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Abstract 

The correct diagnosis and the prompt treatment of oral leukoplakia (OLK) can efficiently prevent OLK 

from undergoing malignant transformation to oral squamous cell carcinoma (OSCC). However, the 

diagnostic model in distinguishing normal mucosa from low-grade dysplasia as well as high-grade 

dysplasia from OSCC could not be better established in previous study. In this study, the characteristic 

wavenumbers in the Raman spectra were firstly identified by the variable selection methods. Then, the 

intensities at these wavenumbers were used to classify the biopsies. As results, the accuracies achieved 

by using the intensities at the characteristic wavenumbers were 70.5% and 94.0% for the classification 

of normal vs. low-grade dysplasia and high-grade dysplasia vs. OSCC, respectively, which were greater 

than those (accuracy = 65.4% and 88.0%, respectively) using all the intensities in the Raman spectra. 

Our results suggested constructing the diagnostic models with the intensities at the characteristic 

wavenumbers can improve the identification of the different lesions of oral mucosa. Moreover, most of 

the Raman intensities for predicting normal vs. low-grade dysplasia indicated the transformation from 

normal mucosa to low-grade dysplasia was associated with the changes in the contents of the lipids, 

while most of intensities for predicting high-grade dysplasia vs. OSCC indicated that the 

transformation from high-grade dysplasia to OSCC was associated with the changes in the contents of 

proteins and nucleic acids. Our findings can be helpful for diagnosing the various grades of OLK with 

dysplasia and understanding the molecular mechanisms of the potential malignant transformation of 

oral leukoplakia. 

 

Keywords: Oral leukoplakia; Squamous cell carcinoma; Near-infrared Raman spectroscopy; Random 

forest; Logistic regression 
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1. Introduction 

Oral leukoplakia (OLK) is defined as “A white plaques of questionable risk having excluded 

(other) known diseases or disorders that carry no increased risk for cancer”
1 and is one of the most 

common disease of oral mucosa. Moreover, it is well known that OLK is the most common 

precancerous lesion of the oral mucosa with a higher tendency of malignant transformation to oral 

squamous cell carcinoma (OSCC)
2-5

. The development of OLK in potential malignant transformation is 

through a multistep process followed by varying grades of oral dysplasia
6, 7

. The presence of oral 

dysplasia may be a significant predictor for malignant transformation of oral leukoplakia. In addition, 

there is a general agreement that high-grade dysplasia have significantly higher malignant incidence 

than low-grade dysplasia
8, 9

. Therefore, the correct detection of various grades of oral dysplasia is a 

high priority for reducing malignant transformation. 

However, the histological features of various grades of dysplasia are not always significantly 

different, and the exact mechanism of malignant transformation is still unknown. The low-grade 

dysplasia in oral leukoplakia cannot be easily diagnosed because there is no significant difference in 

pathological manifestation between low-grade dysplasia and normal mucosa. In the same time, 

high-grade dysplasia has a strong tendency of malignant transformation and the pathological 

manifestations in the tissue are similar to those in the OSCC. The histological investigation of 

high-grade dysplasia in oral leukoplakia could be easily misdiagnosed as the carcinoma lesion
10

. So, it 

is an important issue to accurately diagnose the grades of oral dysplasia. Nowadays, researchers and 

pathologists are eager to discover the exact mechanisms of malignant transformation in OLK and hope 

to build diagnostic models of OLK and OSCC effectively. 

The gene expression signatures have the functional relevance to cancers. In recent years, several 

researches have been carried out for revealing the prognostic markers and building diagnostic models 

of OLK and OSCC based on the gene expression data. Mario et al. measured the expression levels of 

ATP6V1C1 in OSCC patients and the healthy persons, and used this gene as a prognostic marker to 

discriminate the OSCC and normal mucosa
11

. Chang et al. investigated the pathogenetic implications 

of miR-211 in oral carcinogenesis
12

. They found the high expression level of miR-211 was associated 

with the most advanced nodal metastasis, vascular invasion, and poor treatment outcomes of OSCC. 

