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Abstract: Flos Chrysanthemum tea contains flavonoids, essential oils and caffeoylquinic acids. These 

substances are pharmacologically active but this activity is cultivar dependent. Seventy-six Flos 

Chrysanthemum samples collected from four cultivars (Hangju, Taiju, Gongju and Boju) were discriminated 

with the use of results from high performance liquid chromatography (HPLC) and gas chromatography - 

mass spectrometry (GC-MS). A two-dimensional chromatographic fingerprint data set of the four kinds of 

Flos Chrysanthemum cultivar was built from the combined GC/HPLC profiles and thirty variables were 

selected. Principal component analysis (PCA) and kernel – PCA (KPCA) were used for feature extraction. 

The score mapping graph indicated that these two PCA methods effectively extracted most information from 

the samples, and the four Flos Chrysanthemum cultivars were qualitatively differentiated. Furthermore, four 

supervised pattern recognition techniques, Radial basis function-neural network analysis (RBF-NN), Least 

squares support vector machines (LS-SVM), Linear discriminant analysis (LDA) and K-nearest neighbors 

(KNN), successfully predicted the validation samples.   

Key words: Agricultural samples; Flos Chrysanthemum tea; HPLC; GC-MS; Multivariate analysis  
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1. Introduction 

Flos Chrysanthemum, also, known as the ‘white chrysanthemum’, is the dried capitulum of Chrysanthemum 

morifolium Ramat (C. morifolium R.), which belongs to the Chrysanthemum genus in the Asteraceae family. 

1
 Generally, it is native to Asia but more particularly to Korea and northern Japan.

2,3
 In China, the flowers of 

this plant are commonly used to make a pleasant and refreshing tea drink.4 It has also been reported that Flos 

Chrysanthemum has anti-bacterial, -inflammatory, -oxidant and -mutagenic properties,5,6 because it is rich in 

bioactive constituents, such as flavonoids, essential oils and caffeoylquinic acids.
7,8
 Forty six flavonoids and 

seventeen caffeic acid derivatives have been identified in an aqueous-methanol extract of Flos 

Chrysanthemum with the use of high performance liquid chromatography (HPLC) equipped with a diode 

array detector, and electrospray ionization/mass spectrometry (ESI/MS).
9
 Clifford et al.

10
 used LC-MS

5
 to 

identify chlorogenic acids and some caffeic acid derivatives of Chrysanthemum samples. Chang and Kim11 

detected forty-five volatile compounds in Flos Chrysanthemum samples extracted with the use of steam 

distillation.  

In China, there are more than 20 cultivars of Flos Chrysanthemum grown in different geographical regions; 

these plants are often differently processed.
12
 In general, it may be reasonably expected that the different 

cultivars will have different pharmacological effects, but interestingly the ‘Chinese Pharmacopoeia’, records 

all of them as ‘Flos Chrysanthemum’ with similar morphological characteristics.1 The most common cultivar 

varieties are: Boju (Bozhou, Anhui), Chuju (Chuzhou, Anhui), Gongju (Huangshan, Anhui), and Hangju 

(Tongxiang, Zhejiang). Importantly, market prices of these cultivars are quite different, e.g. in China, the 

Gongju and Hangju prices are often as much as fifteen times higher than Boju. It is, therefore, important to 

have analytical techniques to distinguish and identify the cultivars so as to discourage adulteration practices, 

which could impact on the sale prices as well as, arguably, on the health of the consumers. The World Health 

Organization (WHO), the US Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA)
13
 have recommended the fingerprint approach for quality control of the Flos Chrysanthemum 

cultivars, and this was adopted in this study.  

Different techniques such as HPLC, gas chromatography (GC), nuclear magnetic resonance (NMR) and 

near-Infrared reflectance spectroscopy (NIR) have been used to obtain the fingerprints of food or plant 

samples.14-17 The chromatographic fingerprinting approach is, arguably, the most widely used in industry and 
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scientific work. It involves the building of a large data base of chromatographic profiles from compounds 

found in the relevant plants or foods, such that this data can provide comprehensive information on the plant 

or food samples of interest. The main characteristics of chromatographic fingerprinting include data integrity, 

fuzziness, similarities and differences.
18
 Thus, given that chromatographic fingerprint matrices are often 

quite large, multivariate data analysis techniques, often referred to as chemometrics methods, become useful 

and necessary for data interpretation.19  

There are several research reports concerning the quality of Chrysanthemum plants with the use of different 

methods. Liu et al.4 characterized various Chrysanthemums of different species and provenance (White, Boju, 

and wild Chrysanthemums amongst others) with the use of HPLC. Xie et al.
20
 analysed phenolic compounds 

with the use of HPLC-DAD-ESI/MS, in 12 samples of five different cultivars of Chrysanthemum morifolium 

flowers grown in China. The results of their anti-allergic assays were investigated as well. Zhong et al.21 used 

GC/MS to analyze the volatile components of Chrysanthemum indicun L. from eight populations in China, 

and 169 compounds were identified. Wang et al. analysed different types of white Chrysanthemum sample, 

and the plants of different varieties were discriminated. Interestingly, adulterated samples were separated 

from the non- adulterated ones with the use of a novel technique – the electronic tongue method, which 

mimicked human taste.
22
 However, only a few studies have been carried out with Chrysanthemums, which 

involved the simultaneously discrimination of their molecular constituents, which belonged to several 

different categories or groupings.   

