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Abstract 

This paper investigates the use of Local Linear Embedded Regression (LLER) for the 

quantitative analysis of glucose from near infrared spectra. The performance of the LLER 

model is evaluated and compared with the regression techniques Principal Component 

Regression (PCR), Partial Least Squares Regression (PLSR) and Support Vector 

Regression (SVR) both with and without pre-processing. The prediction capability of the 

proposed model has been validated to predict the glucose concentration in an aqueous 

solution composed of three components (urea, triacetin and glucose). The results show that 

the LLER method offers improvements in comparison to PCR, PLSR and SVR.  
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1. INTRODUCTION 

Diabetes mellitus is a chronic disease that is increasing at an alarming rate [1]. Diabetic 

patients must monitor their blood glucose levels several times a day in order to have better 

control of their condition. The conventional technique for measuring glucose levels is the 

finger prick method, which is very painful and inconvenient on a daily basis. To address 

this issue, researchers have tried to come up with non-invasive techniques for glucose 

measurement. 

Near Infrared (NIR) spectroscopy has been identified as one of the promising techniques 

for non-invasive glucose measurement. NIR spectroscopy is faster and provides a 

reasonable signal-to-noise ratio as compared to other methods. The prediction of the 

concentration of glucose from a NIR spectrum remains a challenge due to underlying noise 

and necessitates the development of advanced and efficient multivariate data analysis 

algorithms [2-5].    

Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) are 

the most commonly used multivariate regression methods for the quantitative analysis of 

NIR absorbance spectra [6-11]. However, these models degrade prediction performance if 

the analyte of interest contributes less variation to the spectra [12]. The drawbacks of the 

PCR and PLSR models mentioned above motivated the implementation of a new regression 

model which preserves the information related to an analyte of interest irrespective of its 

variation in the spectral mixture.    

In this paper, the use of the Local Linear Embedded Regression (LLER) technique is 

investigated for the quantitative analysis of glucose from near infrared spectra. In the LLER, 
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a non-linear dimensionality reduction technique called Local Linear Embedding (LLE) [13] 

is used to map the high dimensional data non-linearly into a low dimensional space. Due to 

its advantages such as no local minima, good representational capacity and high 

computational efficiency, LLER is considered one of the robust regression models for non-

linear data [14].  

In this paper, the LLER model is first developed and then evaluated and compared to key 

existing regression techniques. Pre-processing methods in terms of first-derivative and 

bandpass filtering are also implemented with the different regression methods and the 

resulting models are evaluated. It is shown that the LLER technique can be an attractive 

alternative model for the prediction of glucose from NIR spectra.   

2. THEORY 

2.1 Local Linear Embedding (LLE) Dimensionality Reduction Algorithm: 

An LLE analysis on a raw matrix consisting of N vectors  with dimensionality D can be 

implemented as follows:  

Let the number of nearest neighbours and the dimensionality of the embedded data be K and 

d respectively. Initially, K-nearest neighbors of each data point are identified by using 

Euclidean metric and the reconstruction weights  that best represent the data points by 

their neighboring points can be computed by minimizing the following cost function E(W). 
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where the reconstruction weights  signify the contribution of the j‟th point to the i‟th 

reconstruction. The cost function also represents the reconstruction error, which is the 

squared sum of the difference between the actual data and the reconstructed data. The cost 

function can be minimized with the following two constraints: 

The first constraint is the sum of all the reconstruction weights should be equal to unity. i.e. 

                 . 

The latter constraint is every data point is reconstructed only from its neighbouring points. 

i.e.  

=0, if Xj 
 
is not one of the K nearest neighbouring points. The significance of these two 

constraints is that for any particular data point, the reconstruction weights are invariant to 

rescalings, rotations and translations of that data point and its neighbours. The invariance to 

translations is achieved by the first constraint [13].  

Solving equation (1) based on the above constraints is a least squares problem as given in 

[13]. The optimum weights are invariant to translation, rescaling and rotation of the data 

point and its neighbours. 

Finally, the embedded vector , with dimensionality equal to d can be computed by 

minimizing the local reconstruction error . 