Tang et al. evaluated the changes of expression levels of six well-documented long non‑coding RNAs 
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(lncRNAs) that associated with cancer in saliva samples obtained from OSCC patients and suggested 

that lncRNAs in saliva can be used as potential diagnostic markers for OSCC diagnosis
13

. Although the 

gene biomarkers were continuously discovered for diagnosing the OSCC, it still lacks a diagnostic 

model to discriminate the grades of dysplasia in OLK. 

The occurrence of malignant transformation is usually caused by the changes in the contents of 

biomolecules, such as nucleic acids, proteins, lipids and carbohydrates. These changes can provide an 

opportunity for spectrometer to capture the characteristics involved in the pathological manifestation of 

biological samples. The vibrational spectroscopy techniques can capture the molecular fingerprint of 

specific molecular structures and conformations of biomolecules in tissue samples. For the last few 

years, Raman spectroscopy and NIR spectroscopy have been successfully used in cancer and 

pre-cancer researches, such as the diagnoses of premalignant and malignant tumor in epithelial 

tissues
14-16

, stomach
17-19

, brain
20

, oral
21-23 

and skin
24, 25

. Meanwhile, various algorithms in chemometrics, 

such as uninformative variable elimination (UVE), Monte Carlo based UVE (MC-UVE), 

randomization test (RT), Bayesian variable selection, variable importance projection (VIP), locally  

linear  embedding （LLE）26-32
, have been widely applied to the measured Raman and NIR spectra for 

selecting characteristic wavenumbers and building the diagnostic models. In our previous works
33

, we 

established diagnostic models by using the Raman spectra generated by Fourier transform near-infrared 

(FT-NIR) Raman spectrometer. The diagnostic models performed well in discriminating normal 

mucosa from OLK and OSCC. However, the normal versus the low-grade dysplasia as well as the 

high-grade dysplasia versus OSCC cannot be accurately classified because of the high similarity of the 

Raman spectra of the biopsies in these two compared groups. In current study, for the purpose of 

improving the model performance, we firstly identified the characteristic wavenumbers, for which the 

Raman intensities were significantly different between the compared biopsies. Then, the intensities at 

the characteristic wavenumbers were used as features to construct the predictive models. Two variable 

selection methods, namely, ReliefF and OneR, were used to evaluate the importance of the spectral 

wavenumbers, and two classification algorithms, namely, Random Forest and Logistic Regression, 

were used to classify the two groups of compared tissues. As results, depending on the characteristic 

wavenumbers, we can not only discriminate the normal mucosa from the low-grade dysplasia with 

accuracy of 70.5% for testing set, but also discriminate high-grade dysplasia from OSCC with accuracy 

of 94.0% for testing set. Moreover, we found the transformation from the normal tissues to the 
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low-grade dysplasia was associated with the changes in lipids. The intensity at spectral wavenumber 

ranged from 300 to 600 cm
-1

 of normal mucosa was higher than those of low-grade dysplasia, which 

indicated the lipids may mainly dominate in normal oral mucosa tissues. The transformation from the 

high-grade dysplasia to the OSCC was associated with the changes in collagens and nucleic acids. 
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2. Materials and methods 

2.1 Tissue samples 

Tissue samples were collected from the West China Hospital, Sichuan University. 63 patients 

clinically diagnosed with OLK with dysplasia or OSCC participated in the present research. The 

detailed information of patients was shown in Table 1. Diagnoses were carried out by experienced 

pathologists according to the 2005 World Health Organization (WHO) histological classification
34

. All 

patients did not receive any treatment before biopsy and were without a history of drug abuse or 

systemic diseases. All patients preoperatively signed an informed consent and permitted the use of the 

tissues for research. Our study followed the Declaration of Helsinki protocols and was approved by our 

Institutional Review Board. 