In the present work, two-dimensional chromatographic fingerprints were collected and combined with the 

use of GC and HPLC methods. Four kinds of Flos Chrysanthemum cultivars, Hangju, Taiju, Gongju and 

Boju, were qualitatively discriminated with the use of two kinds of unsupervised pattern recognition 

approaches, principal component analysis (PCA) and kernel principal component analysis (KPCA). The 

same data matrices were analysed with the use of four supervised pattern recognition approaches: radial basis 

function-neural network analysis (RBF-NN), least square support vector machines (LS-SVM), linear 

discriminant analysis (LDA) and K-nearest neighbors (KNN). Calibration sets were developed for prediction 

of unknown samples.  

 

2. Materials and methods 
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2.1. Chemicals and plants 

Formic acid (Analytical Grade) was purchased from Red Star Chemical Factory (Beijing, China), Methanol 

(LC grade) was obtained from Damao Chemical Reagent Factory (Tianjin, China), and freshly twice-distilled 

water was used throughout the experiment.  

Seventy-six Flos Chrysanthemum samples of four cultivars were collected from different pharmaceutical and 

tea stores in China. Samples 1 - 15 and 16 - 30 were the Hangju and Taiju kind, respectively, and they were 

cultivated in Tongxian, Zhejiang province. Taiju is the flower bud of the Hangju plant, whereas Hangju is the 

flower of the Hangju variety. Samples 31 - 55 and 56 - 76 were the Gongju and Boju varieties, respectively, 

which are grown in Huangshan mountain and Bozhou county, respectively, in the Anhui province. All the 

Flos Chrysanthemum samples were crushed into powder with a high-speed pulverizer (QE-100, Yili 

Instrument Co., Wuyi, China), and then passed through a 60 mesh sieve.  

 

2.2. Sample preparation and analysis with the RP-HPLC-DAD technique 

An accurately weighed powder sample (2.00 g) was reflux extracted in 45 mL 80% methanol for 2 hours on 

a 60 °C water bath. The extract was filtered through a filter paper into 50 mL volumetric flask and then 

diluted to the mark with 80% methanol. The final extract was filtered through a 0.45 µm organic membrane 

and used for HPLC analysis.  

The assay was performed on an Agilent 1100 series (Agilent Technologies, Palo Alto, CA, USA) equipped 

with a G1315B diode array detector, a G1379A online vacuum degasser, a quaternary pump solvent 

management system, a G1311A autosampler, and an injector with a 100 mL loop. The chromatographic 

separation was carried out on an Agilent Zorbax Eclipse XDB-C18 column (4.6 mm × 250 mm, 5 µm) and 

an Agilent Zorbax high-pressure reliance cartridge guard column (C18, 4.6 × 12.5 mm, 5 µm). The mobile 

phase was methanol (A) and 0.1% formic acid aqueous solution (B), which was ultrasonically degassed and 

filtered through a 0.22 µm nylon membrane. The elution gradient program was as follows: 95-75% B 

(0-10min), 75-70% B (10-15 min), 70-65% B (15-18 min), 65-60% B (18-25 min), 60% B (25-35 min), 

60-30% B (35-45 min), 30-10% B (45-50 min), 10-0% B (50-60 min) and the last elution was held constant 

for 5 min. The sample was then allowed to equilibrate at the initial conditions (5% A and 95% B) before the 

next sample was injected. The flow rate was set as 1.0 mL min-1, the injection volume was 20 µL, the 
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detection wavelength was set at 254 nm for all compounds, and the column temperature was maintained at 

(25 ± 0.5) °C.  

 

2.3. Headspace extraction of volatile compounds and GC-MS analysis 

Each powder sample (1.00 g) was accurately weighed and transferred into the 20 mL headspace vials capped 

by polytetrafluoroethylene (PTFE)/silicone septa, and then such a sample was equilibrated for 45 min at 80 

°C in a water bath. After this equilibration, 200 µL extract of the volatile compounds were absorbed with a 

CTC Analytics Headspace Syringes (Switzerland) and injected into the GC-MS instrument (Shimadzu 

GCMS-QP2010, Kyoto, Japan) equipped with an Agilent DB-5 MS column (30 m length × 0.25 mm inner 

diameter × 0.25 µm film thickness, Agilent Technologies, Palo Alto, CA, USA). The helium gas flow rate 

through the column was 1.00 mL min
-1
, and the total flow rate was 9.00 mL min

-1
, and the linear velocity 

was 36.5 cm s
-1
. The inlet temperature was 140 °C, and 200 µL of the extract was injected in the split (5:1) 

mode. The initial oven temperature was 60 °C and was held at this point for 1 min, and then increased to 

130°C at a rate of 4 °C min
-1
, held for 1 min, and finally ramped up to 195 °C at 6 °C min

-1
, and held for 1 

min. The interface and ion source temperatures were 250 and 200 °C, respectively. The mass detector was set 

on ‘Full scan’ monitoring mode with a mass scanning range of m/z 50-500 and the detector voltage of 1.06 

kV.   

