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Copper-catalyzed olefinic difluoroacetylation of enamide via 

direct C-H bond functionalization using BrCF2CO2Et is 

reported for the first time. It constitutes an efficient radical-

free method for the regioselective synthesis of β-difluoroester 

substituted enamides which exhibits broad substrate scope, 10 

and thus demonstrates its potent application in a late stage 

fluorination strategy.  

Organofluorine chemistry is a rapidly expanding field. The 

ubiquity of fluorinated compounds has been particularly 

highlighted in the fields of pharmaceutical research and 15 

agrochemistry.1,2 Recently, fluorinated compounds and 

particularly those containing a fluorinated methyl group (CF3, 

CF2R) have attracted much attention, spurring research groups to 

discover new accesses to fluorine containing molecules.3-7 These 

remarkable efforts gave birth to efficient and selective methods 20 

towards the introduction of CF3 and CF2R groups particularly by 

means of direct C-H bond functionalization which recently 

became one of the most attractive research fields in organic 

synthesis.8-10 Rather surprisingly, less attention has been paid to 

the direct introduction of pre-functionalized fluorinated building 25 

blocks (i.e. CF2SO2Ph, CF2CO2Et) that can be used in further 

transformations.11 The CF2CO2Et moiety appeared notably as an 

interesting manifold to access a wide range of fluorinated 

substituents. Noteworthy, its introduction mainly focused on the 

use of radical processes or transition metal catalyzed cross-30 

coupling reactions between a halo-derivative and an 

organometallic partner.12 Stimulated by our recent findings on the 

copper-catalyzed direct -arylation of enamides13 and in the 

dihydropyran series,11b herein, we would like to report the 

regioselective synthesis of β-difluoroester substituted enamides 35 

by using the commercially available BrCF2CO2Et (scheme 1).  

 
Scheme 1. Present work. 

Within this protocol and as an extension of our interest in alkene 

functionalization, copper catalysis, which is a field of tremendous 40 

expansion due to its abundance, low cost and low toxicity, was 

adopted to perform carbon-carbon bond formation. Moreover, 

enamides have been widely used as valuable building blocks to 

introduce nitrogen based functionalities on various aromatic or 

non-aromatic heterocycles.14 In the present case, the resulting 45 

difluoroester substituted enamides are thus of immediate 

relevance for the target-oriented synthesis of derivatives 

comprising a fluorinated heterocyclic subunit. To the best of our 

knowledge, the Cu-catalyzed olefinic difluoroacetylation of non-

aromatic enamide via direct C-H bond functionalization is 50 

unprecedented and would constitute a powerful, selective and 

atom-economic strategy to reach the fluorinated -electron-rich 

olefin, which is still in great demand. 

Table 1 Optimization of the copper-catalyzed difluoroacetylation of 

Enamide 1aa 55 

 

Entry Catalyst Ligand Base Yieldb(%) 

1 Cu2O 1,10-Phenanthroline K2CO3 91 

2c Cu2O 1,10-Phenanthroline K2CO3 88 
3d Cu2O 1,10-Phenanthroline K2CO3 traces 

4 Cu(OTf)2 1,10-Phenanthroline K2CO3 25 

5 CuI 1,10-Phenanthroline K2CO3 26 
6 Cu[MeCN]4.PF6 1,10-Phenanthroline K2CO3 24 

7 Cu2O 1,10-Phenanthroline Cs2CO3 88 

8c Cu2O 1,10-Phenanthroline Et3N traces 
9c Cu2O 1,10-Phenanthroline dtbpy 0 

10 Cu2O Bathophenantroline K2CO3 38 

11 Cu2O Neocuproine K2CO3 traces 
12 Cu2O 2,2’-Bipyridine K2CO3 41 

13 - 1,10-Phenanthroline K2CO3 0 

14c Cu2O 1,10-Phenanthroline - 0 
15 Cu2O - K2CO3 0 

a Reaction conditions unless otherwise specified: BrCF2CO2Et (2 equiv), 

copper catalyst (10 mol%), ligand (12 mol%), base (2 equiv), CH3CN, 80 
°C, 6h. b Isolated yield after purification by flash chromatography. c 4 

equiv of BrCF2CO2Et were used. d 1 equiv of BrCF2CO2Et was used. 

dtbpy=4,4’-di-tert-butyl-2,2’-bipyridine. 60 

At the outset of our study, the reaction condition was optimized 

using six-membered cyclic enamide 1a as a model substrate. 