The normal samples of twenty-three patients were obtained from the surgical margin in the tumor 

surgery, or from the excess mucosa in the trauma or orthognathic surgery, which were confirmed by 

experienced pathologists. All samples were fixed by 10% formalin and embedded in paraffin. Five 

parallel 5 µm formalin-fixed paraffin preserved (FFPP) sections were cut from each block using a 

microtome, and one of them was selected randomly to be mounted on glass slides, dewaxed and stained 

with hematoxyline-eosin (HE) as the reference section for pathological verification. Another 10 µm 

FFPP sections were cut from each block using a microtome, and one of them was selected randomly to 

be mounted on custom CaF2 chips, dewaxed and air-dried as the Raman spectral sections for Raman 

spectral investigations. All the tissue sections were characterized by the pathologist from the 

Department of Pathology, West China Hospital of Stomatology, Sichuan University. More details about 

the methods of dealing with tissue samples have been published previously
33

. 

 

 
2.2 Raman spectrometer 

A Nicolet Nexus 670 Raman spectrometer (Thermo Nicolet Co., USA) was used with a Nd:YAG 

laser performing at 1064 nm as a excitation light source. The Nd:YAG laser power detecting the sample 

was maintained at 1000 mW and the spectrum ranged from 98 to 2000 cm
-1

, which involved a total of 

494 spectral wavenumbers. The spectrometer resolution was 8 cm
-1

. The spectra were recorded with 

256 scans. Baseline correction was executed by OMNIC for Raman 6.0 software (Nicolet). Finally, a 

total of 128 spectra were obtained from different biopsies by spectroscopic examination, including 45 
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spectra from normal mucosa tissue sections, 33 spectra from low-grade dysplasia tissue sections, 31 

spectra from high-grade dysplasia sample tissue sections and 19 spectra from OSCC tissue sections 

(Table 1). 

 

2.3 Feature extraction algorithms 

In this study, the quality of the features (the Raman intensities at 494 spectral wavenumbers) was 

evaluated by two feature evaluators, namely OneR and ReliefF. This kind of evaluators will give a 

score to each of the features, which indicates how well the predictive model discriminate the samples 

by using this feature. All the features were ranked by the scores in descending order and the top n 

features were used to construct the predictive models. The feature evaluation was conducted in 

WEKA
35 

environment in version 3.6.8 with the packages named “ReliefFAttributeEval” and 

“OneRAttributeEval”. 

 

2.3.1 OneR 

OneR
36

 can evaluate the importance of a feature by inspecting the prediction error, which is 

obtained by classifying the samples with this feature and counting the number of incorrectly classified 

samples. The smaller the error is, the more important the feature is. All the features will be tested and 

ranked by the errors in ascending order. In our study, we used the top n features (n=1, 2, 3, ..., the 

number of features) to construct the predictive models in training procedure and chose the best subset 

of features to build the models in validation procedure. 

 

2.3.2 ReliefF 

Relief
37

,
 
which was developed by Kira and Rendel, is proved to be an efficient feature evaluator. A 

basic idea of the original Relief algorithm is to estimate the quality of features according to how well 

their values can discriminate the differences between the samples. Kononenko et al. improved Relief 

algorithm and developed ReliefF
38, 39

. Given a dataset of m samples (S = {s1,s2,…,sm}) and n features (A 

= {a1,a2,…,an}), ReliefF separately searches for k nearest neighbours (k was set to 10 in current study) 

for each of the samples from the same class (Hj denotes the selected neighbours in the same class, 

where j = 1,2,…,k) and from the different class (Mj denotes the neighbours in different class). The initial 

weights W(A)0 are set to zero for all the features. The weight W[a] for the lth feature will be updated by 
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using the following equations: 

  
l l l l

k k

l l i,a j,a i,a j,a
j=1 j=1

W(a ) = W(a ) - diff(s , H ) / (m k) + diff(s , M ) / (m k)   （1) 

