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Two-electron reduction of bis(carbene) boronium salts allows 
for the preparation of unsymmetrically substituted 
nucleophilic boron derivatives of type (L1)(L2)BH, which are 
characterized by X-ray crystallography. A single electron 
reduction of the same starting materials leads to the 
corresponding boron-centered radical cations (L1)(L2)BH.+, 
X-.  

Since the isolation of the heterocyclic boryl anion A by 
Yamashita, Nozaki and co-workers1 in 2006 (Chart 1), the 
number of boron centered nucleophiles has grown gradually.2,3 
However, up to now, compound C is the only example of a 
stable neutral, nucleophilic, tricoordinate boron derivative.4 
This compound, which is isoelectronic with amines and 
phosphines, was prepared by reduction of the CAAC-BBr3 

adduct B [CAAC = cyclic (alkyl)(amino)carbene]5,6 with KC8. 
This synthetic route, which leads to C in only 33 % yield, is far 
from being understood, and certainly does not have a broad 
scope. For example, Robinson and co-workers have reported 
that the reduction of the analogous (NHC)-BBr3 adduct D 
(NHC = N-heterocyclic carbene)7 with KC8 affords dimers of 
type E.8 Moreover, the preparation of derivatives, featuring two 
different carbene ligands, which would allow for a fine tuning 
of the electronic properties of the boron center, could not be 
achieved. Herein, we report a stepwise and more versatile 
synthesis that allows for the isolation of different 
unsymmetrically substituted derivatives of type (L1)(L2)BH, as 
well as for the EPR characterization of one of the 
corresponding radical cations (L1)(L2)BH.+, X-. 
We first envisaged a synthetic route, in which a second carbene 
would be introduced by simple displacement of a triflate group  

 
Chart	
  1	
  

from the known (CAAC)BH(OTf)2.3g However, no reaction 
was observed with the benzimidazolylidene La

9 and 
cyclopropenylidene Lb,10 probably due the excessive steric 
hindrance around boron. Therefore, we turned our attention to 
the less bulky but unknown CAAC monotriflate borane 2. As 
already observed with NHC adducts,11 we found that although 
(CAAC)BH(OTf)2 is readily available by treatment of 
(CAAC)BH3 112 with excess trifluoromethane sulfonic acid, the 
desired monotriflate derivative (CAAC)BH2(OTf) could not be 
selectively prepared. In contrast, when the CAAC borane 
complex 1 is instead reacted with methyl 
trifluoromethanesulfonate, the desired CAAC monotriflate 
borane 2 is formed, and can be isolated in 95 % yield as a white 
powder (Scheme 1).  The 11B NMR spectrum displays a broad 
signal at -6.1 ppm, which is shifted downfield from 1 (-28.5 
ppm), and the 19F NMR spectrum shows a singlet at -76.2 ppm, 
which is indicative of a triflate group covalently bound to 
boron. The structure of 2 was ascertained by a single crystal X-
ray diffraction study (Supplementary, Fig. S31). 
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Scheme	
  1.	
  	
  

We were pleased to observe that 2 readily reacts with carbenes 
La and Lb, affording the desired bis(carbene) boronium salts 
3a,b, which were isolated as white solids in 95 and 80 % yields, 
respectively. The 11B NMR spectrum of these derivatives 
shows an upfield well-defined triplet (3a = -28.6 ppm, JBH = 
82.9 Hz; 3b = -27.7 ppm, JBH = 87.9 Hz), whereas the 19F NMR 
spectrum indicates that the triflate group is no longer covalently 
bound (3a = -78.0 ppm; 3b = -79.3 ppm). Interestingly, these 
species are not sensitive to air and moisture, but all attempts to 
obtain the desired neutral tricoordinate boron derivatives 5a,b 
by deprotonation or reduction of 3a,b failed. 
In order to further increase the acidity of the proton bonded to 
boron, we chose to replace one of the hydrogen atoms by a 
triflate group. This is readily achieved by simple treatment of 
3a,b with triflic acid. Compounds 4a,b were isolated as white 
solids in 70 and 67 % yield, respectively. The 19F NMR 
spectrum displays two peaks indicative of both a bound and a 
free triflate group (4a = -75.4, -78.1 ppm; 4b = -76.2, -78.0 
ppm), and the 11B NMR signal shifts downfield compared to 
3a,b and becomes broad (4a = -7.5 ppm; 4b = -5.1 ppm). The 
1H NMR spectra are quite convoluted, probably because of the 
steric hindrance, which prevents rotation around the boron-
carbon bonds. This is confirmed by the solid-state structure of 
the corresponding BPh4 salts, obtained by anion exchange. 
These compounds are extremely robust, as during work-up a 
water wash is performed. 
Attempted deprotonation of 4a,b failed again. However, mixing 
4a and 4b with two equivalents of KC8 in THF leads to an 
immediate and intense blue and red colored solutions, 
respectively. After workup, the reduced products 5a,b were 
isolated in 87 and 82 % yield, respectively. Although extremely 
sensitive to air and moisture, derivatives 5a,b can be stored for 
months, under an inert atmosphere, with no signs of 
decomposition. The 1H NMR spectra are simplified compared 