 

2.4. Statistical analysis 

Multivariate analysis methods play an important role in differentiating different kinds of Flos 

Chrysanthemum cultivars. In this work, the characteristic GC and HPLC common peaks of all samples were 

matched by the Computer Aided Similarity Evaluation System (CASES, Chinese Pharmacopoeia 

Commission, Version 2004A). The above experimental data was processed in the same way but with the use 

of similarity analysis. Several, well-known multivariate, statistical, analytical methods were applied for the 

above work, and their principles are summarized below.  

 

2.4.1. Unsupervised pattern recognition:  

Principal components analysis (PCA): PCA is an unsupervised pattern recognition method of data analysis, 
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which is also used for data compression and feature extraction.
23,24

 As it is a linear unsupervised method, no 

data grouping information has to be known before the analysis. PCA transforms the original variables into 

new ones, i.e., the principal components (PCs). These new variables are linearly combined with the original 

ones and are orthogonal to each other. In general, the number of PCs extracted is the same as the number of 

the original variables but usually only a few PC variables account for most of the data variance, i.e., the 

dimensionality of the original data matrix is reduced and the redundant information is eliminated. The first 

PC accounts for most of the data variance, PC2 the next largest amount, and so on. Generally, PCA 

decomposes the data set into score and loadings matrices. When the scores’ matrix is visualized, hidden 

associations between the samples are often revealed, e.g., samples from the same origin will group together 

although no grouping information is apparent prior to PCA analysis. Additionally, when the loadings’ matrix 

is visualized, then, the loadings will be displayed as vectors, the longest of which will represent the most 

influential or discriminating variables.  If the score plots and loading plots are mathematically combined in 

a biplot, then the relationships between scores’ groups and variables will become readily apparent, i.e. in the 

case of peak variables, their significance with respect to the objects becomes readily apparent – the closer 

and longer loadings vectors are to a group of objects the more influence they (and the associated original 

peak variables) will have on the group. Finally, the eigenvalues of the data matrix can also be obtained after 

PCA decomposition, and from this it is possible to calculate the variance of the total data variance every PC 

explains.  

Kernel principal component analysis (KPCA): The PCA modeling discussed above refers to the resolution of 

linear data but when non- linear data is involved, the KPCA method becomes much more appropriate for the 

extraction of PCs.  This method KPCA enables PCA calculations using nonlinear modelling. It was 

developed by generalizing the kernel method into PCA.25 A kernel method, such as the support vector 

machine model, was originally used for solving complex nonlinear classification and regression problems,26 

and eventually, Scholkopf et al.
27
 generalized this method into a classical PCA, which became known as the 

KPCA method. Unlike PCA, this method can only obtain the score matrix and the eigenvalue vectors. 

However, it can also reduce the number of dimensions by considering just the first few eigenvectors and 

mapping the input data onto a high dimensional feature space.  

2.4.2. Supervised pattern recognition  
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Radial basis function-neural network analysis (RBF-NN): The non-linear neural network has been used for 

pattern recognition and classification of different foods.28 This method involved information transmition 

between object units, which were treated as if they had the structure and function of the human brain nerve 

network, i.e., learning, memorizing, summarizing and extraction data processes were facilitated. The training 

of the learning process begins with the transmition of the signal from an intermediate layer to the output 

layer. Following this training process, the network is able to recognize and memorize the data. RBF-NN is a 

classical topology type of neural network because of its high non-linear mapping ability. It creates a two 

layer network: a hidden radial basis layer, and an output linear layer. The hidden layer has neurons with 

non-linear functions, e.g., the radial basis functions. In this context, the Gaussian function is commonly 

incorporated in the RBF-NN model.
29
 The output layer is made of linear units, containing Purelin neurons, 

and its weighted input is calculated. The following steps are repeated until the network’s mean square error 

falls below the maximum number of neurons to be used: (1) the network is simulated; (2) the input vector 

with the greatest error is found; (3) a neuron is added with weights equal to that vector; (4) the Purlin layer 

weights are redesigned to minimized error.30  

Linear discriminant analysis (LDA): Linear discriminant analysis (LDA) is the most frequently used 

supervised pattern recognition, linear and parametric method. LDA is used in applications where 

classification of certain criteria is needed. Fisher criterion is a well known classification criterion.31 Fisher’s 

linear discriminant analysis aims to find the optimum linear boundaries among different data classes which 

maximizes the ratio between class variance and minimizes the ratio within class variance.32 The latent 

variables obtained in the LDA are the linear combination of the original variables. From k classes, k-1 latent 

variable can be determined. LDA can also be used to reduce the dimensionality of data similar to PCA.
33
  

Least square support vector machines (LS-SVM): SVM is a methodology based on statistical learning theory 

in the field of non-linear modelling. Suykens and his colleagues proposed a modified version of SVM, which 

is the least-squares SVM (LS-SVM).
34
 This method does not produce the support vectors (SVs) with the use 

of quadratic methods rather linear equations suffice. In this method, the input data is transferred to high 

dimensional space, and appropriate kernel functions and optimum kernel parameters are required to complete 

the computations. Also, the regularization parameter (γ) and the radial basis function (RBF) parameter (σ) 

are obtained by a pattern search algorithm followed by the leave one out cross-validation (LOOCV) 
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method.
35
  

K-nearest neighbors (KNN): K-nearest neighbors (KNN) method is a linear, non-parametric, supervised 

pattern recognition method, which is an uncomplicated, reliable classification method for unknown samples. 

