Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

1		
2		
3	1	Ultrasensitive detection of lead ions based on a DNA-labelled
4	1	Ultrasensitive detection of lead fons based on a DIVA-fabened
5 6	2	DNAzyme sensor
7		
8	3	Yingyue Zhu ¹ [†] , Daqing Deng ^{1, 2} [†] , Liguang Xu ³ , Yibo Zhu ¹ , Limei Wang ¹ , Bin Qi ^{1*} ,
9		
10 11	4	Chuanlai Xu ^{3*}
12		1
13	5	¹ School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu,
14	6	Jiangsu 215500, China;
15	7	² School of Chemical Engineering & Technology, China University of Mining and Technology, Xu
16		
17	8	zhou, Jiangsu 221116, China
18	9	³ State Key Lab of Food Science and Technology, School of Food Science and Technology,
19	10	Jiangnan University, Wuxi, JiangSu, 214122, China.
20 21		
22	11	
23	10	*Commence d'une e done lote les
24	12	*Corresponding author details:
25	13	¹ Name: Bin Qi
26	15	
27	14	E-mail: qibin65@126.com
28		
29 30	15	Tel: +86-512-5225-1569
31	17	Eart 196 512 5225 1560
32	16	Fax: +86-512-5225-1569
33	17	Address: School of Biotechnology and Food Engineering, Changshu Institute of Technology,
34	- ,	
35	18	Changshu, Jiangsu 215500, China.
36		2
37	19	³ Name: Chuanlai Xu
38	20	E-mail: xcl@jiangnan.edu.cn
39 40	20	E-mail. xch@frangnan.edu.ch
40	21	Tel: +86-510-85329076
42		
43	22	Fax: +86-510-85329076
44	• •	
45	23	Address: State Key Lab of Food Science and Technology, School of Food Science and Technology,
46	24	Jiangnan University, Wuxi, JiangSu, 214122, China.
47 48	24	shanghan Oniversity, waxi, shangbu, 214122, Onina.
40 49	25	
49 50	25	
51	26	
52		
53	27	
54	20	
55	28	
56 57	29	
57 58	-	
59		1
60		

1 Abstract

Here, we report a facile approach for highly sensitive and selective detection of aqueous lead ions that uses real-time quantitative polymerase chain reaction technology and a lead-dependent DNAzyme, termed GR-5. In this method, substrate DNA is cleaved at the site of the adenosine ribonucleotide by GR-5 DNAzyme in the presence of lead ions, resulting in a decrease in template DNA available for PCR and a consequent change in signal detection (cycle threshold (Ct) value). This novel approach takes advantage of the exponential amplification of PCR and the specific recognition of the GR-5 lead-dependent DNAzyme to provide Pb²⁺-specific detection with an excellent linear relationship between Ct value and Pb^{2+} concentration within a range of 1–500 nM. The correlation coefficient of the standard curve was 0.9898, and the limit of detection was 0.7 nM. Moreover, this sensor showed good selectivity for Pb^{2+} ions over other metal ions.

12 Keywords: RT-qPCR, GR-5 DNAzyme, lead ion, sensitive detection

1. Introduction

Lead ions (Pb^{2+}) are major environmental pollutants that exist widely in soil and water. Lead ion pollution has attracted increasing attention, as exposure to even very low levels of lead can have severe adverse effects on the environment and on human health by causing neurological, cardiovascular, and developmental disorders.^{1, 2} However, no facile method for monitoring lead ions at low concentrations has yet been established. Many analytical methods have been developed for the determination of Pb²⁺ concentration, including traditional instrumental analysis. In general, graphite furnace atomic absorption spectroscopy (GFAAS), anodic stripping voltammetry (ASV), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES), and X-ray fluorescence spectrometry are commonly used for Pb²⁺ analysis.³⁻⁸ Although these methods are highly sensitive and accurate, they often

Analytical Methods

require a special experimental environment, expensive and complex experimental
equipment, prolonged pre-treatment and skilled operators. Therefore, the development
of a field-applicable, inexpensive, and sensitive Pb²⁺ ion detection method would be
highly beneficial.