Function 
l l

i,a j,a
diff(s , H )  calculates the difference of the lth feature between the ith sample 

and the jth neighbour in the same class. Function 
l l

i,a j,a
diff(s , M )  calculates the difference of the 

lth feature between the ith sample and the jth neighbour in the different class. They are defined as: 

i j

l l

s ,l h ,l

i,a j,a

| a - a |
diff(s , H ) =

max(A) - min(A)
                                             (2) 

i j

l l

s ,l m ,l

i,a j,a

| a - a |
diff(s , M ) =

max(A) - min(A)
                    

                         (3) 

Where the max(A) is the largest value of features and the min(A) is the smallest value of features. 

i
s ,l

a  is the value of the lth feature for the ith sample. 
i

h ,l
a  is the value of the lth feature for the jth 

sample in the same class. 
jm ,l

a  is the value of the lth feature for the jth sample in the different class. 

All the processes have been repeated for m times. Eventually, the weights W(a) for all the features were 

calculated and applied to determining the importance of the features. The larger the weight of a feature 

is, the more important the feature is. 

 

Likewise, ReliefF were used to estimate the quality of a total of 494 spectral wavenumbers 

(features) in current study and generate the ranked lists for the spectral wavenumbers according to their 

importance. We chose the top n features, with which the models can achieved the best prediction results 

in training procedure, to construct the diagnostic models. ReliefF and OneR were employed in WEKA 

environment in version 3.6.8 with the packages named “ReliefFAttributeEval” and 

“OneRAttributeEval”, respectively. 

 

2.4 Predictive model construction 

In our study, two classification algorithms, namely Random Forest and Logistic Regression, were 

used to build the diagnostic models. The model construction was conducted by using WEKA 3.6.8. For 

the purpose of selecting the suitable classification algorithms for the two compared groups, we firstly 

Page 8 of 27Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



9 

 

used both two algorithms to discriminate the grades of oral dysplasia with the full spectrum as features. 

The predictive models were validated by leave-one-out cross-validation (LOOCV). Then, we chose a 

suitable variable selection method for the classification of normal vs. low-grade dysplasia and 

high-grade dysplasia vs. OSCC to identify the characteristic wavenumbers, for which the intensities 

were used as features to build the models. In this procedure, the models were validated by 5-fold 

cross-validation. Finally, the diagnostic models were constructed by using the optimal variable 

selection method and classification algorithm, and validated by LOOCV. The prediction accuracy 

(ACC), sensitivity (SEN), specificity (SPE) and Mathew’s correlation coefficient (MCC) were 

considered as the performance metrics and calculated via: 

TP + TN
ACC =

TP + TN + FN + FP
                                                 (6) 

TP
SEN =

TP + FN
                                                             (7) 

TN
SPE =

TN + FP
                                                              (8) 

))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC






                             (9) 

where TP, FP, TN and FN denote the number of true-positive, false-positive, true-negative and 

false-negative, respectively. 

 

2.4.1 Random Forest 

The random forest algorithm
40 

is an ensemble classification method, which is widely applied to 

classification owing to its robustness against overfitting and good tolerance to outliers and noise. The 

key idea of the random forest is to improve the performance of the ensemble classification via majority 

voting to perform prediction. Ntree and Mtry are two parameters in the random forest algorithm, which 

determines the number of individual trees and the number of features that are randomly selected for 

each of the trees, respectively. We set Ntree at 10 and Mtry at log2N+1 by default in WEKA to grow the 

ensemble trees, where N is the number of features in the dataset. Each of the trees is grown to the 

largest extent possible, without pruning according to the CART methodology
41, 42

. 

