ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

cite this can consider the constant of the con

www.rsc.org/xxxxxx

Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification

Joel Hwang,*^a* **Hai Yu,***^a* **Hamed Malekan,***^a* **Go Sugiarto,***^a* **Yanhong Li,***^a* **Jingyao Qu,***a,b* **Van Nguyen,***^a* **Dongyuan Wu,***^a* **and Xi Chen****^a*

⁵*Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX* **DOI: 10.1039/b000000x**

Oligo(ethylene glycol)-linked light fluorous tags have been found to be optimal for conjugating to glycans for both highyield enzymatic glycosylation reactions using one-pot

- ¹⁰**multienzyme (OPME) systems and quick product purification by fluorous solid-phase extraction (FSPE) cartridges. The combination of OPME glycosylation systems and the FSPE cartridge purification scheme provides a highly effective strategy for facile synthesis and purification of glycans.**
- 15 Tagging organic compounds with a light fluorous tail such as a perfluorooctyl (C_8F_{17}) or perfluorohexyl (C_6F_{13}) group followed by product purification using fluorous solid-phase extraction $(FSPE)$ has found increasing synthetic uses.¹ For carbohydrate synthesis, non-cleavable single,² double,³ and cleavable⁴⁻⁶ 20 fluorous tags have been in the acceptor glycans to allow solution-phase synthesis and fast product purification. Light fluorous protecting groups have also been used in solution-phase^{7,} ⁸ or solid-phase⁹ synthesis. Odorless fluorinated thioglycosyl donors were prepared and shown excellent reactivities in 25 glycosylation reactions.¹⁰ Mono-perfluorooctyl (e.g. C_8F_{17} - and
- C_6F_{13}) tags¹¹⁻¹³ and a di- C_6F_{13} -tag¹⁴ allowed non-covalent immobilization of fluorous-tagged monosaccharides and oligosaccharides on fluorocarbon-coated glass slides to generate glycan microarrays that can sustain washing processes in 30 carbohydrate-lectin binding studies.

Except for a limited number of examples (e.g. feeding cultured animal cells with fluorous-tagged lactosides or an *N*acetylglucosaminide for producing small amounts of elongated fluorous oligosaccharides,¹⁵⁻¹⁷ using a C_3F_7 tag to facility the

- 35 product purification of enzymatically synthesized heparosan oligosaccharide derivatives,18 and using non-covalently immobilized light fluorous tagged glycans as substrates for glycosyltransferase¹⁹ and glycosidase²⁰ activity assays by mass spectrometry), light fluorous tags have not been used broadly to
- 40 facilitate product purification in preparative-scale enzymatic synthesis . This is most likely due to either the lower tolerance of relatively long fluorous tags (e.g. a C_8F_{17} or longer tag) by enzymatic reactions which often leads to no reaction or low yields, or the lower efficiency in FSPE cartridge-purification
- 45 inherited by very short fluorous tags (e.g. a C_3F_7 tag). Here we demonstrate that with suitable linkers, light fluorous tags (e.g. C_6F_{13} and C_8F_{17}) attached to simple glycans can be tolerated by a

range of glycosyltransferases in one-pot multienzyme (OPME) systems for efficient synthesis. They can facilitate facile 50 purification of neutral and negatively charged oligosaccharide products using FSPE cartridges in less than 10 minutes. Compared to the hydrocarbon $[(CH₂)₈CO₂Me$ and octyl tags introduced by Hindsgaul et al. which have been used successfully for glycosyltransferase activity assays, 21 the fluorous tags have 55 additional advantages of being silent in ¹H NMR thus reducing

the signals from the tag that may interfere with compound characterization.²²

Carbohydrates are biologically important but synthetically challenging biomolecules. Our group has developed several 60 efficient OPME approaches for synthesizing complex oligosaccharides with high yields, excellent regio- and stereoselectivities in preparative to large scales.^{23, 24} Starting from simple acceptors and free monosaccharides, each OPME reaction can be completed in 10 min – 48 hours by simply mixing 65 multiple enzymes, a monosaccharide, an acceptor, nucleotide triphosphates, and a metal cofactor. Multiple OPME reactions can be carried out in sequential to build up more complex oligosaccharides.^{25, 26} While the OPME approaches are extremely effective, the product purification remains tedious 70 and time consuming. Usually, the combination of sizeexclusion and silica gel column purifications are required to obtain the desired pure products.