These are divided into a training and an unknown sample sets prior to KNN analysis. The class of each of the 

k neighbours is known in the training set, and thus, the distance between an unknown sample and each of the 

training samples can be determined. Subsequently, each unknown sample will be classified into a class of k 

nearest neighbors, which belong to that class. The Euclidean distance and the correlation coefficient are the 

two criteria used for calculating the distances between samples, and the Euclidean distance is often adopted 

because variables are not strongly correlated in most cases.
36
 In this algorithm, k, is an odd number (e.g. 1, 3, 

5, 7 and 9), and influences the prediction rate. In general, an optimum k value is chosen by calculating the 

prediction and recognition rates with several k values.37  

 

3. Results and discussion  

3.1. Analysis of Flos Chrysanthemum samples with the use of GC data  

A set of GC data was collected from the GC-MS real time analysis chemstation in QGD data format. The 

data were transformed into text format after the total ion chromatograms (TIC) of all groups were integrated. 

The TICs of the four different Chrysanthemum cultivars (Fig. 1A) are very similar, although it is quite 

evident that the Taiju samples contain more volatile constituents than the other three cultivars. The basis for 

this observation may be that less essential oils volatilize from the Taiju flower buds during blossoming. Also, 

TIC data suggested that Taiju and Hangju results were similar; this probably occurs because the two cultivars 

belong to the same species. Thirty-five strong GC peaks of volatile compounds were identified by comparing 

their mass spectral patterns with those from the NIST (http://srdata.nist.gov/chemistry) online databases 

(Table 1). The main volatile compounds in the four Flos Chrysanthemum cultivars were: 

7-(1-Methylethylidene)bicycle[4.1.0]heptane (6), 2H-Benzocyclohepten-2-one,3,4,4a,5,6,7,8,9-octahydro- 

(10), Eucalyptol (14), 3,5-Heptadienal,2-ethylidene-6-methyl- (18), 2(1H)-Naphthalenone,octahydro-,trans 

(20), Isoborneol (22), Bicyclo[3.1.1]hept-2-en-4-ol,2,6,6-trimethyl-,acetate (25), 4,6,6-Trimethylbicyclo 

[3.1.1]hept-3-en-2-yl,acetate (26), Acetic acid,1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl,ester (27), 

Chrysanthenone (30), Benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl- (31), beta.-Sesquiphellandrene (33), 
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Bis(1-methyl-4-pentenyl)phthalate (34).  

Seventeen common peaks were found (numbered peaks, Fig. 1A), and their related compounds (%) were 

listed (Table 2). These results showed that the Gongju samples have a very high level of G9 (20, 

20.6%) and a relatively high level of G3 (6, 10.2%) compared with other Flos Chrysanthemum 

cultivars. Boju samples contain relatively low levels of G2 (5, 1.8%) and G5 (10, 1.4%) compared 

with other Flos Chrysanthemum cultivars. The G7 (14) compound makes a similar contribution to 

that found in the Gongju and Boju varieties, i.e., there are about 7.7% and 7.8% of the main volatile 

components, respectively - a little higher than those of Hangju and Taiju.  

The retention time shifts of the GC profiles were corrected and the text formated GC data were processed 

with the use of CASES (version 2004A) software. This program is applied for extracting common peaks 

from all samples. The similarities (parameters: similarity range, mean and relative standard deviation) 

between samples from the same class or samples from different classes (Table 3) indicated that the 

former have a higher mean similarity than the samples from different classes. However, the relative standard 

deviations of the sample profiles were somewhat higher irrespective whether the samples came from 

the same or different class.  

 

3.2. Interpretation of the reverse-phase HPLC results from Flos Chrysanthemum  

A data matrix containing the results collected from the Flos Chrysanthemum samples with the use of 

reversed-phase HPLC, was exported from the chemstation as an analytical instrument association (AIA) 

file; then, these data were imported into CASES in order to match any common peaks from all the samples 

and thus, investigate their similarities. The parameter values (similarity range, mean and relative 

standard deviation) of the similarities between the samples (Table 3) indicated that the sample profiles 

from the same class have a higher mean similarity than that of the samples from different classes. However, 

there were still several samples from different classes, which were quite similar. Thus, the conclusion is that 

it is difficult to discriminate the Flos Chrysanthemum samples according to their similarity values. Also, the 

relative standard deviations of the similarity values derived from the liquid chromatographic profiles 

of the samples, were lower than those from the GC profiles. This occurred irrespectively weather these 
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profiles were derived from the same or different classes. These results indicated that the LC profiles of 

the Flos Chrysanthemum samples were more stable. The HPLC fingerprints of the four kinds of different 

Chrysanthemum cultivar were compared (Fig. 1B), and it was evident that the chromatograms from Hangju, 

Taiju, Gongju and Boju samples were reasonably similar, but of the four sets of these well matching profiles, 

those from Taiju and Hangju samples were particularly alike, (Fig. 1B), e.g. chromatographic profiles from 

Hangju and Taiju had thirteen matched common peaks (numerically annotated).  