 

Page 9 of 27 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



10 

 

2.4.2 Logistic Regression 

The logistic regression algorithm
43

 is described as follows: 

 
   

t

-t t
e1f t = P(Y = 1 | x) = =

1 + e 1 + e
                            (4) 

  
0 1 1 2 2 n n

t = b + b x + b x + + b x                                               (5) 

Where f(t)  is the probability of an event occurring and varies from 0 to 1. In current study, Y is 

a binary variable representing the positive sample (defined as 1) or the negative sample (defined as 0). t 

is the linear combination of features. b0 denotes the intercept for model. {b1, …, bn} are the partial 

regression coefficients. {x1,…, xn} are the independent spectral features. b0 and a series of regression 

coefficients can be estimated by using the training set. 
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3. Results 

3.1 Subtracted mean spectra 

A total of 128 spectra were collected from the tissue samples, including 45 Raman spectra from 

normal mucosa, 33 from low-grade dysplasia, 31 Raman spectra from high-grade dysplasia, and 19 

from OSCC. The predictive models were constructed to discriminate the normal mucosa from the 

low-grade dysplasia tissue (normal vs. low-grade dysplasia) and discriminate the high-grade dysplasia 

tissue from OSCC (high-grade dysplasia vs. OSCC). Fig. 1 showed the Raman spectra of four types of 

tissues in these two compared groups. The mean spectra of four types of tissues were calculated and the 

subtracted mean spectra of the two compared groups were shown in Fig. 2. The main differences in the 

subtracted spectra between the normal mucosa and the low-grade dysplasia were located in the region 

ranged from 300 to 600 cm
-1

 (Fig. 2A), while the differences between the high-grade dysplasia and 

OSCC were located in the region ranged from 700 to 1100 cm
-1

 (Fig. 2B). 

 

3.2 Constructing diagnostic models for tissue classification 

For the comparisons of normal vs. low-grade dysplasia and high-grade dysplasia vs. OSCC, The 

diagnostic models were separately constructed by using random forest and logistic regression with all 

the Raman intensities, and validated by leave-one-out cross-validation (LOOCV). The prediction 

results were listed in Table 2. For the classification of normal vs. low-grade dysplasia, the random 

forest algorithm performed better (accuracy = 65.4%) than the logistic regression algorithm (accuracy 

= 48.7%), while for the classification of high-grade dysplasia vs. OSCC, the logistic regression 

algorithm is better (accuracy = 88.0% and 74.0% for the logistic regression algorithm and the random 

forest algorithm, respectively). Therefore, in the subsequent analysis, we used the random forest 

algorithm to discriminate normal mucosa from low-grade dysplasia and used the logistic regression 

algorithm for the discrimination of high-grade dysplasia vs. OSCC. 

In order to improve the performance of models, two variable selection methods, namely OneR and 

ReliefF, were involved in our study to evaluate the importance of the features and only the intensities at 

the characteristic wavenumbers were used to build the models. For each of the comparison groups, both 

two variable selection methods were applied to identifying the characteristic wavenumbers and the 

prediction results with the intensities at the characteristic wavenumbers were listed in Table 3. When 
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discriminating the normal mucosa from the low-grade dysplasia, constructing the models with the 

features selected by OneR performed better (accuracy = 82.5%) than that with the features selected by 

ReliefF (accuracy = 72.4%). With regard to the classification of high-grade dysplasia vs. OSCC, it is 

better to construct the models with the features selected by ReliefF (accuracy = 94.7% and 89.3% for 

ReliefF and OneR, respectively). Consequently, we build the diagnostic model for the classification of 

normal vs. low-grade dysplasia by using the random forest algorithm combined with OneR, while build 

the model for the classification of high-grade dysplasia vs. OSCC by using the logistic regression 

algorithm combined with ReliefF. The models were validated by using LOOCV. The prediction results 

achieved by the diagnostic models were listed in Table 4. Compared with the prediction results 

achieved by the diagnostic models that were constructed with all the Raman intensities (Table 2), the 

accuracies achieved by the models constructed with the intensities at the characteristic wavenumbers, 

which were 70.5% and 94.0% for the classification of normal vs. low-grade dysplasia and high-grade 

dysplasia vs. OSCC, respectively, were higher than those listed in Table 2. 