One possible approach to Pb^{2+} ion detection is the use of DNAzymes, which are specific DNA molecules that possess catalytic activity such as DNA/RNA cleavage.⁹⁻¹⁵ The catalytic activity of DNAzymes is often activated by cofactors and induced chemical transformations. DNAzymes are easily synthesized and chemically stable and have been widely used for analytical purposes. Lead-specific DNAzymes are known to cleave at adenosine ribonucleotide (rA) sites on partially complementary DNA substrates in the presence of lead ions.¹⁶ Typical Pb²⁺-specific DNAzyme-based sensors utilize the enzymatic activity of the GR-5 and "8-17" DNAzymes on a target element to produce a fluorescent or colorimetric output.¹⁷⁻²⁰ Although these methods are sensitive and versatile, they have inherent drawbacks such as high detection limits and high background signals.

The inherent limitations of DNAzyme-based sensors could possibly be overcome by using real-time quantitative polymerase chain reaction (RT-qPCR) technology. RT-qPCR has been widely used for exponential DNA amplification and provides an accurate and sensitive method for the detection of specific DNA fragments. Furthermore, differences in the initial DNA concentration are reflected in the cycle threshold (Ct) values, which can be used as a quantitative indicator to determine DNA concentration. The RT-qPCR technique was initially used for the measurement of

Analytical Methods Accepted Manuscript

2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12	2	
13	3	
14	ŀ	
15	5	
16	Ś	
17	,	
11	,	
10	5	
19)	
17 18 22 22 22 22 22 22 22 22 22 22 22 22 22)	
21		
22	2	
23	3	
24	ŀ	
- 25		
20		
20	,	
21		
28	5	
29)	
30)	
31		
32	2	
33	3	
34	ŀ	
35	5	
26	Ś	
27	,	
31	,	
30	5	
36	,	
)	
41		
42		
43		
44	ŀ	
45	5	
46		
47		
48		
40 49		
48 50		
51		
<u> </u>	2	
53		
54		
55	5	
	5	
57	-	
58		
59	, ,	
ວະ ດ (2	

60

1

1

gene expression and has since been applied to the quantification of microorganisms, including clinical bacteria and viruses.²¹⁻²³ RT-qPCR-based sensors are sensitive and 2 specific, show a broad quantification range, and show a good linear relationship 3 between the Ct value and target DNA concentration. 4 5 In this study, a novel biosensor for lead ions was developed using the GR-5 DNAzyme. The GR-5 DNAzyme was immobilized on the inner wall of a PCR tube, 6 and the template DNA was bound to the GR-5 DNAzyme via base pairing. When Pb²⁺ 7 ions were added, the template DNA was cleaved at the rA site by the GR-5 DNAzyme, 8 9 leading to a decrease in template DNA concentration and a consequent increase in 10 signal (Ct value) detection. Importantly, the Ct value was found to have a linear relationship with Pb^{2+} concentration. To the best of our knowledge, this is the first 11 12 example of a lead ion sensor that combines DNAzyme activity with RT-qPCR technology. 13

2. Experimental and methods 14

15 2.1 Materials and reagents

GR-5 DNAzyme, substrate DNA and primers were synthesized and purified by 16 Shengon Biotechnology Co. Ltd. (Shanghai, China). Their sequences were as follows: 17

18 GR-5 DNAzyme: 5'-biotin-GGCTACGAGGGAAATGCGGTAATCATCTCTGAAG TAGCGCCGCCGTAGTG-3'; 19

Substrate DNA: 5'-AATCTGGTTTAGCTACGCCTTCCCCGTGGCGATGTTTCTTA 20

21 GCGCCTTACCACTrAGGAAGAGATGATT-3';

22 Upstream primer: 5'-AATCTGGTTTAGCTACGCCTTC-3';

1
2
3
4
5
6
6
7
8
9
10
10
11
12
13
14
15
10
16
17
2 3 4 5 6 7 8 9 10 112 3 4 15 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 112 112 112 112 112 112 112 112
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
32
33
0.0
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53
54
55
56
50 57
э/
58
59
60

Downstream primer: 5'-GTAAGGCGCTAAGAAACATCG-3'. 1 iTaqTM Universal SYBR[®] Green Supermix was purchased from Bio-Rad 2 (Shanghai, China). Streptavidin was purchased from Sangon Biotech Co., Ltd. 3 (Shanghai, China). Lead ions, mercury ions, cupric ions, cadmium ions, and nickel 4 5 ions were obtained from the National Standard Substances Center (Beijing China). All other chemicals were of analytical grade. Ultrapure water was used to prepare 6 7 aqueous solutions. 2.2 RT- qPCR assay for Pb^{2+} detection 8 9 First, the PCR tubes were incubated with 20 μ L of 0.8% glutaraldehyde solution 10 at 37°C for 5 h to improve their adsorption capability. After three washes with 11 12 13 14 15