 

3.3. Extraction of variables from the two-dimensional fingerprints 

It was previously demonstrated that data, collected from different analytical instruments, is combined then 

classification of objects is improved.38 In this work, seventeen common GC peaks (76 × 17) and thirteen 

common LC peaks (76 × 13) were obtained after being processed by the CASES method. These data were 

normalized and combined to form a two dimensional data matrix. It has been suggested,
39
 that the selection 

of characteristic variables should follow the requirement that n (number of sample) / f (number of the 

characteristic variable) should be > 5. On this basis, reliable statistical results of feature extraction could be 

obtained. Thus, the combined data matrix was submitted for PCA and a loadings matrix was obtained. The 

resulting loadings biplot (Fig. 2) has circles to indicate the thirty variables, the position of which may be 

thought of in terms of vectors originating at the origin. Conventionally, the longest loadings vectors indicate 

the most important variables. In this work, such vectors are represented by the 14 outermost circles. These 14 

variables have significant roles in the discrimination of the four types of object, i.e. the four Chrysanthemum 

cultivars. The variables included six LC and eight GC characteristic peaks, and these 14 variables were 

utilized in the formation of a smaller data matrix (76 × 14), which was used for subsequent data analysis. 

 

3.4. Data analysis with the use of methods involving principal components 

PCA is a well-known qualitative method of data analysis including data from chromatographic fingerprints. 

Such analysis provides information regarding any relationships between objects, variables, and objects and 

variables. PCA results from the smaller data matrix (76 × 14) obtained from the four different 

Chrysanthemum cultivars, are displayed in Fig. 3. The first three PCs extracted from this matrix accounted 

for 80.36% of data variance: PC1 - 40.17%, PC2 - 29.13% and PC3 - 11.06% .The PC1–PC2 scores and 
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loadings biplot (Fig. 3A) accounted for 69.30% of data variance. When the objects with positive scores were 

projected onto PC1, the Gongju objects overlapped with the Boju ones, and L7, L10, L11, L12, L13, G7, G9, 

G15 and G16 vectors were associated with these objects, particularly the highlighted ones. The Hangju and 

Taiju samples spread out along PC1 with negative scores. Again, there is no clear separation of these two 

object groups, and the associated variables include: L9, G2, G5, G14 and G17, and only the G14 vector is 

rather short and weak. Thus, the Hangju and Taiju groups of samples are separated from the Gongju and the 

Boju ones on the basis of the variables noted above. Interestingly, when the objects were projected onto PC2, 

a better but still not quite complete separation of the four groups of cultivars was observed. Thus, the Gongju 

sample group with the highest positive PC2 scores, was followed by the Hangju and Taiju ones; these were 

compressed together around the origin, and these objects were followed by the Bosu group, which was well 

spread out with negative scores on this PC. However, the Hangju and Taiju samples were successfully 

separated along the PC3 axis of the PC1 vs. PC3 scores and loadings biplot (Fig. 3B). However, these two 

groups overlapped each other with negative scores on PC1. The other two groups, Gongju and Bosu, were 

also tightly grouped with positive scores on PC1. The same loadings vectors are responsible for these 

separations as in Fig. 3A, but they are differently positioned and their lengths are different as well. The three 

dimensional PCA scores plot - PC1 vs. PC2 vs. PC3, of the Flos Chrysanthemum samples (Fig. 3C) suggests 

that the four cultivar groups may be separated in this space. Thus, PCA provides useful, qualitative 

information regarding the objects, loadings and their inter-relationships. Also, a data matrix built from the 

PC1-PC3 scores would be sufficient to build quantitative models.   

Flos Chrysanthemum samples were also investigated with the use of the KPCA classification method (Fig. 4).  

The top three PCs explained 64.22% of the variance with PC1, PC2 and PC3 contributing 31.94%, 22.21% 

and 10.07%, respectively. When the three score plot diagrams (Fig. 4A, 4B and 4C) were compared with 

their counterparts in Fig. 3A, 3B and 3C, then on the whole, the distribution of the groups is more or less 

similar with one important difference - the groups appear to be somewhat better discriminated in the 

respective KPCA plane. While that is an important aspect of the KPCA method, the important advantage of 

the PCA model is that it allows for the exploration of the relationship between the sample groups and the 

variables. Consequently, the PCA method would be generally preferred, with the KPCA method being used 

to investigate the discrimination of very similar samples. 
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3.5. Pattern recognition 

Prediction modelling requires information from the analytes to build a calibration, validation and prediction 

data sets. In this work, the 76 Flos Chrysanthemum samples were divided into 51 randomly selected samples 

for calibration (10 Hangju, 10 Taiju, 17 Gongju and 14 Boju) and the rest 25 samples were used for 

prediction. Prediction models were built from the four pattern recognition methods, RBF-PLS, 

LS-SVM, LDA and KNN were used with the unknown Flos Chrysanthemum samples. Both, the PCA data 

matrix formed from the scores of the first three PCs, and the KPCA data matrix, formed from the 

scores of the first three KPCs, were used for four kinds of supervised pattern recognition model noted 

above. All of the four supervised pattern recognition models based on the two scores data matrices achieved 

recognition rates of 100% on the 51 calibration samples. For the prediction work, the Hangju, Taiju, 

Gongju and Boju data entries were labelled 1, 2, 3 and 4, respectively, and their prediction results were 

reported as integers (Table 4). However, the results for the RBF-PLS model were reported as non-integers. 