To facilitate product purification of the OPME glycosylation reactions, light fluorous tagged glycosyltransferase acceptors 75 with different lengths of perfluoroalkanes and various linkers were synthesized and tested to identify optimal fluorous tags that are well tolerated by glycosyltransferases in OPME reactions while allow facile product purification by FSPE.

Since lactose is a common core structure in many glycans 80 and a suitable acceptor for numerous glycosyltransferases, lactosides **1–8** containing various linkers and different lengths of perfluoroalkanes including C_8F_{17} , C_6F_{13} , and C_3F_7 were synthesized (Scheme 1).

A simple C_8F_{17} -tagged lactoside 1 synthesized by direct 85 chemical glycosylation (Scheme 1) was initially tested as an acceptor substrate for *Pasteurella multocida* α2–3 sialyltransferase 1 E271F/R313Y mutant (PmST1 E271F/R313Y) with decreased α 2–3-sialidase activity.²⁷ The assay was performed in a one-pot two-enzyme system 90 containing PmST1 E271F/R313Y and *Neisseria meningitidis*

Dynamic Article Links ►

ARTICLE TYPE

This journal is © The Royal Society of Chemistry [year] *[journal]*, [year], **[vol]**, 00–00 | **1**

CMP-sialic acid synthetase (NmCSS) (Scheme 2^2).²⁸ The reaction was inefficient and only a trace amount (< 10%) of sialylated product was produced as shown by thin-layer chromatography (TLC) and matrix-assisted laser 5 desorption/ionization-time of flight (MALDI-TOF) mass

- spectrometry. The low water solubility of lactoside **1** contributed significantly to the low efficiency of the reaction. Furthermore, the rigid and rod-like perfluorooctyl chain²⁹ close to the lactoside may also prevent compound **1** from 10 being a good acceptor for PmST1 E271F/R313Y. Adding an
- organic solvent such as DMF, DMSO, methanol, or acetonitrile for up to 30%, or 0.1% of detergents as Triton X-100, Tween 80, or HFE-7200 did not improve the yield.

15 Scheme 1. Fluorous-tagged lactosides that were synthesized.

Scheme 2. Test of C₈F₁₇-tagged lactoside **1** as the glycosyltransferase acceptor in a one-pot two-enzyme sialylation system containing NmCSS and PmST1 E271F/R313Y.

- 20 To increase the solubility of the fluorous-tagged lactosides and to examine how the length of the fluorous tags affects the efficiency of the enzymatic reactions, fluorous-tagged lactosides (**2**–**4**) (Scheme 1) containing a propylamide linker and different lengths of fluoroalkyl chains were synthesized 25 and used as the acceptors in a one-pot two-enzyme system
- containing NmCSS and PmST1 E271F/R313Y (Scheme 3). Sialosides (**10**–**12**) were obtained with varied yields of 22%, 92%, and 89% from lactosides tagged with C_8F_{17} , C_6F_{13} , and C3F7, respectively (entries **a–c** for products **10–12**) (Table 1).
- 30 These results indicated that the decrease of the fluorous tag length led to the increase of the enzyme activity. Nevertheless, the short C_3F_7 fluorous tag was not sufficient to retain the sialoside product **12** in FSPE cartridge during the water washing steps (Supporting Information), rendering it an
- 35 unsuitable tag for FSPE purification. In comparison, C_8F_{17} and C_6F_{13} -tagged sialosides 10 and 11 were easily purified by a FSPE cartridge. Similar effects of the fluorous tag lengths on the glycosylation yields and FSPE product purification were observed for a one-pot two-enzyme α 2–6-sialylation
- 40 system containing NmCSS and *Photobacterium damselae* α2– 6-sialyltransferse (Pd2,6ST)30, 31 (Table 1, entries **d–f** for products **13–15**) and a one-pot four-enzyme galactosylation system containing *Escherichia coli* galactokinase (EcGalK), ³² *Bifidobacterium longum* UDP-sugar pyrophosphorylase (BLUSP),³³ ⁴⁵*Pasteurella multocida* inorganic pyrophosphatase

 $(PmPpA)$,²⁴ and bovine α 1–3-galactosyltransferase (α 1– 3GalT)34 (Table 1, entries **g–i** for products **16–18**).

Table 1. OPME sialylation (pH 8.5) and galactosylation (pH 7.0) of lactosides (**2**–**4**) containing various lengths of fluorous tags.