10	at 57 C for 5 h to improve then adsorption equilibrity. After three washes with
11	ultrapure water, 20 μL of streptavidin dissolved in 0.01 M carbonate buffer solution
12	was added, followed by incubation at 37°C for 2 h to fix the streptavidin to the PCR
13	tubes. Each PCR tube was then washed with PBST (10 mM PBS, pH 7.2, 0.05%
14	Tween-20). After washing, 20 μ L of the appropriate concentration of the mixture of
15	GR-5 DNAzyme and substrate DNA was added to the PCR tubes. GR-5 DNAzyme
16	was fixed to the PCR tubes by specific binding between biotin and streptavidin, and
17	the substrate DNA was hybridized by base-pairing with the GR-5 DNAzyme through
18	incubation at 37°C for 40 min. After each tube was washed with hybridization buffer
19	(750 mM NaCl, 75 mM $C_6H_5Na_3O_7$, pH 8.0), Pb^{2+} was added to each tube at the
20	indicated concentration and incubated at 37°C for 40 min. Then, each tube was
21	washed three times with hybridization buffer to remove the free DNA fragment,
22	leaving the biotin-labelled GR-5 DNAzyme or dsDNA on the surface of the PCR
	5

2
3
4
5
6
7
8
9
10
11
12
13
1/
15
10
10
17
18
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 6\\ 37\\ 8\\ 9\\ 40\\ 14\\ 12\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 9\\ 40\\ 14\\ 12\\ 12\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
46 47
77 19
48 40
49 50
50
51
52
53
54
55
56
49 50 51 52 53 54 55 56 57 58 59 60
58
50
60
00

1 2

1 tubes.

2	Finally, the PCR mixture (total volume, 20 $\mu L)$ was added to the washed tubes.
3	The PCR mixture was composed of 2 μL upstream and downstream primers at 500
4	nM, 10 μL of iTaq Universal SYBR Green Supermix, and 6 μL of water. RT-qPCR
5	was performed using the CFX-96 real-time PCR system. The PCR cycling parameters
6	were as follows: an initial denaturation for 30 s at 95°C, followed by 39 cycles of
7	denaturation for 5 s at 95°C and annealing for 30 s at 59°C. Fluorescence was
8	measured after each annealing step. A melting curve was obtained from 65°C to 95°C
9	to detect potential nonspecific products, with signal measurement every 0.5°C.
10	2.3 Specificity analysis
11	Specificity is an important factor for a new proposed method. To evaluate the
12	specificity of this method for Pb^{2+} detection, other common metal ions (mercury,
13	copper, cadmium, and nickel ions) were used in place of Pb^{2+} . These metal ions were
14	tested at a concentration of 1 $\mu M.$ All other detection conditions were the same as

- 15 those used in the Pb^{2+} detection procedure.
- 16 2.4 Recovery in tap water samples
- To demonstrate the practicality of our proposed method, the negative tap water sample was spiked with Pb^{2+} (1 nM, 5 nM, 10 nM, and 50 nM). After simple filtration, these samples were tested with the same procedure used for Pb^{2+} detection. The recovery ratio was calculated based on the PCR signals.
- 21 **3. Results and discussion**
- 22 3.1 The principle of the DNAzyme sensing system

1	To develop a novel method for aqueous Pb^{2+} detection, we employed the
2	combination of GR-5 DNAzyme catalytic activity and qPCR (see scheme 1). In this
3	method, GR-5 DNAzyme is hybridized to a substrate strand through complementary
4	base pairing. The substrate strand contains a single RNA base that is cleaved
5	specifically by the classic Pb ²⁺ -dependent GR-5 DNAzyme as the catalytic unit and a
6	50-base substrate strand extension that is required as a template for PCR amplification.
7	Biotin-modified GR-5 DNAzyme is fixed on the inner wall of a streptavidin-coated
8	PCR tube via biotin-avidin interactions. ²⁴ The addition of aqueous Pb ²⁺ to the PCR
9	tube leads to cleavage of the substrate DNA at the rA site by the GR-5 DNAzyme,
10	resulting in release of the template DNA. Consequently, the PCR amplification signal
11	(Ct value) varies according to the amount of template available for amplification,
12	which in turn depends on the concentration of aqueous Pb^{2+} . Thus, the concentration
13	of the Pb^{2+} target can be quantified using the Ct value.