For these results, if the predicted value of a sample was in one of the following ranges: 1±0.3, 2 ±0.3, 3±0.3 

or 4 ±0.3, then, the sample could be placed into one of the following classes: Hangju, Taiju, Gongju or Boju, 

respectively; otherwise, the sample had to be considered as an outlier. The results (Table 4) demonstrated that 

RBF-PLS, LS-SVM, LDA and KNN methods performed well, i.e., based on the data for the four types of the 

Flos Chrysanthemum , the individual samples in the prediction group were correctly placed. This implies that 

the four cultivars concerned were well discriminated. Aside from this overall success, sample #66 (Boju) was 

detected as an outlier; this prediction was achieved with the use of the PCA-RBF-PLS and KPCA- RBF-PLS 

models. The fact this outlier was detected by these two models indicated that both the PCA and KPCA 

methods were capable of detecting unsuitable or outlier samples. Apart from that important feature selection, 

the results show that all four models, RBF-PLS, LS-SVM, LDA and KNN, are suitable for predicting 

unknown, different kinds of Flos Chrysanthemum cultivar sample.  

 

4. Conclusions 

The work described, has demonstrated that the combined use of GC and HPLC fingerprints, provide a means 

for detecting the many characteristic, chemical components that can be found in complex, important 
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substances such as the four kinds of Flos Chrysanthemum cultivar. The two-dimensional matrix, formed 

from the collected data, can be resolved by multivariate methods of data analysis. Thus, the qualitative 

methods such as PCA and KPCA, enabled the discrimination of the objects and apportionment of the 

chemical components present in the Flos Chrysanthemum cultivars from Hangju, Taiju, Gongju and Boju 

provinces. The PCA method was shown to be somewhat more effective than the KPCA one; it was able to 

model the objects and variables. Importantly, PCA indicated the characteristic, important variables for 

different sample groups.  The quantitative RBF-PLS, LS-SVM, LDA and KNN prediction models, all 

performed well for placing the cultivar objects into their correct groups of origin. Additionally, the prediction 

results from the four above methods, indicated that both PCA and KPCA were useful methods for data 

pretreatment prior to quantitative data analysis.  
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Table 1. Volatile components identified by GC-MS from Flos Chrysanthemum samples  

_______________________________________________________________________________________ 

Number Rt (min) Volatile components Formula Mol. weight Similarity 

_______________________________________________________________________________________ 

1 3.18 Hexanal C6H12O 100 88 

2 3.67 1,6-Dimethylhepta-1,3,5-triene C9H14 122 80 

3 3.88 5-tert-Butyl-1,3-cyclopentadiene C9H14 122 90 

4 5.47 alpha.-Phellandrene C10H16 136 92 

5 5.69 (3E)-2,7-Dimethyl-3-octen-5-yne C10H16 136 89 

6 6.13 7-(1-Methylethylidene) bicyclo[4.1.0] C10H16  136 92 

  heptane 

7 6.75 Bicyclo[2.2.1]heptane,  C10H16  136 88 

  7,7-dimethyl-2-methylene 

8 6.85 Linalyl n-propionate C13H22O2 210 83 

9 6.97 6-Methyl-5-heptene-2-one C8H14O 126 89 

10 7.19 2H-Benzocyclohepten-2-one, C11H16O 164 78 

  3,4,4a,5,6,7,8,9-octahydro-  

11 7.29 Psi-Cumene C9H12 120 85 

12 7.97 Terpinolen C10H16  136 93 

13 8.19 Benzene, 1-methyl-4- C10H14 134 90 

  (1-methylethyl)- 

14 8.47 Eucalyptol C10H18O 154 92 

15 9.28 alpha.- Terpinolen C10H16  136 91 

16 9.68 cis-.beta.-Terpineol C10H18O 154 90 

17 10.15 4,7,7-Trimethylbicyclo C10H16  136 88 

  [4.1.0]hept-2-ene  

18 11.42 3,5-Heptadienal, C10H14O 150 85 

  2-ethylidene-6-methyl-  

19 11.93 1,3,3-Trimethylcyclohex- C10H16O 152 88 

  1-ene-4-carboxaldehyde,(+,-)- 

20 12.32 2(1H)-Naphthalenone,  C10H16O 152 87 

  octahydro-, trans 

21 12.86 2(10)-pinen-3-one C10H14O 150 82 

22 13.21 Isoborneol C10H18O 154 88 

23 13.49 3-Cyclohexen-1-ol,  C10H18O 154 82 

  4-methyl-1-(1-methylethyl)-  

24 14.01 Terpineol C10H18O 154 86 
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25 15.19 Bicyclo[3.1.1]hept-2-en-4-ol, C12H18O2 194 90 