^[a]Determined by thin-layer chromatography and ImageQuant 5.2 after staining of the plate. Reaction was assayed at 4 $h^{[b]}$ or 15 $h^{[c]}$.

Scheme 3. OPME glycosylation of fluorous-tagged lactosides.

⁵⁵*Table 2.* OPME sialylation glycosylation (pH 8.5) and galactosylation (pH 7.0) of fluorous-tagged lactosides (**5**–**8**) containing a TEG or an HEG linker.

	$5 - 8$	glycosylation Tris-HCI (100 mM)	OPME 37 °C	OH _C R ³ R ² O нò	ΟН HO нo 19 - 30	н ٥	は n	
	Entry Acceptor	R1	n	Enzyme	R^2	R^3	Product	Conversion (%) ^[a]
	5	C_8F_{17}	3	PmST1 E271F/R313Y	$Neu5Acu2-3$	н	19	$65 \pm 11^{[b]}$
k	6	C_8F_{17}	6	PmST1 E271F/R313Y	Neu5Aca2-3	н	20	$55 \pm 7.8^{[b]}$
	5	C_8F_{17}	3	Pd2-6ST	н	Neu5Acα2-6	21	$47 \pm 10^{[b]}$
m	6	C_8F_{17}	6	Pd2-6ST	н	Neu5Aca2-6	22	$52 \pm 5.6^{[b]}$
n	5	C_8F_{17}	3	α 1-3Ga Π	$Ga1-3$	н	23	$81 \pm 8.0^{[c]}$
\circ	6	C_8F_{17}	6	α 1-3GaIT	$Ga1-3$	н	24	$66 \pm 10^{[c]}$
р	7	C_6F_{13}	3	PmST1 E271F/R313Y	Neu5Acn2-3	н	25	$70 \pm 4.8^{[b]}$
q	8	C_6F_{13}	6	PmST1 E271F/R313Y	Neu5Acn2-3	н	26	$80 \pm 15^{[b]}$
r	7	C_6F_{13}	3	Pd2-6ST	н	Neu5Acn2-6	27	$65 \pm 7.9^{[b]}$
s	8	C_6F_{13}	6	Pd2-6ST	н	Neu5Acn2-6	28	66 ± 25^{b1}
t	7	C_6F_{13}	3	$a1.3$ Gal T	$Ga1-3$	н	29	$71 \pm 0.5^{\text{[c]}}$
ū \overline{a}	8	$C_{6}F_{13}$.	6	α 1-3Ga Π \sim	$Ga1 - 3$ \sim	н \cdot	30 . .	$69 \pm 1.0^{[c]}$

[a]Determined by thin-layer chromatography and ImageQuant 5.2 60 software after staining. Reaction was assayed at 4 $h^{[b]}$ or 15 $h^{[c]}$.

In order to improve the compatibility of lactosides with longer fluorous tags (e.g. C_8F_{17}) to the OPME glycosylation reactions, a tri- (TEG) or a hexa-ethylene glycol (HEG) linker was introduced to obtain fluorous-tagged lactosides **5–8** (Scheme 65 1). OPME α2–3/6-sialylation, and α1–3-galactosylation reactions (Scheme 3) showed that the TEG and HEG linkers improved significantly the yields of C_8F_{17} -tagged lactosides (Table 2).

The length of the oligo(ethylene glycol) (OEG) linker with either 3 or 6 ethylene glycol repeats, however, does not seem to 70 affect the efficiency of the OPME reactions significantly (Table 2). While TEG/HEG- C_6F_{13} -tagged lactosides still led to better yields, $TEG/HEG-C_8F_{17}$ -tagged lactosides provided sufficiently good yields for practical production of glycosylated products.

- Encouraged by these results, preparative-scale synthesis 5 and FSPE cartridge purification of GM3, 6'-sialyllactoside, and iGb3 glycan analogs (**11**, **14**, **23**, **25**, **27**, and **29**) were carried out (Table 3). After total consumption of the fluorous-tagged lactoside acceptor in each OPME reaction by TLC monitoring, the reaction mixture was centrifuged and the supernatant was
- 10 purified using an 10 c.c. FSPE cartridge containing 2 g of fluorous silica gel by simply loading the reaction mixture to the cartridge, washing with four-column volumes of water, and eluting the fluorous-tagged product using 100% MeOH. Nuclear magnetic resonance (NMR) spectroscopy and high
- 15 resolution mass spectrometry (HRMS) analyses demonstrated that one-step FSPE cartridge purification was sufficient to provide desired products with high purity (Supporting information). It is noteworthy that the FSPE cartridge purification is suitable for purifying both neutral 20 (galactosides) and negatively charged (sialosides)
- trisaccharide products in a simple, quick, and efficient manner. The whole purification process generally takes 5–7 minutes, which is substantially less than conventional silica gel (2–6 hours) and size-exclusion column (>3 hours)
- 25 purifications for unprotected sugars. The quick purification of fluorous-tagged glycans also allows the yield improvement by subjecting the mixture of fluorous-tagged glycan acceptor and product for the second round of enzymatic synthesis (e.g. synthesizing compound **23** in Table 3).
- ³⁰*Table 3.* Preparative-scale OPME synthesis of oligosaccharides with FSPE cartridge purification.