For the purpose of investigating the characteristic wavenumbers that were suitable for model 

construction, we counted the frequency for each of the wavenumbers, for which the intensity was 

involved in the cross-validation procedures as feature for models construction (Fig. 3). For the 

classification of normal vs. low-grade dysplasia, the wavenumbers with the frequency > 60 were 

mainly located in the region ranged from 300 to 600 cm
-1

 (Fig. 3A). For the classification of high-grade 

dysplasia vs. OSCC, the wavenumbers with the frequency > 45 were mainly located in the region 

ranged from 700 to 1100 cm
-1

 (Fig. 3B). 
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4. Discussion 

In the diagnosis of oral leukoplakia, it is important to grade oral lesions accurately for a proper 

treatment strategy. The near-infrared Raman spectra could reflect the vibrational modes of functional 

groups of the biomolecules in biological samples, and could be used for the diagnosis of oral diseases. 

In the previous study, our diagnostic models achieved the satisfied results in discriminating the normal 

mucosa from OLK and OSCC when using all the Raman intensities as features. However, the 

performance of the diagnostic model in discriminating the normal mucosa from the low-grade 

dysplasia in OLK as well as the high-grade dysplasia in OLK from OSCC is poor. In current study, we 

tried to improve the predictive models by using the Raman intensities at the characteristic 

wavenumbers as features. The prediction results showed that the diagnostic models constructed with 

intensities at the characteristic wavenumbers performed better than those constructed with all the 

intensities. The accuracies achieved by our improved models were 70.5% and 94.0% (Table 4) for the 

classification of normal vs. low-grade dysplasia and high-grade dysplasia vs. OSCC, respectively, 

which were higher than those achieved by the models constructed with all the intensities (accuracy = 

65.4% and 88.0% for the classification of normal vs. low-grade dysplasia and high-grade dysplasia vs. 

OSCC, respectively). Our results indicated that it can efficiently improve the performance of the 

models by using the intensities at the characteristic wavenumbers as features. 

In the subsequent analysis, we counted the frequency for each of the wavenumbers, for which the 

intensity was selected as feature to build the models in the LOOCV procedures. The results showed 

that most of the selected wavenumbers with high frequency (frequency > 60) were located in the region 

ranged from 300 to 600 cm
-1

 (Fig. 3A) when discriminating the normal tissue from the low-grade 

dysplasia, while the selected wavenumbers (frequency > 45) were mainly located in the region ranged 

from 700 to 1100 cm
-1

 (Fig. 3B) when discriminating the high-grade dysplasia from OSCC. It can also 

be seen that the characteristic wavenumbers identified by the variable selection algorithms for the two 

compared groups were located in the peaks of the subtracted mean spectra (Fig. 2). 

For the classification of normal vs. low-grade dysplasia, the characteristic wavenumbers fell in the 

region ranged from 300 to 600 cm
-1

, which was attributed to C-C bending vibration within aliphatic 

chains. The characteristic wavenumber of 1309 cm
-1

 corresponded to the CH3/CH2 wagging, twisting or 

blending mode of lipids
44

, and the characteristic wavenumber of 1452 cm
-1

 corresponded to CH2 
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blending vibration of lipids (Fig. 2A)
45

.
 
Therefore, it can be inferred that, to a certain extent, 

biomaterial changes in the tissues were usually associated with the content of lipid when normal tissue 

transformed into low-grade dysplasia, in which the lipid would help less in cell’s proliferation. For the 

classification of high-grade dysplasia vs. OSCC, the characteristic wavenumbers fell in the regions 

ranged from 800 to 990 cm
-1

and from 1010 to 1100 cm
-1

, which were associated with the changes of 

the content of collagen. In addition, the peaks in the region ranged from 1080 to 1100 cm
-1

 were 

dominated by the contributions of lipids, nucleic acids, proteins and carbohydrates
45

. The characteristic 

wavenumbers at 727, 1032, and 1124 cm
-1

 corresponded to C-C stretching, twisting and bending of 

collagen
46-48

. The wavenumbers at 727, 731, 746, 766, 1055, 1078, 1080, 1120 and 1336 cm
-1

 

corresponded to Uracil, Cytosine and Thymine ring breathing mode of DNA/RNA, O-P-O backbone 

symmetric stretching and CH2 rocking of nucleic acids
45, 46, 49

. The wavenumbers at 1070, 1078, and 

1124 cm
-1

 were the C-C, C-O skeletal transconformation of acyl backbone in lipid
44, 50, 51

.
 