                                                                                                   (2) 
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where  is the local reconstruction error that represents the summed squares of the 

difference between the original embedded data and their reconstruction and 
 
are the 

reconstruction weights calculated from equation (1). 

The local reconstruction error  can be reduced with the following two constraints: 

1.  

2.  

where I represents an identity matrix. 

Solving, the embedded vector is a well-known problem in linear algebra and it can be 

minimized by solving the sparse N×N Eigen vector problem [13]. 

The advantage of the algorithm is that the LLE model has to set only one parameter K which 

affect the performance of the LLER model in a direct way. However, incorrect choice of  K 

may degrade the performance of the model. If the value of K is selected too small, the 

mapping loses its global property [15]; on the other hand, if the value of K is selected too 

high, the data mapping will lose its non-linear property [16].  

Two methods are proposed to optimize the neighbourhood size (K) in [16]. In the first 

method, the residual variance of the embedded data is calculated for every value of K in the 

range [1- ]. The optimum value  is the value of „K‟ corresponding to minimum 

residual variance. The limitation of this method is that it is time consuming, as it needs to 

optimize both the reconstruction error E(W) and the local reconstruction error  for 
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every value of K. In the second method, the cost function E(W) is calculated for different 

values of K in the range [1- ], which is called hierarchical method; K_opt corresponds 

to the minimum residual variance. However, the residual variance has more than one 

minimum [16] resulting a set S of potential candidates for K_opt. Residual variance must be 

computed for each value of K from the set S. The value of K corresponds to the minimum 

residual variance is chosen as K_opt. 

The first method is used to optimize the parameter K in this study. 

2.2. Local Linear Embedded Regression (LLER): 

In the LLER method, the LLE analysis is used to map the high dimensional absorbance 

spectra (A) to a lower dimensional embedded vector (Y).  

The absorbance matrix A  is decomposed as the product of the Local Linear 

Embedding matrix Y  and the reconstruction factors P. 

                   A=Y.P                                                                                                       (3)  

where d is the dimensionality of the embedded vector, N is the number of training spectra, 

and D is the number of variables in the raw spectra. 

In the LLER method, the scores actually represent the embedded vectors that are computed 

from the LLE algorithm and then the loading matrix is computed by multiplying the pseudo-

inverse of the scores matrix with the input raw spectra. The obtained scores and loading 

matrices can be used in building the LLER model. 

 The reconstruction matrix can be represented as shown in equation (4).  

maxK

DN

dN
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                                                                                                                           (4) 

where  is the pseudo-inverse of the embedded data matrix Y. Embedded vector Y and 

reconstruction factors P are considered to be scores and loading factors respectively. As the 

concentration of analyte (Cg) relates to the embedded data Y, the embedded data can be 

regressed against the analyte‟s concentration using Multiple Linear Regression (MLR) as 

follows. 

                    Cg=Y. lle                                                                                                      (5)
 

Where lle represents the coefficients of the regression. lle is defined by the least squares 

method as 

            
                                                                                                  (6) 

The concentration  for the new data  can be obtained from the following equation, 

when both the training spectra and concentration are centered. 

  ( )gnew new gC A A C                                                                                                                              (7) 

From equatons 3 and 5,  can be replaced by lle 

                                                                                             (8)
 

where  is the pseudo-inverse of the loading factors of the training spectra,  is the 

average vector of the training spectra and 
 
is the average value of the training data 

concentration.
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As explained above, the LLER model has to set two parameters, one is the K nearest 

neighbouring points and the other one is the dimension of the embedded data d. If d is 

selected too high, the mapping reduces the signal-to-noise ratio; conversely, if d is selected 

too small, different parts of the dataset might be mapped onto each other [17]. The lower and 

upper limits of K are chosen as the minimum and maximum possible values of K for which 

the LLER model converges.   

The implemented calibration models are tested by using the test dataset. For each value of K, 

the error parameters Root Mean Square Error of Calibration (RMSEC), Root Mean Square 

Error of Cross Validation (RMSECV) and Root Mean Square Error of Prediction (RMSEP) 

are computed. The values of d and K that together produce the minimum RMSECV are 

selected as the optimum parameters of the LLER calibration model. 

