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The reaction of the 17e nickel(I) radical [CpNi(IDipp)] (1, 
IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) 
with P4 results in a nickel tetraphosphide [{CpNi(IDipp)}2(µ-
η1:η1-P4)] with a butterfly-P4

2- ligand; related chalcogenides  
[{CpNi(IDipp)}2(µ-E2)] (E = S, Se, Te) and [{CpNi(IDipp)}2(µ-
E3)] (E = S, Se) are formed with S8, Se∞ and Te∞. 

The P4 molecule is the most reactive allotrope of phosphorus; 
its activation and transformation by transition metal compounds 
has attracted substantial interest over the years.1 While many 
low-valent metal complexes, e.g. transition metal carbonyls or 
anionic metalates, react with P4, it is still challenging to design 
highly selective transformations.2,3 

 White phosphorus is able to efficiently trap organic and 
main group element radicals.4 Therefore, one potential solution 
to the selectivity issue is to use a radical pathway in transition 
metal-mediated P4 transformations. While 2nd and 3rd row 
metalloradicals are well-established,5 nickel(I) radicals have 
attracted significant attention recently.6,7 Importantly, Drieß et 
al. have shown that reactions of β-diketiminato nickel(I) 
complexes with P4 yield dinuclear complexes [(LRNi)2(µ-η3:η3-
P4)] (LR = HC[CMeN(2,6-R2C6H3)]2 with R = Et, iPr).8 The 
P−P bond activation in the doubly η3-coordinated ligand is 
reversible and occurs without the reduction of P4 to formally 
P4

2−. 
 We have been interested in designing new reactive nickel(I) 
radicals for element-element bond activations. We now report 
the synthesis of complexes 1−3† featuring an NHC and a 
cyclopentadienyl ligand, and an initial reactivity study of 
complex 1 with P4 and related small molecules.  

 Complexes 1−3 are accessible according to Scheme 1 by the 
reduction of the appropriate nickel(II) halides with KC8 in 
THF.‡ 1H NMR monitoring shows that 1−3 are formed very 
selectively; they can be isolated as yellow crystalline solids in 
modest to high yields. Single X-ray structure analyses§ 
revealed that the nickel centre is surrounded by the carbene 
carbon and one η5-coordinated Cp or Cp* moiety. No further 
significant interactions between nickel and the 
diisopropylphenyl groups are apparent. Nonetheless, the 
cyclopentadienyl ligand is tilted with respect to the nickel 
carbene bond with an angle Ccarbene−Ni−(C5R5)centroid of 
154.3(1)° for 1, 151.9(1)° for 2 and 164.6(1)° for 3.†  
 Cyclic voltammograms show one electrochemically quasi-
reversible wave at E1/2 = −1.02 and −1.06 V vs. Fc/Fc+ for Cp-
substituted 1 and 2 and a reversible wave at −1.18 V vs. Fc/Fc+ 

for the Cp* complex 3.§ UV/vis-spectroelectrochemistry (see 
Figure 1 for 1) confirms that these processes correspond to 
chemically reversible oxidations of neutral 1−3 to stable 
cationic nickel(II) complexes, which probably bind THF in the 
case of 1 and 2. Indeed, the preparative oxidation of 1 with 
[Cp2Fe]PF6 affords the THF adduct 
[(C5H5)Ni(IDipp)(THF)]PF6 (1-THF).†§ 

Ni

N NR R

Ni
ClN

N

R

R

KC8

R'5

Dipp = 2,6-iPr2-C6H3, 
Mes = 2,4,6-Me3-C6H2

R'5
1: R = Dipp, R' = H         86% 

2: R = Mes, R' = H         38%    

3: R = Dipp, R' = Me      55%

 
Scheme 1 Synthesis of nickel(I) complexes 1−3.  
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Figure 1 Left: UV/Vis monitoring of the oxidation of 1 performed at 
−0.83 V vs. Fc/Fc+ within an OTTLE cell equipped with a Pt minigrid 
working electrode, THF/TBAH under Ar, 293 K. Right: Experimental 
and simulated X-band EPR spectrum of 1 in frozen THF. Freq. 9.3646 
GHz, 0.063 mW, 20 K, mod. 4 Gauss; g-tensor parameters obtained 
from simulations and DFT calculations (b3-lyp, def2-TZVP) are: g11 = 
2.377 (2.220), g22 = 2.306 (2.187), g33 = 2.050 (2.078) (DFT-calculated 
values in parentheses) 

 
Complexes 1−3 show identical magnetic moments of 2.3(1), 

2.3(1), and 2.2(1) µB in [D8]THF, which indicate the presence 
of one unpaired electron per molecule. The EPR spectrum of 1 
is characteristic for an S = ½ system and reveals a rhombic 
g-tensor with significant deviations from ge pointing to metallo-
radical character. DFT calculated g11 and g22 values are 
somewhat smaller than the experimental ones, but show a 
similar rhombicity (Figure 1). 
 Initial reactivity studies of 1 established its behavior as a 
typical metal-centered radical. The reactions of phenyl disulfide 
and TEMPO with 1 in THF afforded the known thiolate 
[(C5H5)Ni(SPh)(IDipp)] (4)9 and the new TEMPO adduct 5 in 
quantitative yield (Figure 2). The molecular structure of 5 
shows a side-on η2-coordinated TEMPO ligand and an η1-
coordinated Cp ligand at the distorted square planar nickel(II) 
atom. The structural parameters agree with presence of a 
formally anionic TEMPO− ligand.10 A sharp 1H NMR singlet at 
5.93 ppm is observed for the Cp moiety even at −90 °C 
presumably due to rapid haptotropic migration. 