The 

wavenumber at 1082 cm
-1

 was the characteristic carbohydrate corresponded to C-C stretching of 

glycogen and at 1105 cm
-1 

was Carbohydrates peak for solutions
52

 (Table 5). It can be inferred that 

during the malignant transformation from high-grade dysplasia into OSCC, the genetic materials have 

been activated and the corresponding molecular signaling pathways have been impacted, which result 

in the changes in the content of proteins in OSCC. Note that the accuracy for discriminating the normal 

tissues from low-grade dysplasia was lower than that for the classification of high-grade dysplasia vs. 

OSCC. The main reason is that the contents of biomolecules changed slightly when the transformation 

occurred from the normal tissues to the low-grade dysplasia. In order to further improve the predictive 

accuracy, more information is needed for the model construction. 
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5. Conclusions 

In this study, we developed the predictive models for diagnosing the various grades of oral 

leukoplakia by using the intensities at the characteristic wavenumbers as features. Our results 

suggested that it can efficiently improve the performance of the predictive models in the classifications 

of the normal vs. low-grade dysplasia as well as high-grade dysplasia vs. OSCC by using the intensities 

at the characteristic wavenumbers instead of all the intensities as features. Moreover, the characteristic 

wavenumbers revealed the potential mechanisms of the transformations from the normal tissue to the 

low-grade dysplasia and from the high-grade dysplasia to OSCC at the molecular levels. Our findings 

can be helpful for understanding the molecular mechanisms of potential malignant transformation of 

oral leukoplakia. 
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Figures 

Figure 1 - The Raman spectra of four subclasses of normal tissue, the 

low-grade dysplasia, the high-grade dysplasia and OSCC. The comparison of 

Raman spectra between A) normal tissues and the low-grade dysplasia tissues, and B) 

The comparison of Raman spectra between the high-grade dysplasia tissues and 

OSCC tissues. For clarity, we randomly picked 10 spectra for each of the subclasses. 

Figure 2 - The subtracted mean spectra and the characteristic wavenumbers 

selected for the diagnostic model construction. The subtracted mean spectra of A) 

the normal vs. the low-grade dysplasia, and B) The high-grade dysplasia vs. OSCC. 

The black sold line is the subtracted spectra and the red circles indicate the position of 

the characteristic wavenumbers. 

Figure 3 - The frequencies of the wavenumbers selected as features in the 

model construction procedures. The frequencies of the wavenumbers selected as 

features in classification of A) the normal vs. the low-grade dysplasia, and B) the 

high-grade dysplasia vs. OSCC. The radius of the circle indicates the frequency and 

the bars indicate the frequencies of the wavenumbers selected in the predictive models. 

The red bars indicates the frequencies that are above the given threshold, which were 

set to 60 and 45 for the classification of normal vs. low-grade dysplasia and 

high-grade dysplasia vs. OSCC, respectively. 
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Tables 

Table 1. The detailed of patients and the number of Raman spectra 

Case information Normal 

Low-grade 

dysplasia 

High-grade 

dysplasia 

OSCC 

All  patients 23 16 14 10 

Age 
Range 28~54 

years 

Range 31~54 

years 

Range 32~56 

years 

Range 29~55 

years 

 Median 41 years Median 43 years 
Median 41.5 

yaers 
Median 42 years 

Gender Male 11 7 6 5 

 Female 12 9 8 5 

Primary site Tongue 10 8 7 6 

 Bucca 13 8 7 4 

Raman spectra 45 33 31 19 
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Table 2. The prediction results of normal vs. low-grade dysplasia and high-grade dysplasia vs. 

OSCC with all the intensities in Raman spectra as features. 