2.3 LLER model Combined with Digital Bandpass Filtering 

     The performance of the calibration model can be improved by the integration of the LLER 

model with pre-processing techniques such as the first derivative and bandpass filtering. To 

our knowledge, this is the first time LLER is combined with digital bandpass filtering for 

NIR spectroscopy. In this work, the digital Gaussian and Chebyshev bandpass filters have 

been used to suppress the high frequency components as well as the baseline variations 

which dominate the low frequency components in the raw spectra [18,19]. The digital 

bandpass filters are defined by two parameters [20,21], the centre frequency and the 

bandwidth. Both of these parameters should be optimized to select the optimum band of 

frequencies that contains the maximum information related to the glucose concentration.  
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A Gaussian filter can be implemented either in the frequency domain or in the time domain. 

The Gaussian function has the same profile in both the frequency and time domains [22,23]. 

In the frequency domain, the mean and standard deviation of the Gaussian function are 

equivalent to the centre frequency and bandwidth respectively. The Gaussian bandpass filter 

was implemented in the frequency domain, as shown in Figure 1, due to its reduced 

complexity.  

 

             Figure 1: Block diagram of the Gaussian digital bandpass filter 

 

Initially, the Fast Fourier Transform is applied on the input raw spectra, which is then 

multiplied with the Gaussian function; the input to the Gaussian function is the raw spectra 

normalized between 0 and 1. Finally, an Inverse Fast Fourier Transform is performed on the 

result at the output of the multiplier to get the filtered signal.  
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Chebyshev filters provide an optimal trade off between passband ripples and a steeper roll- 

off, compared to other time domain filters [24] and can be efficiently implemented in time 

domain. The block diagram of the Chebyshev digital bandpass filter is shown in Figure 2 

below. 

 

                  Figure 2:  Block diagram of the Chebyshev digital bandpass filter 

Initially, an analog low pass filter is designed, with the upper cut-off frequency equal to half 

of the desired bandwidth of the Digital Bandpass (DBP) filter. The obtained low pass filter is 

transformed to a bandpass filter by shifting the spectrum to the centre frequency of the DBP 

filter. The transfer function in analog form is then converted to the digital domain by 

applying a bilinear transformation. The impulse response of the digital bandpass filter can be 
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obtained by applying the inverse Z-transform on the previous output. Finally, the raw 

spectra are convoluted with the impulse response of the Chebyshev filter to obtain the 

filtered signal.     

The grid search optimization [25] is used to optimize the filter parameters. Initially the 

RMSECV is calculated for all possible values of centre frequency and bandwidth. The 

predictive performance of the models is evaluated by using the coefficient of determination 

(R
2
), the RMSEC, the RMSECV in addition to the RMSEP. A good model should have a 

high R
2
, a low RMSEC, a low RMSECV, and a low RMSEP. The optimum values of c and 

w are selected as the values of c and w for which the RMSECV has the minimum value. 

3.  Experimental data preparation 

For this experiment, samples were prepared by dissolving glucose, urea and triacetin in a 

phosphate buffer solution. Triacetin was used to model the triglycerides in the blood. Dry 

solutes of glucose and urea were dissolved in the buffer to prepare their aqueous solutions 

whereas triacetin solution was diluted by the buffer solution. The buffer solution was 

prepared by dissolving 3.4023 grams of potassium dihydrogen  and  3.0495 grams of 

sodium mono hydrogen phosphate in distilled water. A preservative in the form of 

fluorouracil was added to the buffer solution. The analytes used in this experiment were 

purchased from Sigma Aldrich, UK.  

In this study 30 samples were prepared by varying concentrations of glucose, urea and 

triacetin. The concentration of these solutions was chosen in such a manner that it was 

within physiological range in blood. Concentration of glucose, urea and triacetin ranged 

from 20 to 500 mg/dL, 0 to 50 mg/dL and 10 to 190 mg/dL respectively. After preparing 
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the samples, triplicate spectra for each sample were collected with a Fourier transform 

spectrophotometer (spectrophotometer Cary 5000 version 1.09) which spanned the spectral 

region from 2000 nm to 2500 nm with a spectral resolution of 1 nm and in this way 90 NIR 

spectra were collected from 30 samples. The purpose of using three replicate spectra is to 

reduce the effect of instrumental noise. The absorbance spectra of the buffer solution were 

used as reference spectra. 