  
Figure 2 Reaction of 1 with TEMPO and solid-state molecular 
structure of [(C5H5)Ni(TEMPO)(IDipp)] (5). The hydrogen atoms are 
omitted for clarity. Thermal ellipsoids are drawn at 40% level. Selected 
bond lengths [Å] and angles [°]: Ni1-O1 1.8408(14), Ni1-N1 
1.9581(16), N1-O1 1.3989(20), Ni1-C1 1.8824(19), Ni1-C4 2.034(2), 
C1-Ni1-O1 104.50(7), O1-Ni1-N1 43.07(6), C1-Ni1-C4 97.104(4), N1-
Ni1-C4 115.325(2). 

 We next investigated the reactivity of 1 with the heavier 
chalcogens. The reaction with 1/8 S8 gave the blue disulfide 6-S 
and the purple trisulfide 7-S (Figure 2) in a 7:3 ratio according 

to 1H NMR analysis. 6-S is soluble in n-hexane and diethyl 
ether and can thus be separated from 7-S by extraction and 
subsequent crystallization.§ Disulfide-bridged dinuclear 
complexes with an M-S-S-M motif are well-known,11 while 
complexes with an unsupported µ-S3

2- bridge are still rather 
scarce.11a,b,12 The structure of 7-S shows a similar S1-S2-S3 
angle and S-S bond lengths as the structure of 
[{(C5H5)Fe(CO)2}2(μ-S3)].11a Diselenide 6-Se (31% isolated) is 
the major reaction product of 1 with one equivalent of 
elemental selenium. A 1H NMR spectrum of the reaction 
mixture (THF, room temperature) shows that 6-Se is formed in 
more than 80% yield whereas the triselenide 7-Se is a minor by-
product. Ditelluride 6-Te was the only product to be detected 
after stirring 1 with one equivalent of grey tellurium for seven 
days. It was isolated as a dark brown crystalline solid in 31% 
yield. The molecular structures of 6-Se, 6-Te and 7-Se are 
analogous to the corresponding sulfides 6-S and 7-S.§ 
 Considering that a mixture of at least two products is 
formed with sulfur and selenium, it was gratifying to discover 
that complex 1 reacts with P4 in a highly selective fashion in 
THF at room temperature, giving tetraphosphide 8 as the sole 
product. The reaction is instantaneous, and compound 8 can be 
isolated as an analytically pure, dark purple powder in 
quantitative yield simply by removing the solvent. Its molecular 
structure (Figure 3) shows an exo/exo configuration for the two 
[(C5H5)Ni(IDipp)] units. The P−P bond lengths 
(2.2111(7)−2.2334(7) Å) are very similar to those in P4 (P−P 
2.21 Å). The 31P{1H} NMR spectrum shows two triplets at δ = 
−307.4 and −45.8 ppm with 1JP-P = −190.5 Hz. These values are 
similar to those of [{CpRFe(CO)2}2(μ-η1:η1-P4)] (CpR = C5H3-
1,3-tBu2, C5H2-1,2,4-tBu3, C5H-iPr4, C5Me5) and 
[{Cp*Cr(CO)3}2(μ-η1:η1-P4)], which also display a 
tetraphospha-[1.1.0]bicyclobutane framework.13 
 In conclusion, we have pepared rare mononuclear 
cyclopentadienyl nickel(I) complexes 1−3 with significant 
metalloradical character.6,7 This feature was successfully 
utilized for the high-yield synthesis of the novel tetraphosphido 
complex [{(C5H5)Ni(IDipp)}2(µ-η1:η1P4)] (8), which features 
an uncommon μ-η1:η1-bridging P4

2− ligand.14 Further reactivity 
studies of 1−3 and 8 are in progress; the results will be reported 
in due course. 
 We thank Christian Hoidn and Christian Preischl for 
preparing 1−3 as part of their BSc projects. Financial support 
by the DFG and NWO (NWO-VICI 016.122.613) is gratefully 
acknowledged. 
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structure of 1 was attributed to the asymmetric spin density distribution.  
‡ The hydride complex [(C5H5)NiH(IDipp)] (1-H) was identified as a 
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Figure 3 Left: Reactions of 1 with P4, S8, Se∞ and Te∞. Right: Solid-state molecular structures of the products  6-S, 7-S and 8. The hydrogen atoms 
are omitted for clarity. Thermal ellipsoids are drawn at 40% level. Selected bond lengths [Å] and angles [°]: 6-S: Ni1-S1/Ni2-S2 
2.1800(1)/2.1797(1), S1-S2 2.0476(1), Ni1-S1-S2-Ni2 78.601(5), 7-S: Ni1-S1/Ni2-S3 2.1936(6)/2.1748(5), S1-S2/S2-S3 2.0561(7)/2.0522(7), S1-
S2-S3 111.58(3), 8: Ni1-P1/Ni2-P2 2.2107(6)/2.2103(6), P1-P3/P4 2.2334(7)/2.2111(7), P3-P4 2.1649(7), P1-P2 2.8897(8). 

 
minor by-product (<5%) of the synthesis of 1. Compound 1-H was 
prepared independently and features a distinct molecular structure 
from 1; see the ESI for details. 
§ See the electronic supplementary information for details. Electronic 
Supplementary Information (ESI) available: full experimental 
details, electrochemical, EPR and crystallographic data. See 
DOI: 10.1039/c000000x/ 
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