 $\frac{[a]}{[a]}$ Solated vields; $\frac{[b]}{[b]}$ The reaction mixture was purified by FSPE and underwent another round of OPME reaction.

- In conclusion, a series of fluorous-tagged sialosides and galactosides were synthesized in preparative scales using highly efficient OPME glycosylation approaches and were purified by FSPE cartridges in a simple, quick, and efficient fashion. Introducing a TEG or HEG linker to the C_8F_{17} or
- $40 \text{ } C_6$ F₁₃-tagged lactoside improved the solubility of the substrates and increased the OPME glycosylation yields without compromising the FSPE purification process. The combination of OPME glycosylation systems and the FSPE cartridge purification is a simple and highly effective strategy for facile synthesis and
- 45 purification of oligosaccharides. The method will be further explored with suitable cleavable linkers for the preparative and large scale synthesis of more complex oligosaccharides and polysaccharides and be adapted to automated enzymatic synthesis of challenging carbohydrate targets.
- This work was supported by NSF grant CHE-1012511. Bruker Avance-800 NMR spectrometer was funded by NSF grant DBIO-722538. X. Chen is a Camille Dreyfus Teacher-Scholar and a UC-Davis Chancellor's Fellow.

Notes and references

- *^a* ⁵⁵*Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA. E-mail: xiichen@ucdavis.edu; Fax: +1 530-752-8995; Tel: +1 530-754-6037*
- *b Current address: Department of Chemistry, Georgia State University, Atlanta, Georgia 30302 (USA)*
- ⁶⁰*†Electronic Supplementary Information (ESI) available: Experimental details for chemical and enzymatic synthesis, NMR and HRMS data. See DOI: 10.1039/b000000x/*
	- 1. W. Zhang and D. P. Curran, *Tetrahedron*, 2006, **62**, 11837-11865.
- 2. F. A. Jaipuri and N. L. Pohl, *Org. Biomol. Chem.*, 2008, **6**, 2686- 65 2691.
3. G. Pa
- 3. G. Park, K. S. Ko, A. Zakharova and N. L. Pohl, *J. Fluor. Chem.*, 2008, **129**, 978-982.
- 4. L. Manzoni, *Chem. Commun.*, 2003, 2930-2931.
- 5. L. Manzoni and R. Castelli, *Org. Lett.*, 2004, **6**, 4195-4198. 70 6. C. Zong, A. Venot, O. Dhamale and G. J. Boons, *Org. Lett.*, 2013, **15**,
- 342-345.
- 7. L. Manzoni and R. Castelli, *Organic letters*, 2006, **8**, 955-957. 8. F. Zhang, W. Zhang, Y. Zhang, D. P. Curran and G. Liu, *J. Org. Chem.*, 2009, **74**, 2594-2597.
- 75 9. F. R. Carrel and P. H. Seeberger, *J. Org. Chem.*, 2008, **73**, 2058- 2065.
	- 10. Y. Jing and X. Huang, *Tetrahedron Lett.*, 2004, **45**, 4615-4618.
- 11. K. S. Ko, F. A. Jaipuri and N. L. Pohl, *J. Am. Chem. Soc.*, 2005, **127**, 13162-13163.
- 80 12. F. A. Jaipuri, B. Y. Collet and N. L. Pohl, *Angew. Chem. Int. Ed.*, 2008, **47**, 1707-1710.
	- 13. G. S. Chen and N. L. Pohl, *Org. Lett*, 2008, **10**, 785-788.
	- 14. H. D. Edwards, S. K. Nagappayya and N. L. Pohl, *Chem. Commun.*, 2012, **48**, 510-512.
