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A liquid-liquid interfacial reaction between 1,2,4,5-benzenetetrathiol and nickel(II) ion 

produced a π-conjugated coordination polymer that aligns regularly. 
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Ordered Alignment of a One-Dimensional  
-Conjugated Nickel Bis(dithiolene) Complex Polymer 
Produced via Interfacial Reactions† 
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Kusamoto, and Hiroshi Nishihara* 

 

A liquid-liquid interfacial synthesis using 1,2,4,5-
benzenetetrathiol and nickel(II) ions produced a thin black 
film of a -conjugated polymer featuring the nickel 
bis(dithiolene) motif. Its ordered structure was not originally 
identified due to its amorphicity; however, it was observed to 
align regularly on a highly oriented pyrolytic graphite 
substrate by scanning tunnelling microscopy. 

One-dimensional (1D) coordination polymers (CPs) have attracted 
significant attention because of their broad potential applicability in 
electronics, optics, and magnetic devices.1 Their bottom-up 
fabrication from constitutive ligand molecules and metal atoms or 
ions allows diversity in both composition and physical properties.1b–d 
Synthesis is also often by self-assembly.1a–c, e However, controlling 
the secondary structures of 1D CPs (e.g. sheets, wires, rods, fibres, 
and tubes) is difficult: most 1D CPs are insoluble in any solvent, and 
are likely to aggregate randomly.1b–e As part of several efforts to 
compensate for this weakness, Hou and coworkers demonstrated the 
formation of tubular assemblies of 1D CPs using a layer-by-layer 
template method,2 and Petra and coworkers efficiently generated CP 
nanofibres using a microfluidic method.3 

-conjugation shown by 1D CPs based on metal bis(dithiolene) 
complexes sets them apart from other CPs.4,5 They can assume a 
number of stable oxidation states containing open-shell electronic 
structures, which makes them promising conductive and magnetic 
materials. These benefits are especially apparent when the metal 
bis(dithiolene) motif is incorporated into the main chain in a -
conjugated fashion, as demonstrated by systems comprising metal 
ions and aromatic tetrathiols [e.g., tetrathiooxalic acid,4a–c 
ethylenetetrathiol,4d tetrathiosquaric acid,4e 
tetrathiafulvalenetetrathiol,4f tetrathianaphthalene,4g and 
benzenetetrathiol (BTT)4h]. However, these polymers are essentially 
insoluble amorphous solids with no ordered secondary structures, 
except for faint ordering, which has been deduced from large angle X-
ray scattering (LAXS) and extended X-ray absorption fine structure 
(EXAFS) analyses.4i 

We recently fabricated a two-dimensional CP nanosheet comprising 
benzenehexathiol and Ni(II) ions.5 Its fabrication was distinct in that 
dichloromethane (holding benzenehexathiol) and water (containing 
Ni(II) ions) were layered, and the coordination reaction was 
conducted at the flat and calm liquid-liquid interface. This synthesis 
allowed controlled coordination, which resulted in a crystalline 
product of stacked nanosheets. This contrasts with the amorphous 
solid that results from a conventional one-phase synthesis.5 The 
current work reports the liquid-liquid interfacial synthesis and 
characterisation of 1D CPs composed of BTT and Ni(II) ions 
(abbreviated 1, Scheme 1). 

Our new synthetic procedure for 1D CP 1 is as follows. Ni(OAc)2 
(50 mM) and the charge-compensating counter cation Na+ (as NaBr) 
(10 mM) were mixed in water to form the aqueous phase. BTT 
(0.48 mM) in dichloromethane constituted the organic phase. The 
organic layer was initially overlaid with pure water; the aqueous 
solution was then added carefully to the pure water layer, thus 
allowing a calm liquid–liquid interface to be maintained. Storing the 
biphase system under an Ar atmosphere without disturbance (e.g. 
vibration) for 1 day resulted in 1 forming as a thin black film at the 
interface (Fig. 1a). 

 

 

 

 

 

 

 

 

 

 

Scheme 1 Fabrication of nickel bis(dithiolene) 1D CP 1 using a 
liquid–liquid interfacial reaction. Grey, C; yellow, S; green, Ni. 
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Fig. 1 (a) Photograph of the liquid–liquid synthesis with a thin black 
film of 1 at the interface. (b) FE-SEM image of 1. (c) HR-TEM image 
of 1. Insets show high-magnification images. 

 

 

 

 

 

 

 

Fig. 2 ATR-IR spectra of BTT (black) and 1 (red). 

Fig. 1b and 1c show field emission scanning electron microscopy 
(FE-SEM) and high-resolution transmission electron microscopy 
(HR-TEM) images of 1. SEM showed thin films with lateral sizes of 
~100 μm; TEM also showed film-like nanostructures. High-
magnification reveals a stair-like morphology at the edge of 1, 
indicative of a layered structure. 