Analytical Methods Accepted Manuscript

3.2 Optimization of assay conditions

Before applying this new approach for Pb^{2+} detection, we optimized the experimental conditions, including streptavidin concentration and reaction time. Figure 1 shows the relationship between streptavidin concentration and Ct value that was observed when the GR-5 DNAzyme and substrate DNA concentrations were both fixed at 100 nM. The Ct value gradually decreased with increasing streptavidin concentration in the range of 1–10 ng/mL, whereas the Ct value increased notably with increasing streptavidin concentration in the range of 10-20 ng/mL. The minimum Ct value (corresponding to maximum DNA template level) was observed

when the concentration of streptavidin was 10 ng/mL; thus, 10 ng/mL streptavidin
 was selected for the subsequent assays.

The sensitivity of the sensor is affected by the reaction time, which ideally permits a complete reaction. Therefore, the time allowed for binding of the substrate DNA to the GR-5 DNAzyme and for substrate cleavage in the presence of Pb^{2+} was also optimized (Figures 2 and 3). The Ct value decreased with increasing substrate-binding time until 40 min. When the time exceeded 40 min, the Ct value only changed slightly. As a reduction in Ct value reflects an increase in the amount of template DNA available, the results indicate that a sufficient amount of GR-5 DNAzyme binding occurred within 40 min. The optimization of substrate cleavage time showed that in the presence of Pb^{2+} , the Ct values increased with increasing cleavage time until 40 min. Based on these results, the time for hybridization of the GR-5 DNAzyme to the substrate DNA and the time for substrate cleavage were both set at 40 min for subsequent experiments.

15 3.3 Sensitivity and selectivity of Pb^{2+} detection

The amplification curves of the optimized detection system for different Pb²⁺ concentrations (0.5 nM to 1 μ M) were obtained by RT-qPCR (Figure 4). The Ct value increased with increasing Pb²⁺ concentration over the entire 0.5–1000 nM range, and a good linear relationship was observed in the range of 1–500 nM Pb²⁺ (Figure 5). The linear correlation equation was determined to be Ct = 11.79516 + 2.999781gC, where C is the concentration of Pb²⁺ in nM. The correlation coefficient of the standard curve was 0.9898, and the limit of detection was 0.7 nM (S/N ratio = 3). Relative to other

Analytical Methods

2
3
4
5
6
6 7
0
8
9
10
11
9 10 11 12
13
10
14
15
16
17
18
13 14 15 16 17 18 19
20
20
21
21 22 23 24
23
24 25 26 27 28 29 30 31
25
20
20
21
28
29
30
31
32
33
33 34 35 36 37 38 39
35
36
37
20
30
39
40
41
42 43
43
44
44 45
40
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1	detection sensors, ²⁵⁻³¹ the sensor system described herein was considerably more
2	sensitive.
3	To evaluate the selectivity of this method, several common metal ions (mercury,
4	nickel, copper, and cadmium ions; each at a concentration of 1 μ M) were assessed. In
5	contrast to that observed in the presence of lead ions, the Ct values in the presence of
6	these four metal ions did not notably change, indicating that the substrate DNA was
7	not cleaved (Figure 6). These results clearly demonstrate the selectivity of the sensor.
8	3.4 Real sample analysis
9	To test the practicality of the proposed method, we applied this assay to
10	determine the lead ion concentration in tap water. Blank tap water samples spiked
11	with different concentrations of lead ions (1, 5, 10, and 50 nM) were evaluated (Table
12	1). The recovery for the tap water samples was in the range of 97.1–106.0%, with a
13	relative standard deviation lower than 5.2%. These results show that the Pb^{2+} sensor
14	has good recovery values and is suited for practical application.
15	4. Conclusion
16	In this paper, we have introduced a novel lead ion sensor based on RT-qPCR
17	technology. In the presence of lead ions, substrate DNA was cut at the rA site by the

GR-5 DNAzyme. Under optimized conditions, a good linear relationship between the concentration of lead ions and the Ct value was observed, and a low detection limit (0.7 nM) was noted, indicating that a sensitivity higher than that of several new sensors^{27, 29, 32} was achieved. To our knowledge, this is the first sensor to combine RT-qPCR technology and GR-5 DNAzyme for the detection of lead ions. This novel