Standard screening of solvents, catalysts, temperature, and ratio 

of reagents established that the optimized conditions15 were Cu2O 

(10 mol%) and 1,10-phenanthroline (12 mol%) as a ligand in 65 

presence of BrCF2CO2Et (2 equiv), K2CO3 (2 equiv ) in CH3CN 

at 80°C (Table 1). Accordingly, we were pleased to isolate 2a in 

91% yield along with a complete -regioselectivity (entry 1). 
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Modification of the BrCF2CO2Et stoichiometry did not provide 

further improvements and the reaction was ineffective in the 

presence of 1 equiv of BrCF2CO2Et (entries 2 and 3). A catalyst 

screening showed that Cu(OTf)2, CuI, Cu[MeCN]4.PF6 were less 

active, furnishing the desired product 2a in lower yield (entries 4-5 

6).16 An examination of the nature of the base revealed that 

K2CO3 gave the best results (entry 7). Organic bases did not 

allow the formation of 2a (entries 8-9). Other ligands, such as 

bathophenanthroline, neocuproine and 2,2’-bipyridine were 

tested, but no enhancement of the reaction yield was measured 10 

(entries 10-12). It is worth mentioning that no reaction occurred 

in the absence of copper catalyst, base or ligand (entries 13-15). 

Having established the reaction conditions, a wide range of cyclic 

and acyclic enamides 1 were examined, as depicted in table 2. 

The scope, site selectivity, and functional group tolerance are 15 

notable aspects of this original methodology. We were delighted 

to note that all transformations worked well and afforded the 

corresponding -difluoroester substituted enamides 2 with 

complete regioselectivity. Modifications concerning both the 

protecting group on the nitrogen atom and the size of the 20 

heterocycle were envisaged. While enecarbamate 1a, 1d and 

enamide 1b gave very satisfying results, sulfonamide 1c proved 

not to be activated enough to react. The desired fluorinated endo-

enamides 2e and 2f17 were isolated respectively in good and low 

yields. Furthermore, the reaction turned out to be compatible with 25 

a variety of functional groups, which were amenable to further 

useful transformations (2g, 2h, 2i). Uracil and uridine derivatives, 

giving respectively 2j18 and 2k, were also proved to be applicable 

in this reaction. This result points out the functional group 

tolerance of our process and its potent application in a late stage 30 

fluorination strategy.19 Expectedly, when a thymine derivative20 

was used as a substrate, no coupling product was obtained, ruling 

out the possibility of a coupling at the -position. Notably, the 

vinylogous -difluoroester pyridones 2l and 2m were isolated in 

good yields.21 It is worth noting that to date only the 35 

trifluoromethylpyridone derivative has been reported so far in the 

literature.22 Furthermore, experiments were also carried out on 

the valuable acyclic substrates affording the desired -

difluoroester enamides 2n-r with complete regio- and 

stereoselectivity, as only one diastereoisomer (E or Z) could be 40 

detected.21,23 Evans oxazolidinone was also a suitable substrate; 

2o was isolated in 56% isolated yield.24 Importantly, acyclic -

difluoroester enamides were readily available via Cu-catalyzed C-

H functionalization, setting up the possibility of developing new 

unprecedented access to either non-natural fluorine containing 45 

aminoacids or fluorinated heterocycles.25 Our method also proved 

applicable to aromatic enamide such as indole 1s. The 

corresponding -fluorinated derivative 2s was isolated albeit with 

low yield.26 The -selectivity is a result of the higher acidity of 

the hydrogen at the C-1 position (cf. scheme 3) and extends the 50 

scope of our reaction beyond existing other methods.27  

Then, in order to showcase the versatility of these difluoroester 

enamides 2, further transformations were carried out (scheme 2). 