Attenuated total reflection IR (ATR-IR) spectroscopy and X-
ray photoelectron spectroscopy (XPS) were used to identify 1. 
Fig. 2 shows ATR-IR spectra of 1 and BTT. BTT showed a 
distinctive signal at 2520 cm−1, ascribed to the S–H stretching 
vibration.6 The corresponding peak was not shown by 1, 
indicating that all the thiol groups of BTT coordinated with 
Ni(II) ions. BTT also showed sharp absorption peaks at 1128 and 
1070 cm−1, assignable to the C–S stretching,6 whereas 1 
exhibited three broad signals at 1017, 1068, and 1106 cm −1, 
which are ascribable to the C–S stretching of the nickel 
bis(dithiolene) complex. A mononuclear nickel bis(dithiolene) 
complex in the −1 oxidation state features the C–S stretching 
mode at 1114 cm−1, which splits into two bands at 1029 and 
1099 cm−1 in the 0 oxidation state.7 

Fig. 3 shows the S, Ni, and Na XPS of 1 deposited on highly 
oriented pyrolytic graphite (HOPG). The oxidation state of the nickel 
bis(dithiolene) unit is reflected in the binding energy of the S atom,5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (a) XPS of 1 focusing on the S 2s, Ni 2p, and Na 1s regions. (b) 
Deconvolution of the S2s peak. Two Gaussian curves are derived 
from nickel bis(dithiolene) moieties in the 0 (green) and −1 (blue) 
oxidation states. A “shake-up” peak (gray) is also present. 
Experimental (red) and simulated (the sum of the three Gaussian 
curves, dotted black) overall S 2s peaks are also shown. 

 

 

 

 

 

 

Fig. 4 (a) Cyclic voltammogram and (b) differential pulse 
voltammogram of 1 on HOPG in 1 M Bu4NClO4-dichloromethane. 

and can be found by deconvoluting the S 2s envelope. Three 
deconvoluted bands emerge at 226.1, 227.9, and 230.5 eV. The first 
two are respectively due to the −1 and 0 oxidation states of the nickel 
bis(dithiolene) motif. The broad band at 230.5 eV is assignable to a 
“shake-up” peak, which is often observed in metal bis(dithiolene) 
complexes.8 The area ratio between the signals at 226.1 and 227.9 eV 
suggests a 5:1 ratio of the 0 and −1 oxidation states of the nickel 
bis(dithiolene) moiety (Fig. S1, ESI†). This result is consistent with 
the fact that Na is included in 1 as a counter cation. The oxidation state 
of 1 can be modulated by a treatment with a reductant, 7,7,8,8-
tetracyanoquinodimethane radical anion sodium salt (NaTCNQ): 
Partial reduction was confirmed by means of XPS (Figure S2, ESI†). 

Cyclic voltammetry and differential pulse voltammetry were 
conducted using a working electrode of HOPG modified with 1 (Fig. 

 

 

 

 

 

 

 

 

 
Fig. 5 (a) STM topological image of 1 on HOPG. Tip bias (Vtip) = −700 mV; average tunnelling current (It) = 30.0 pA.  
(b) Magnification of the hexagonal pattern observed in (a). (c) Hexagonal pattern covering a large area. 
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4). One reversible redox wave was observed at 0.20 V vs. 
ferrocenium/ferrocene (Fc+/Fc) and was assigned to the 0/−1 couple 
of the nickel bis(dithiolene) moiety.7 The wave derived from the 
−1/−2 couple was not observed in the available potential window. 

The electrical conductivity of a film of as-prepared 1 transferred on 
a mica substrate was measured using a preliminary two-electrode 
configuration. It gave a conductivity in the order of 10-5 S cm-1 at 298 
K. 

To observe the ordered structure of 1, scanning tunnelling 
microscopy (STM) was conducted using 1 on an HOPG substrate (Fig. 
5). The height images show a hexagonal pattern with a periodicity of 
a = b = 14.3 nm. The periodicity is too great to suggest that the 
hexagonal pattern is assignable directly to 1 (the Ni−Ni distance is 
estimated to be 0.85 nm from DFT calculation; Fig. S3, ESI†). Instead, 
we suggest that it is a moiré interference superlattice arising from two 
ordered structures: a monolayer of 1 aligned in an A–B–A–B… 
fashion to form a quasi-hexagonal lattice, and the hexagonal lattice of 
the HOPG substrate (see ESI†, Fig. S4–S6 and Tables S1–S2 for 
details).9 A moiré pattern was also found in a two-dimensional nickel 
bis(dithiolene) nanosheet comprising benzenehexathiol and Ni(II) 
ions on an HOPG substrate.5 The hexagonal pattern covers an area of 
500  300 nm (Fig. 5c), indicating that 1D chains of at least 350 mers 
of 1 are aligned orderly to form the two-dimensional sheet-like 
structure.    

The authors note that a gas-liquid interfacial synthesis5 also 
produced a parallel alignment of 1 similar to that of the present liquid–
liquid interfacial procedure (Fig. S7, ESI†).  

In conclusion, we synthesised-conjugated 1D CP comprising 
BTT and Ni(II) ions via a liquid-liquid interfacial synthesis. The 
resulting thin film of 1 was characterised using SEM, HR-TEM, XPS, 
ATR-IR, and cyclic voltammetry. STM also revealed that a nanofilm 
of 1 deposited on an HOPG substrate featured a hexagonal pattern that 
covered an area of 500  300 nm, which suggests that chains of at 
least 350 mers of 1 aligned orderly in an A–B–A–B… fashion. We 
demonstrated that the oil–water interfacial synthesis allowed the 
creation of ordered secondary structures of 1D CPs. 
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