The collected spectra were divided randomly into calibration and test sets. The calibration 

set contained the three replicate spectra of 20 samples and was used to build the calibration 

model. The test set contained the triplicate spectra of 10 samples and was used in the 

prediction phase to test the calibration model. 

The experiments were carried out in a non-controlled environment. i.e; experiments were 

not carried under constant temperature. This introduced significant baseline variation in the 

collected spectra to evaluate the ability of the proposed methods in this work to deal with 

the uncompensated variations. Many previous studies in this area have carried out 

experiments in a controlled environment to compensate the effect of the baseline variation. 

In this study, the Van Der Maaten toolbox [26] has been used to perform the LLE 

dimensionality reduction on the input raw spectra. The key parameters for LLE model are 

the number of nearest neighbors (K) and the embedded dimension (d). The grid search 

optimization was used to select the optimum values of K and d in order to prevent the 

overfitting problem. The doublet (K, d) with the lowest RMSECV is used to build the final 

LLER model. The optimum number of Principal Components (PCs) and Latent Variables 
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(LVs) for the PCR and PLSR models were found using “10-fold cross validation” 

respectively. The key parameters for SVR model using Radial Basis Fucntion (RBF) kernel 

are cost (C), gamma ( ) and epsilon ( ). The grid search optimization on C,   and  using 

10-fold cross validation was used to avoid overfitting problem as mentioned in LIBSVM 

(A Library for Support Vector Machines) [27]. The triplet with minimum RMSECV were 

chosen as the optimum parameters to build the final SVR model. 

The grid search optimization [25] is used to optimize the filter parameters (c,w). In the 

optimization of the DBP filtering, the centre frequency (c) is varied from 0.01 f to 0.5 f and 

the bandwidth (w) is varied from 0.01 f to 0.8 f; where f is the normalized frequency [19]. 

The values for the filter parameters (c and w) are chosen in such a way that the filter spans 

the whole frequencies from fL= (c-w/2) to fH= (c+w/2); where fL is the lower cutoff 

frequency and fH is the upper cutoff frequency of the designed digital bandpass filter. In 

each iteration, the designed digital bandpass filter is combined with the prediction model 

and the RMSECV is calculated. The computed RMSECV is then stored in the variable 

called SECV and is compared with SECV_opt as shown in the flowchart below; where 

SECV_opt is the temporary variable used to store the updated minimum RMSECV value in 

each iteration. The values of c, w, k and d corresponding to the minimum RMSECV value 

are chosen as the c_opt, w_opt, K_opt and d_opt respectively. The maximum values for c, 

w, K and d are considered as cmax, wmax, Kmax, and dmax respectively. 
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                   Parameter initialization 

c=0.01f; w=0.01f; d = 1;  K= 3; SECV_opt= 200; 

cmax=0.5f, wmax=0.8f, dmax=30, Kmax=59 

 

Optimized LLER model 

DBPF (Gaussian or Chebyshev) 

            LLER model (K,d) 

If (d > 

dmax) 

 

If (c > 

cmax) 

 

If (w > 

wmax) 

 

If (K > 

kmax) 

If (SECV < 

SECV_opt) 

Increment K by 1 

Increment d by 1 

 

Increment w by 0.001f 

 

Increment c by 0.01f 

 

   SECV_opt=SECV; 

(c_opt,w_opt)opt=(c,w); 

(K_opt,d_opt)opt=(K,d); 

 

yes 

No 

yes 

No 

yes 

yes 

yes 

No 

No 

No 

Figure 3: Flow chart of parameter optimization for DBPF-LLER model 
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The prediction model with the lower RMSECV is chosen as the optimized digital bandpass 

filter. The optimum filter parameters for the Gaussian filter are found to be c=0.03 f, w= 

0.04 f and for the Chebyshev digital filter, these were  c= 0.02 f, w=0.01 f. The selection 

process of the parameters for the optimum DBPF-LLER model is illustrated in the flow 

chart as shown in Figure 3. 