Groups Algorithms SEN SPE ACC MCC 

Normal vs. Low-grade 

dysplasia 

Random Forest 80.0% 45.5% 65.4% 0.273 

Logistic Regression 57.8% 36.4% 48.7% 0.0591 

High-grade dysplasia 

vs. OSCC 

Random Forest 80.6% 63.2% 74.0% 0.443 

Logistic Regression 93.5% 79.0% 88.0% 0.743 
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Table 3. Prediction results of normal vs. low-grade dysplasia and high-grade dysplasia vs. OSCC 

when using the intensities at the characteristic wavenumbers identified by two variable selection 

methods. 

Groups Algorithms SEN SPE ACC MCC 

Normal vs. Low-grade 

dysplasia 

OneR_Random Forest 92.7% 75.6% 82.5% 0.675 

ReliefF__Random Forest 80.0% 73.3% 72.4% 0.472 

High-grade dysplasia vs. 

OSCC 

OneR_Logistic Regression 95.0% 80.0% 89.3% 0.771 

ReliefF_Logistic Regression 100% 85.0% 94.7% 0.887 
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Table 4. Prediction results of normal vs. low-grade dysplasia and high-grade dysplasia vs. OSCC 

by using the optimal variable selection method and classification algorithm. 

Groups Algorithms SEN SPE ACC MCC 

Normal vs. Low-grade 

dysplasia 

OneR_Random Forest 80.0% 57.6% 70.5% 0.387 

High-grade dysplasia vs. 

OSCC 

ReliefF_Logistic Regression 96.8% 89.5% 94.0% 0.872 
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Table 5. Raman wavenumbers and their assignments 

Wavenumber in cm
-1

 Peak assignment 

727 C-C stretching of collagen, Adenine 

731 CH2 rocking of Adenine 

746 

Thymine (ring breathing mode of DNA/RNA bases), CH2 

rocking of phenylalanine 

766 Pyrimidine ring breathing mode 

1032 C-C bending modes of collagen & phospholipids 

1055 nucleic acids 

1059 Phospholipids/phosphatidylcholine 

1070 Triglycerides (fatty acids)  

1078 

C-C or C-O stretching mode of phospholipids, C-C or O-P-O 

stretching of nucleic acid  

1082 C-C stretching mode of glycogen 

1086 

C-N stretching of proteins, lipids; C-C, C-O stretching of 

phospholipids 

1090 Symmetric phosphate stretching vibrations 

1105 Carbohydrates peak for solutions 

1120 the strong C-O band of RNA  

1124 C-C skeletal of acyl backbone in lipid (trans conformation)  

1309 

CH3/CH2 wagging, twisting or blending mode of lipids or 

collagen 

≈1450 δ(CH2) of Lipids, carbohydrates and proteins 
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Fig.1. The Raman spectra of four subclasses of normal tissue, the low-grade dysplasia, the 

high-grade dysplasia and OSCC. The comparison of Raman spectra between A) normal tissues 

and the low-grade dysplasia tissues, and B) The comparison of Raman spectra between the 

high-grade dysplasia tissues and OSCC tissues. For clarity, we randomly picked 10 spectra for 

each of the subclasses. 
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Fig.2. The subtracted mean spectra and the characteristic wavenumbers selected for the 

diagnostic model construction. The subtracted mean spectra of A) the normal vs. the low-grade 

dysplasia, and B) The high-grade dysplasia vs. OSCC. The black sold line is the subtracted spectra 

and the red circles indicate the position of the characteristic wavenumbers. 
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Fig.3. The frequencies of the wavenumbers selected as features in the model construction 

procedures. The frequencies of the wavenumbers selected as features in classification of A) the 

normal vs. the low-grade dysplasia, and B) the high-grade dysplasia vs. OSCC. The radius of the 

circle indicates the frequency and the bars indicate the frequencies of the wavenumbers selected in 

the predictive models. The red bars indicates the frequencies that are above the given threshold, 

which were set to 60 and 45 for the classification of normal vs. low-grade dysplasia and 

high-grade dysplasia vs. OSCC, respectively. 
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