1	sensor showed high sensitivity and specificity and demonstrated satisfactory recovery			
2	of lead ions from tap water samples. Thus, this new sensor is a potential practical tool			
3	for the detection of lead ions in environmental samples.			
4	Acknowledgments			
5	This work is financially supported by the Key Programs from MOST			
6	(2012AA06A303), NSF of Jiangsu Province (BK20130379, 13KJB550001), and the			
7	Suzhou Science and Technology Committee Program (SS201335)			
8	Notes			
9	[†] These authors contributed equally to this work.			
10	The authors have no competing financial interests to declare.			
11				
12				
13				
14	References			
15	1. C. Winder, N. G. Carmichael and P. D. Lewis, <i>Trends in Neurosciences</i> , 1982, 5, 207-209.			
16 17	 S. Araki, H. Sato, K. Yokoyama and K. Murata, <i>American journal of industrial medicine</i>, 2000, 37, 193-204. 			
17	 G. Morrell and G. Giridhar, <i>Clin. Chem.</i>, 1976, 22, 221-223. 			
19	 X. Chen, H. Guan, Z. He, X. Zhou and J. Hu, <i>Anal. Methods</i>, 2012, 4, 1619-1622. 			
20	 A. Chen, H. Guan, Z. He, A. Zhou and J. Hu, <i>Intuit Methods</i>, 2012, 4, 1019-1022. B. Searle, W. Chan and B. Davidow, <i>Clin. Chem.</i>, 1973, 19, 76-80. 			
20	 B. Schütz, I. A. Bergdahl, A. Ekholm and S. Skerfving, Occupational and environmental 			
22	medicine, 1996, 53, 736-740.			
23	7. K. Deibler and P. Basu, <i>Eur. J. Inorg. Chem.</i> , 2013, 2013, 1086-1096.			
24	8. M. d. G. A. Korn, J. B. de Andrade, D. S. de Jesus, V. A. Lemos, M. L. Bandeira, W. N. dos			
25	Santos, M. A. Bezerra, F. A. Amorim, A. S. Souza and S. L. Ferreira, <i>Talanta</i> , 2006, 69, 16-24.			
26	9. X. Zhu, H. Zhang, C. Feng, Z. Ye and G. Li, RSC Advances, 2014, 4, 2421-2426.			
27	10. X. Zhu, Y. Cao, Z. Liang and G. Li, <i>Protein & cell</i> , 2010, 1, 842-846.			
28	11. O. Plashkevych and J. Chattopadhyaya, <i>Medicinal Chemistry of Nucleic Acids</i> , 2011, 272-291.			
29	12. A. V. Sidorov, J. A. Grasby and D. M. Williams, <i>Nucleic Acids Res.</i> , 2004, 32, 1591-1601.			
30	13. T. S. Dalavoy, D. P. Wernette, M. Gong, J. V. Sweedler, Y. Lu, B. R. Flachsbart, M. A. Shannon, P.			
31	W. Bohn and D. M. Cropek, Lab on a Chip, 2008, 8, 786-793.			
32	14. Y. Xiao, A. A. Rowe and K. W. Plaxco, J. Am. Chem. Soc., 2007, 129, 262-263.			
33	15. C. Li, L. Wei, X. Liu, L. Lei and G. Li, Anal. Chim. Acta, 2014, 831, 60-64.			
	10			