4. Discussion of Experimental Results and Comparisons: 

For the evaluation, validation, and comparisons, a set of prediction models were developed. 

Initially the PCR, PLSR, SVR and LLER models were implemented with no pre-

processing. The prediction performance of the models was examined by computing the 

RMSEP, RMSEC, RMSECV and R
2
 for each model. Figure 4 shows the comparison of all 

the prediction models with no pre-processing; the x-axis shows the reference glucose 

concentration (mg/dL) and the y-axis represents the predicted glucose concentration 

(mg/dL). The „*‟ symbols correspond to the test samples where as „o‟ symbols correspond 

to the calibration. The straight line is the reference line.  
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Figure 4: Comparison of the PCR, PLSR, SVR and LLER models without pre-processing 

The results demonstrate that the LLER model gives a better prediction compared to the 

PCR, PLSR and SVR models when no pre-processing of the raw data is used. This is an 

interesting result that confirms the advantage of adopting an efficient non-linear 

dimensionality reduction technique (LLE) in a calibration model when dealing with NIR 

spectra. Figure 4 shows that  the LLER model exhibits a more consistent precision of 

calibration relative to the PCR,  PLSR and SVR models, although the testing and training 

data had a wider range of glucose concentration. The advantage of the LLER method over 

the PCR, PLSR and SVR models is that it preserves the neighbourhood structure of nearest 

spectra in the mapped plane. The LLE algorithm maps the high dimensional input 
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coordinates into low dimensional data (Y) by minimising the cost function )(Y as given in 

equation 2. The cost function is based on  the reconstruction coefficients of K nearest 

neighbours. Then the mapped data are regressed against the analyte of interest to build the 

calibration model, which is completely identified by the embedded dimension d and the K 

nearest neighbours. So, the values of K and d affect the prediction performance of the 

LLER model. This has been investiagted and Table 1 below summarises the impact of  

these two parameters on the resulting RMSEP and RMSECV values for the LLER model.  

Table 1: The prediction capability of the LLER model for different values of K and d 

Calibration model RMSECV (in mg/dL) RMSEP (in mg/dL) 

LLER (K=18 , d=14 ) 34.90 33.20 

LLER (K=18 , d= 15) 36.10 36.00 

LLER (K=18 , d= 16) 34.80 35.30 

LLER (K=19 , d= 14) 35.70 34.60 

LLER (K=19 , d= 15) 32.60 31.00 

LLER (K=19 , d=16 ) 33.40 35.20 

LLER (K=20 , d=14 ) 38.20 36.50 

LLER (K=20 , d= 15) 34.60 34.20 

LLER (K=20 , d= 16) 33.70 36.80 
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Furthermore, as already mentioned, appropriate pre-processing of the raw data prior to 

applying the calibration model can yield tangible improvements in prediction, since the raw 

NIR spectra are affected by baseline shift, background noise, light scattering and  

instrumental noise in general. Hence, a set of pre-processing techniques including first 

derivative, Gaussian digital bandpass filtering and Chebyshev digital bandpass filtering are 

applied and evaluated for each model.  

Firstly, the PCR and PLSR models were implemented with the different pre-processing 

techniques where the number of factors that produce the minimum RMSECV are chosen as 

the optimum number of principal components and latent variables for PCR and PLSR 

respectively. The comparison of PCR and PLSR when different pre-processing techniques 

are applied is shown in Figure 5. The y-axis shows the RMSECV and the x-axis represents 

the number of principal components or latent variables for PCR and PLSR respectively. 

The results show that the models with pre-processing of NIR data gives much better 

prediction accuracy in comparison to models with no pre-processing. From Figure 5, it is 

also observed that models with bandpass filtering achieve better prediction accuracy in 

comparison to the first derivative pre-treatment. The optimum number of principal 

components and latent variables are identified to be 6. Information about NIR spectra is 

prominent in the frequency components in the mid-band range, while the noise and baseline 

variations tend to occupy the high and the low frequency range respectively, that is why 

these can be effectively reduced using an optimised bandpass filter rather than the first 

derivative which tends to reduce the signal to noise ratio (SNR). First derivative pre-

processing can eliminate only baseline variations in the raw spectra, whereas the bandpass 
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filter can eliminate both the low frequency baseline variations and the high frequency noise 

from the spectra.  