  2,6,6-trimethyl-,acetate  

26 16.15 4,6,6-Trimethylbicyclo C12H18O2 194 88 

  [3.1.1]hept-3-en-2-yl acetate  

27 17.13 Acetic acid, 1,7,7-trimethyl- C12H20O2 196 93 

  bicyclo[2.2.1]hept-2-yl ester 

28 18.07 1,5-Hexadiene, 2,5-dimethyl- C9H14 122 84 

  3-methylene- 

29 18.28 1,6-Dimethylhepta-1,3,5-triene C9H14 122 81 

30 20.44 Chrysanthenone  C10H14O 150 82 

31 23.73 Benzene, 1-(1,5-dimethyl- C15H22 202 93 

  4-hexenyl)-4-methyl- 

32 24.50 Cyclohexene C15H24 204 92 

33 24.96 beta.-Sesquiphellandrene C15H24 204 86 

34 26.58 Bis(1-methyl-4-pentenyl) C20H26O4 330 77 

  phthalate 

35 28.48 Juniper camphor C15H26O 222 83 

_______________________________________________________________________________________ 
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Table 2. Common, characteristic, volatile compounds in the four Flos Chrysanthemum cultivars (%)  

_______________________________________________________________________________________ 

No. Rt Identified  Hangju (%) Taiju (%) Gongju (%) Boju (%) 

 (min) compounds 

_______________________________________________________________________________________ 

G1 3.18 1a 3.5b (0.9-5.3c, 1.3d) 2.7 (0.9-5.1, 1.4) 5.6 (3.0-7.6, 1.2) 2.8 (1.1-6.2, 1.4) 

G2 5.69 5 4.9 (0.4-14.0, 3.2) 10.3 (6.8-15.6, 2.6) 9.7 (7.1-14.4, 2.1) 1.8 (0.2-9.9, 2.0) 

G3 6.13 6 1.6 (0.3-6.5, 1.5) 2.0 (0.3-4.4, 1.0) 10.2 (5.9-17.5, 3.2) 3.3 (0.9-8.0, 2.3) 

G4 6.75 7 1.0 (0.3-3.5, 0.8) 2.9 (1.1-5.3, 1.5) 1.0 (0.6-1.4, 0.2) 0.4 (0.1-1.4, 0.3) 

G5 7.19 10 9.6 (3.5-14.7, 3.3) 7.1 (4.1-11.6, 1.9) 3.9 (1.5-5.2, 1.0) 1.4 (0.3-3.0, 0.9) 

G6 7.97 12 1.6 (0.7-4.7, 1.0) 1.3 (0.8-2.2, 0.4) 1.6 (0.9-2.6, 0.4) 0.5 (0.2-1.6, 0.4) 

G7 8.47 14 1.2 (0.2-4.7, 1.1) 2.4 (1.1-6.2, 1.2) 7.7 (5.1-11.3, 1.6) 7.8 (4.1-11.0, 2.1) 

G8 9.28 15 1.7 (0.8-5.0, 1.0) 1.6 (1.0-2.6, 0.5) 1.6 (0.9-2.8, 0.4) 0.3 (0.1-0.6, 0.1) 

G9 12.32 20 5.3 (1.1-14.0, 3.6) 2.4 (1.0-8.0, 1.9) 20.6 (15.0-26.3, 3.2) 7.5 (2.6-18.0, 4.6) 

G10 13.21 22 2.3 (1.2-4.5, 0.9) 5.2 (2.3-7.6, 1.2) 3.4 (1.9-5.3, 0.8) 1.1 (0.5-1.7, 0.3) 

G11 15.19 25 2.1 (0.4-8.9, 2.3) 0.6 (0.2-1.0, 0.2) 1.2 (0.2-3.8, 0.9) 0.9 (0.4-1.7, 0.3) 

G12 17.13 27 1.4 (0.5-2.9, 0.7) 2.6 (1.3-3.7, 0.8) 1.6 (0.7-2.2, 0.4) 0.5 (0.2-1.4, 0.3) 

G13 20.44 30 1.0 (0.4-2.4, 0.6) 0.6 (0.1-1.2, 0.3) 0.9 (0.2-2.2, 0.6) 0.5 (0.1-1.1, 0.2) 

G14 23.73 31 3.9 (1.9-7.4, 1.3) 5.4 (3.1-7.6, 1.6) 2.5 (1.5-4.2, 0.7) 5.4 (1.2-9.6, 2.7) 

G15 24.50 32 0.6 (0.2-1.1, 0.3) 0.8 (0.5-1.2, 0.2) 0.6 (0.2-1.1, 0.2) 1.7 (0.3-3.9, 1.0) 

G16 24.96 33 1.4 (0.7-2.3, 0.4) 2.0 (0.9-3.3, 0.6) 1.3 (0.3-2.2, 0.5) 4.6 (1.2-8.8, 2.4) 

G17 26.58 34 16.9 (12.2-25.8, 4.1) 8.0 (4.1-11.9, 2.8) 10.7 (4.5-16.0, 2.9) 8.2 (4.2-14.7, 3.2) 

_______________________________________________________________________________________ 

a. Numbers identifying the volatile components in the Flos Chrysanthemum samples in Table 1. 

b, c and d. Average content (%), content range and standard deviation of each volatile component in all the 

Flos Chrysanthemum samples belonging to the same cultivar, respectively. 
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Table 3. Similarity of gas chromatograms and HPLC chromatograms of all Flos Chrysanthemum samples 

——————————————————————————————————————————— 

Flos Chrysanthemum Hangju Taiju Gongju Boju 

——————————————————————————————————————————— 

Gas chromatograms 

Hangju 0.510-0.948a 0.362-0.896 0.318-0.834 0.252-0.760 

 (0.772
b
, 0.137

c
) (0.659, 0.181) (0.592, 0.181) (0.492, 0.211) 