Analytical Methods

2			
3	1	16.	A. K. Brown, J. Li, C. MB. Pavot and Y. Lu, Biochemistry, 2003, 42, 7152-7161.
4	2	17.	J. Li and Y. Lu, J. Am. Chem. Soc., 2000, 122, 10466-10467.
5	3	18.	J. Liu and Y. Lu, Journal of fluorescence, 2004, 14, 343-354.
6 7	4	19.	J. Liu and Y. Lu, J. Am. Chem. Soc., 2003, 125, 6642-6643.
8	5		J. Liu and Y. Lu, J. Am. Chem. Soc., 2004, 126, 12298-12305.
9	6		Y. Asai, T. Jinno, H. Igarashi, Y. Ohyama and T. Ogawa, J. Clin. Microbiol., 2002, 40, 3334-3340.
10	7		C. E. Corless, M. Guiver, R. Borrow, V. Edwards-Jones, A. Fox and E. Kaczmarski, J. Clin.
11 12	8	22.	Microbiol., 2001, 39, 1553-1558.
12	9	23.	D. Ke, C. Ménard, F. J. Picard, M. Boissinot, M. Ouellette, P. H. Roy and M. G. Bergeron, <i>Clin.</i>
14	10	25.	<i>Chem.</i> , 2000, 46, 324-331.
15	10	24	Z. Wang, L. Liu, Y. Xu, L. Sun and G. Li, <i>Biosens. Bioelectron.</i> , 2011, 26, 4610-4613.
16			-
17 18	12		H. Wang, L. M. Ou, Y. Suo and HZ. Yu, <i>Anal. Chem.</i> , 2011, 83, 1557-1563.
19	13	26.	C. Yang, L. Liu, T. Zeng, D. Yang, Z. Yao, Y. Zhao and HC. Wu, Anal. Chem., 2013, 85,
20	14		7302-7307.
21	15	27.	T. Li, E. Wang and S. Dong, Anal. Chem., 2010, 82, 1515-1520.
22	16	28.	F. Chai, C. Wang, T. Wang, L. Li and Z. Su, ACS Appl. Mat. Interfaces, 2010, 2, 1466-1470.
23 24	17	29.	Z. Yuan, M. Peng, Y. He and E. S. Yeung, Chem. Commun., 2011, 47, 11981-11983.
25	18	30.	S. Zhan, Y. Wu, L. Liu, H. Xing, L. He, X. Zhan, Y. Luo and P. Zhou, RSC Adv., 2013, 3,
26	19		16962-16966.
27	20	31.	Y. Xiang, A. Tong and Y. Lu, J. Am. Chem. Soc., 2009, 131, 15352-15357.
28	21	32.	L. Shen, Z. Chen, Y. Li, S. He, S. Xie, X. Xu, Z. Liang, X. Meng, Q. Li and Z. Zhu, Anal. Chem.,
29 30	22		2008, 80, 6323-6328.
31	23		
32	24		
33	25		
34 35	26		
36	27		
37	28		
38	29		
39	30		
40 41	31		
42	32		
43	33		
44	34		
45 46	35		
40 47	36		
48	37		
49	38		
50	38 39		
51 52	40		
53	40 41		
54			
55	42		
56 57	43		
57 58	44		
59			11
60			

Analytical Methods

1	
2	Legends to Figures
3	Scheme 1. (A) Schematic illustration of the developed method using RT-qPCR
4	technology. (B) The reaction diagram of GR-5 DNAzyme in the presence of lead ions.
5	Figure 1. Effect of streptavidin concentration on the Ct values of the sensor system.
6	Figure 2. Effect of the time for hybridization of the substrate DNA and GR-5
7	DNAzyme on the Ct values of the sensor system.
8	Figure 3. Effect of the time for substrate cleavage on the Ct values of the sensor
9	system.
	Figure 4. Amplification curves at different concentrations of Pb ²⁺ in the range of 0.5–
10 11	1000 nM.
12	Figure 5. Ct value as a function of Pb^{2+} concentration. Inset: Linear relationship
13	between Pb^{2+} concentration and Ct value in the range of 1–500 nM.
14	Figure 6. Selectivity of the RT-qPCR-based sensor for Pb^{2+} ions over other metal ions.
15	Table 1. Recovery experiments for Pb^{2+} ions in tap water samples.
16	
17	
18	
19	
20 21	
21	
22	
24	
25	
26	
27	
28	
29 20	
30 31	
31	
33	
34	
35	
	10
	12

Figure 6. Selectivity of the RT-qPCR-based sensor for Pb²⁺ ions over other metal ions.

Water sample5 $4.97 \pm 0.23.$ $99.40 \pm 3.$ 10 10.17 ± 0.34 $101.70 \pm 5.$		Sample	Spiked Pb ²⁺ (nM)	Measured Pb ²⁺ (nM)	Recovery (
Water sample 10 10.17±0.34 101.70±5 50 48.55±2.10 97.10±3			1	1.06 ± 0.03	106.00±4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Water sample	5	4.97 ± 0.23 .	99.40±3.
			10	10.17 ± 0.34	101.70 ± 5
			50	48.55±2.10	97.10±3.
			20		