First, aminolysis of enamide 2e worked smoothly which 

generated the corresponding fluorinated amide 3 with an 55 

excellent 93% yield. Hydrogenation of 2e at room temperature 

and atmospheric pressure afforded the difluoroacetylated lactam 4 

in 62% yield. It should be noted that, under the conditions used, 

only the double bond of the enamide was reduced, while the 

benzyl group was not removed and no fluorine abstraction 60 

occurred. Noteworthy, this reduction gave a unique access to -

CF2CO2Et-piperidones, which are key scaffolds in the quest for 

new pharmaceuticals.22 Finally, hydrolysis of the ester function of 

2m under basic conditions led to the corresponding carboxylic 

acid 5 with good yield.  65 

Table 2 Scope of the Cu-catalyzed difluoroacetylation reaction by 

varying enamides 1. 

 

 
a With 4 equiv of BrCF2CO2Et. 

In an effort to understand the mechanism of the reaction, we 70 

initiated an investigation in the presence of a catalytic amount (20 

mol%) of radical inhibitors or scavengers: TEMPO, 

benzoquinone and TBHT. In all cases, no inhibition of the 

coupling reaction was observed. Although the reaction required a 

longer reaction time, the fluorinated product was formed in 75 

similar yield when one equivalent of TEMPO was added to the 

reaction mixture. These observations prompted us to do not 

consider a radical mechanism as a plausible pathway for this 

transformation. 

 80 

Scheme 2. Transformations from fluorinated enamide 2e or 2m 

Then, to gain further insight into the reaction mechanism, studies 

were undertaken via electrochemical techniques. Cyclic 

voltammetry (CV) was performed with the tetrakisacetonitrile 

copper(I) hexafluorophosphate CuIS4
+ PF6

- as the copper source 85 

to analyze a homogeneous mixture. CuI(phen)S3
+28, formed in the 
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presence of phenanthroline (phen) in acetonitrile (S), did not react 

with the BrCF2CO2Et.29 However, the CV of the enamide, 

characterized by its oxidation peak at +1.42 V (O1), evolved after 

addition of CuI(phen)S3
+ (1 equiv) and a pre-wave appeared at 

O2
30 before O1. This pre-wave indicates that a new complex is 5 

formed, CuI(phen)(enamide)S2
+ in equilibrium with the free 

enamide. The plateau shape of the new wave typically 

characterizes a CE mechanism, in which the equilibrium is 

shifted in the diffusion layer by the first oxidation of 

CuI(phen)(enamide)S2
+ at O2.

31 Therefore, one can conclude that 10 

CuI(phen)S3
+ reacts preferentially with the enamide in the first 

step of the catalytic cycle. Addition of K2CO3 (1 equiv) at room 

temperature did not modify the CV, attesting to a slow 

deprotonation of the ligated enamide giving intermediate III.15 

However, III was detected by ESI+ (m/z 446.0924 for 15 

[M+H]+).15Although the mechanism of this copper catalytic 

reaction is still under investigation, our preliminary data render a 

standard redox cycle with Cu(I)/Cu(III) involving a complexation 
of the nucleophile to Cu(I) prior to deprotonation (scheme 3).32  

 20 

 

Fig. 1. CV performed in CH3CN containing nBu4NBF4 (0.3 M) at a 

steady glassy disk electrode (d = 1 mm), at the scan rate of 0.5 V.s-1, at 20 

°C. (a) Oxidation of the enamide 1a (2 mM); (b) Oxidation of the 

enamide 1a in the presence of CuI(phen)S3
+ (1 equiv.). 25 

 

Scheme 3. Plausible reaction mechanism. 

In summary, we have developed a mild, simple and efficient Cu-

catalyzed radical free synthesis of -difluoroester substituted 

enamide. This original transformation is completely 30 

regioselective and exhibits broad substrate scope, good functional 

group tolerance and thus demonstrates its potent application in a 

late stage fluorination strategy. Beyond this elegant method, the 

resulting original difluoroester enamides could be versatile 

building blocks for the synthesis of various N-containing 35 

aromatic or non-aromatic heterocycles. Moreover, mechanistic 

studies were carried out to elucidate the reaction pathway. Cyclic 

voltammetry along with MS-ESI experiments led us to propose a 

Cu(I)/Cu(III) catalytic cycle. Further investigations of the 

mechanism, scope and applications of this method are underway. 40 
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