Taiju  0.577-0.973 0.430-0.739 0.272-0.756  

  (0.821, 0.129) (0.572, 0.116) (0.482, 0.212) 

Gongju   0.817-0.992 0.350-0.808 

   (0.953, 0.032) (0.576, 0.196) 

Boju    0.380-0.865 

   (0.602, 0.176) 

HPLC chromatograms 

Hangju 0.694-0.994
a
 0.643-0.978 0.433-0.857 0.594-0.871 

 (0.856b, 0.090c) (0.824, 0.068) (0.759, 0.104) (0.758, 0.076) 

Taiju  0.723-0.987 0.514-0.845 0.562-0.838  

  (0.832, 0.082) (0.752, 0.076) (0.753, 0.076) 

Gongju   0.769-0.999 0.496-0.876 

   (0.922, 0.049) (0.755, 0.085) 

Boju    0.832-0.992 

    (0.920, 0.033) 

——————————————————————————————————————————— 

a. Similarities between the two samples.  

b. Mean of all similarities of the samples. 

c.
 
Relative standard deviation of all the similarities among the samples.  
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Table 4. Prediction results of 25 samples. PCA and KPCA scores data matrices related to the first three 

principal components, and then processed separately by four supervised pattern recognition models  

_____________________________________________________________________________________ 

Sample Classa PCAb  KPCAc 

  ______________________________ _______________________________ 

  RBF-NN LS-SVM LDA KNN RBF-NN LSSVM LDA KNN 

_____________________________________________________________________________________ 

4 1 0.971 1 1 1 1.048 1 1 1  

8 1 1.063 1 1 1 1.123 1 1 1 

12 1 0.952 1 1 1 0.936 1 1 1 

13 1 1.116 1 1 1 1.190 1 1 1 

15 1 0.975 1 1 1 0.916 1 1 1 

20 2 2.217 2 2 2 2.260 2 2 2 

25 2 2.101 2 2 2 1.770 2 2 2 

27 2 2.065 2 2 2 2.053 2 2 2 

28 2 2.264 2 2 2 2.263 2 2 2 

29 2 1.884 2 2 2 1.830 2 2 2 

33 3 3.001 3 3 3 3.000 3 3 3 

34 3 3.001 3 3 3 3.000 3 3 3 

39 3 3.005 3 3 3 3.000 3 3 3 

41 3 3.007 3 3 3 3.000 3 3 3 

42 3 2.997 3 3 3 3.000 3 3 3 

44 3 3.004 3 3 3 3.000 3 3 3 

48 3 3.002 3 3 3 3.000 3 3 3 

51 3 3.010 3 3 3 3.004 3 3 3 

62 4 3.955 4 4 4 4.107 4 4 4 

63 4 4.039 4 4 4 4.030 4 4 4 

66 4 4.348 4 4 4 4.856 4 4 4 

67 4 4.009 4 4 4 3.988 4 4 4 

68 4 4.041 4 4 4 4.020 4 4 4 

70 4 4.032 4 4 4 4.026 4 4 4 

75 4 3.936 4 4 4 3.903 4 4 4 

Prediction Rate 96% 100% 100% 100% 96% 100% 100% 100% 

_______________________________________________________________________________________ 

a. The number of 1, 2, 3 and 4 represented Hangju, Taiju, Gongju and Boju, respectively.  

b. Parameters of models based on PCA score data matrix. RBF-NN model parameters: mean squared error 

goal = 10-5, spread of radial basis functions = 1, maximum number of neurons = 100 and number of neurons 
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to add between display = 1; Optimal parameter for LS-SVM model: γ = 4.4897 and σ2 = 1.0089; Number 

of nearest neighbor for KNN was 1.   

c. Parameters of models based on KPCA score data matrix. RBF-NN model parameters: mean square error 

goal = 10
-7
, spread of radial basis functions = 1, maximum number of neurons = 50 and number of neurons to 

add between displays = 1; Optimal parameter for LS-SVM model: γ=0.472 and σ
2
=0.5155; Number of 

nearest neighbor for KNN was 1. 
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Captions 

Fig 1. Representative (A) GC-MS total ion chromatograms with seventeen common characteristic peaks, and 

(B) HPLC chromatograms with thirteen common characteristic peaks of four kinds of Flos Chrysanthemum 

cultivars, Hangju, Taiju, Gongju and Boju.  

Fig. 2. Loadings plot of PCA projection analysis of peak areas for thirty common characteristic compounds 

present in 76 Flos Chrysanthemum samples. Circles: thirty characteristic constituents (variables); Outermost 

circles: the chosen characteristic variables (total 14). 

Fig. 3. PCA plot of (A) PC1 - PC2, (B) PC1 - PC3 and (C) PC1 - PC2 - PC3 of compressed data matrix (76 

samples × 14 variables).   

Fig 4. Score plot of KPCA projection analysis of (A) KPC1-KPC2, (B) KPC1-KPC3 and (C) 

KPC1-KPC2-KPC3 of the compressed data matrix (76 samples × 14 variables).   
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Figure 1. 
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Figure 2 
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Figure 3  
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Figure 4  
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