The PCR, PLSR, SVR and LLER models were then implemented with the raw data pre-

processed using the first derivative, the Gaussian, and the Chebyshev digital bandpass 

filters. 

 

Figure5: PCR and PLSR with different pre-processing techniques 

Figure 6 illustrates the prediction performance comparison of the PCR, PLSR, SVR and 

LLER models with the three different pre-processing methods. For each subplot, the x-axis 

represents the reference glucose concentration (mg/dL) and the y-axis shows the predicted 

glucose concentration (mg/dL). The „o‟  symbols correspond to the calibration where as „*‟ 

symbols correspond to the test samples. The reference line is represented by a straight line 

as shown in Figure 6.  
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Figure 6: Comparison of PCR, PLSR, SVR and LLER models with different types of pre-

processing techniques.  
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Table 2: Comparison of PCR,PLSR, SVR and LLER models  

Regression 

model 

Pre 

processing 

Optimum parameters  RMSEC* RMSECV*  RMSEP* 

PCR None 6PCs 25.34  67.59 0.90  40.00 

PCR 1st 

derivative 

6PCs 24.92 51.07 0.88 28.10 

PCR GDBPF 6PCs 17.54 56.70 0.97 24.77 

PCR CDBPF 6PCs 15.93 51.23 0.98 18.98 

PLSR None 6LVs 11.30 34.07 0.90 38.96 

PLSR 1st 

derivative 

6LVs 22.54 31.59 0.97 27.56 

PLSR GDBPF 6LVs 12.00 38.30 0.96 24.59 

PLSR CDBPF 6LVs 15.92 28.43 0.98 19.06 

SVR None  C=0.1*10^6   2.50 38.44 0.90 42.00 

SVR 1st 

derivative 

 C=0.2*10^6 13.50 28.98 0.98 22.98 

SVR GDBPF  C=0.04*10^6 12.09 28.00 0.99 15.17 

SVR CDBPF  C=4.5*10^6 12.47 27.40 0.99 14.59 

LLER  None K=19, d=15 18.52 32.60 0.95 31.00 

LLER 1st 

derivative 

K=29, d=25 15.55 31.50 0.97 24.63 

LLER GDBPF  K=33, d=20, 

c=0.03f, w=0.04f   

14.92 27.80 0.98 18.34 

LLER CDBPF K=55, d=23 

C=0.02f, w=0.01f 

17.80 27.12 0.99 14.03 
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*=(units are in mg/dL);GDBPF=Gaussian digital bandpass filter;CDBPF=Chebyshev 

digital bandpass filter. 

 The results as summarized in Table 2, demonstrate that the LLER combined with the 

Chebyshev filter gives the best prediction accuracy. The advantage of a Chebyshev filter 

over a  Gaussian bandpass filter is that it offers an optimal trade off between a steeper roll 

off and passband ripples. Hence, it is more effective in reducing the effect of both the high 

frequency noise and low frequency baseline variations without affecting the mid-band NIR 

data. 

5. Conclusions 

In this paper, the use of the LLER method is investigated for the prediction of glucose 

concentration from near infrared spectra. The prediction capability of the proposed model 

has been evaluated and validated to generate and predict the glucose concentration of 

aqueous solutions composed of urea, triacetin and glucose. The results show that the LLER 

model outperforms PCR, PLSR and SVR models without pre-processing and show that the 

digital bandpass filter pre-processing could improve the prediction performance of the 

PCR, PLSR, SVR and LLER models in Comparison to the first derivative pre-treatment. 

The prediction capability of the LLER model is quite sensitive to the dimension of the 

embedded data (d) and the number of nearest neighbor points (K). Hence the selection of 

these parameters is very important to get the optimum results.   

In future work, the proposed model will be evaluated using blood plasma data.   
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