix X of size 29×30 

will take 3378.936s. As the dataset grows larger, the procedure becomes increasingly complex and 

it also takes more and more time. The metabolomics datasets become more and more complicated 

and high-throughputs with the widely use of advanced analysis instruments. So the CARS method 

is time consuming and leads to low efficiency when we run it thousands repeats to obtain 

distribution of each selected variables. 

Compared with the CARS method, the SLDA method is more stable in the whole process. 

The reason is that when the data matrix of the variables is singular, the beta value won’t be an 

exact number by means of the straight inversion. However, the beta value will be stable with the 

use of the penalty coefficients to get sparsity. Therefore the SLDA model can obtain a stable result 
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and take less time, which is conducive to the analysis of the metabolomics datasets. 

3.3 Biomarkers of the metabolomics datasets 

In this part, we use the variable importance of each variable which is calculated as the 

absolute value of the sparse coefficient divide by the sum of all variables to analyze the variable 

selection of classification results and the biomarkers of the metabolomics datasets. The 

informative variables are selected as biomarkers and other variables are seen as disturbing 

variables and uninformative variables. The results obtained by CARS and SLDA are shown in 

Figure 4 and 5 respectively. 

(Insert Figure 4 and 5) 

As is shown in figures 4 and 5, for the ESTE dataset, the potential biomarker selected by both 

the CARS and SLDA method is Anandamide. In the TLS dataset, the informative metabolites 

discovered by CARS are Citrate and variable 32 which is unidentified in the biochemical work. 

While we perform SLDA to obtain the possible biomarkers: 1-Methylhistidine, Citrate and 

Proteins. For the CHOB dataset, three potential biomarkers Glyceric acid, Serine and Tyrosine are 

selected by CARS. But SLDA shows different metabolites which are Glyceric acid and Palmitic 

acid. Since the SLDA method can get better results including accuracy, sensitivity, specificity and 

AUC values relatively, it is reasonable to deduce that the potential biomarkers selected by SLDA 

will be more precise. As it turns out, the potential biomarkers identified by SLDA are in 

accordance with the conclusion got by biochemical study. 

For the ESTE dataset, SLDA provides the potential biomarker which is Anandamide. The 

study 
18

, reported that Anandamide is the endogenous substrate to fatty acid amide hydrolase 

(FAAH). Both targeted method using selected ion monitoring (SIM) and untargeted method 

termed discovery metabolite profiling (DMP) can demonstrate that Anandamide is the endogenous 

substrate. In the TLS dataset, we by means of SLDA to obtain the potential biomarkers: 

1-Methylhistidine, Citrate and Proteins. The research 
19

, reported that the start of the 

tubulointerstitial lesions is characterized by decreased excretion of Citrate, and Proteinuria often is 

a feature of renal patients. So according to these metabolites it is able to distinguish the patients 

with mild tubulointerstitial lesions and the patients with severe tubulointerstitial lesions. For the 
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CHOB dataset, Glyceric acid and Palmitic acid are selected as possible biomarkers by SLDA. The 

study 
20

, reported that several phosphate derivatives of Glyceric acid are significant biochemical 

intermediates of lipid metabolism. These derivatives such as 2-phosphoglyceric acid and 

3-phosphoglyceric acid are relative to overweight have been demonstrated 
32, 33

. Palmitic acid is 

discovered by Edmond Fremy in palm oil 
34

, and it is demonstrated to cause the brain insulin 

resistance then lead to obesity 
35

. 

Hence, these three results further imply that SLDA can screen biologically meaningful 

biomarker and build reasonable and predictive models with better performance. 

4. Conclusion 

In this article, we introduce an effective method called sparse linear discriminant analysis 

(SLDA) to discover informative metabolites in complicated metabolomics datasets by performing 

variable selection and classification simultaneously. From the above description, one can see that 

SLDA have obtained satisfied classification results comparatively. Introducing sparsity by means 

of the penalty coefficients in the discriminant vectors is very useful to select some biologically 

meaningful features. Hence the SLDA algorithm can build stable and predictive classification 

model, which can avoid the overfitting problem. What’s more, in this way SLDA can get a very 

good performance in the high dimensional small sample case where the number of variables is 

very large relative to the samples. In addition, the potential biomarkers identified by SLDA during 

the variable selection procedure are of good correlation with the biochemical study and also in 

accordance with the conclusion reported in the literatures. Therefore, SLDA can screen 

biologically meaningful biomarker and build reasonable and predictive models with better 

performance, which have broad applications in metabolomics. 
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Table 1.classification results from three datasets using three different methods 

*Note: For these three datasets, in PLSDA the maximal numbers of components for cross 

validation are all 10; in CARS the numbers of Monte Carlo Sampling are all 1000; in SLDA the 

desired numbers of variables are 409, 200 and 30, respectively. And the γ and the maximal number 

of iteration are all 1e-6 and 50. 

 

Table 2.the classification results of CHOB dataset using the CARS program three times with the 

same parameters 

*Note: In CARS the numbers of Monte Carlo Sampling are all 1000. 

 

 

 

Dataset Variable 
Prediction assessment parameters (%) 

Variable choose 
Accuracy sensitivity specificity AUC 

ESTE PLSDA 91.67 83.33 100 83.33 All(409) 

 CARS 100 100 100 83.33 52 115 

 SLDA 100 100 100 83.33 115 

       

TLS PLSDA 96 92 100 92 All(200) 

 CARS 100 100 100 96 32 112 141 142 149 182 

 
SLDA 100 100 100 96 

32 33 105 112 126 138 141 

142 149 182 

       

CHOB PLSDA 82.76 87.5 76.92 75.96 All(30) 

 CARS 86.21 87.5 84.62 78.85 12 13 19 22 23 

 
SLDA 89.66 87.5 92.31 79.81 

2 3 4 5 12 13 14 15 16 17 19 

20 21 22 23 27 29 

Dataset Method 
Prediction assessment parameters (%) 

Variable choose 
Accuracy sensitivity specificity AUC 

CHOB CARS 68.97 68.75 69.23 62.98 5 12 19 29 

 CARS 75.86 75.00 76.92 77.40 5 10 17 22 23 27 

 CARS 86.21 87.5 84.62 78.85 12 13 19 22 23 
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Figure 1 The process of SLDA algorithm is described in detail. 
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Figure 2 The ROC curves for three metabolomics datasets by using different discriminant 

methods PLS-DA, CARS and SLDA. (A)ESTE dataset;(B)TLS dataset;(C)CHOB dataset. 
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Figure 3 Three results for CHOB dataset’ feature importance by running the CARS program three 

times with the same parameters. 
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Figure 4 The variable importance and the potential biomarkers obtained by CARS for three 

metabolomics dataset. (A)ESTE dataset;(B)TLS dataset;(C)CHOB dataset. 
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Figure 5 The variable importance and the potential biomarkers obtained by SLDA for three 

metabolomics dataset. (A)ESTE dataset;(B)TLS dataset;(C)CHOB dataset. 
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