- 85 15. M. C. Z. Kasuya, S. Nakano, R. Katayama and K. Hatanaka, *J. Fluor. Chem.*, 2011, **132**, 202-206.
- 16. M. C. Kasuya, R. Cusi, O. Ishihara, A. Miyagawa, K. Hashimoto, T. Sato and K. Hatanaka, *Biochem. Biophys. Res. Commun.*, 2004, **316**, 599-604.
- 90 17. M. Tojino, M. Mori, M. C. Kasuya, K. Hatanaka, A. Kawaguchi, K. Nagata, T. Shirai and M. Mizuno, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 1251-1254.
- 18. R. Liu, Y. Xu, M. Chen, M. Weiwer, X. Zhou, A. S. Bridges, P. L. DeAngelis, Q. Zhang, R. J. Linhardt and J. Liu, *J. Biol. Chem.*, 2010, ⁹⁵**285**, 34240-34249.
- 19. T. R. Northen, J. C. Lee, L. Hoang, J. Raymond, D. R. Hwang, S. M. Yannone, C. H. Wong and G. Siuzdak, *Proc. Natl. Acad. Sci. U. S. A.*, 2008, **105**, 3678-3683.
- 20. K. Deng, K. W. George, W. Reindl, J. D. Keasling, P. D. Adams, T. 100 S. Lee, A. K. Singh and T. R. Northen, *Rapid Commun. Mass Spectrom.*, 2012, **26**, 611-615.
	- 21. M. Palcic, L. Heerze, M. Pierce and O. Hindsgaul, *Glycoconj. J.*, 1988, **5**, 49-63.
- 22. Z. Luo, Q. Zhang, Y. Oderaotoshi and D. P. Curran, *Science*, 2001, ¹⁰⁵**291**, 1766-1769.
	- 23. H. Yu, H. A. Chokhawala, S. Huang and X. Chen, *Nat. Protoc.*, 2006, **1**, 2485-2492.
- 24. K. Lau, V. Thon, H. Yu, L. Ding, Y. Chen, M. M. Muthana, D. Wong, R. Huang and X. Chen, *Chem. Commun.*, 2010, **46**, 6066- 110 6068
	- 25. Y. Chen, Y. Li, H. Yu, G. Sugiarto, V. Thon, J. Hwang, L. Ding, L. Hie and X. Chen, *Angew. Chem. Int. Ed.*, 2013, **52**, 11852-11856.
	- 26. K. Lau, H. Yu, V. Thon, Z. Khedri, M. E. Leon, B. K. Tran and X. Chen, *Org. Biomol. Chem.*, 2011, **9**, 2784-2789.
- 115 27. G. Sugiarto, K. Lau, Y. Li, Z. Khedri, H. Yu, D.-T. Le and X. Chen, *Mol. Biosyst.*, 2011, **7**, 3021-3027.
	- 28. H. Yu, H. Yu, R. Karpel and X. Chen, *Bioorg. Med. Chem.*, 2004, **12**, 6427-6435.
	- 29. M. P. Krafft and J. G. Riess, *Chem. Rev.*, 2009, **109**, 1714-1792
- 120 30. H. Yu, S. Huang, H. Chokhawala, M. Sun, H. Zheng and X. Chen, *Angew. Chem. Int. Ed.*, 2006, **45**, 3938-3944.
	- 31. M. Sun, Y. Li, H. A. Chokhawala, R. Henning and X. Chen, *Biotechnol. Lett.*, 2008, **30**, 671-676.
- 32. X. Chen, Z. Liu, J. Zhang, W. Zhang, P. Kowal and P. G. Wang, ¹²⁵*Chembiochem*, 2002, **3**, 47-53.
	- 33. M. M. Muthana, J. Qu, Y. Li, L. Zhang, H. Yu, L. Ding, H. Malekan and X. Chen, *Chem. Commun.*, 2012, **48**, 2728-2730.
- 34. J. W. Fang, J. Li, X. Chen, Y. N. Zhang, J. Q. Wang, Z. M. Guo, W. Zhang, L. B. Yu, K. Brew and P. G. Wang, *J. Am. Chem. Soc.*, 1998, 130 **120**, 6635-6638.

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], **[vol]**, 00–00 | **3**

Fluorous-tagged glycans with an oligo(ethylene glycol) linker are well tolerated acceptor substrates for glycosyltransferases which allowed facile synthesis of glycans by efficient one-pot 5 multienzyme (OPME) systems with easy and quick purification by fluorous solid-phase extraction (FSPE) cartridges.