to those of 4a,b as the boron center is no longer a chirality 
center. The 11B NMR spectrum appears as a doublet at -1.3 (JBH 

= 82.4 Hz) and 0.8 ppm (JBH = 89.7 Hz) for 5a and 5b, 
respectively. It is interesting to note that these signals are high-
field shifted compared to that observed for C (+12.5 ppm), a 
trend which is in agreement with the inferior π-acceptor 
properties of benzimidazolylidene La and cyclopropenylidene 
Lb

 compared to CAACs.13 

Single crystals of 5a and 5b, suitable for X-ray diffraction 
studies, were obtained from a concentrated pentane solution 
(Fig. 1). The B1-C2 bond lengths [5a: 1.572(2); 5b: 1.5521(17) 
Å] are typical for B-C single bonds. In contrast, for both 
compounds, the B1-C1 bond [5a: 1.462(3); 5b: 1.4692(16) Å] 
is short, and falls into the range of known boron-carbon double 
bonds.14 Concomitantly there is an elongation of the C1-N1 
bond [5a: 1.418(2); 5b: 1.4262(15) Å] compared to that of the 
salt precursors [4a: 1.307(2); 4b: 1.297(5) Å]. These geometric 
parameters clearly indicate that the formal boron lone pair is 
mainly delocalized on the CAAC ligand. This is confirmed by 
DFT calculations, as can be seen from the HOMO diagrams 
(Fig. 2).  
Despite the delocalization of the lone pair, the boron center of 
5a,b is electron rich. Indeed, both compounds react with 
trifluoromethanesulfonic acid, leading to the conjugate acids 
3a,b. Moreover, we found that the radical cation 6b is 
persistent for several hours at room temperature. It can be 
prepared by adding one equivalent of KC8 to a DME solution of 
4b. The room temperature EPR spectrum of 6b displays 
couplings with boron [a(11B) = 4.994 G], hydrogen [a(1H) = 
10.065 G], and only one nitrogen nuclei [a(14N) = 6.627 G] 
(Fig. 3). This suggests again that the unpaired electron is 
mainly delocalized over the CAAC and BH fragments, with 
very little contribution by Lb. DFT calculations confirm that the 
spin density distribution is in line with this observation.15 
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Fig.	
  1	
  Molecular	
  structure	
  of	
  5a	
  (left)	
  and	
  5b	
  (right)	
  in	
  the	
  solid	
  state.	
  Hydrogen	
  
atoms,	
   except	
   the	
  B-­‐H,	
   and	
   solvent	
  molecules	
   are	
  omitted	
   for	
   clarity.	
   Selected	
  
bond	
  lengths	
  [Å]	
  and	
  angles	
  [º]:	
  5a	
  B1-­‐C1	
  1.462(3),	
  B1-­‐C2	
  1.572(2),	
  B1-­‐H1	
  0.930,	
  
C1-­‐N1	
  1.418(2),	
  C2-­‐N2	
  1.371(2),	
  C2-­‐N3	
  1.366(2);	
  C1-­‐B1-­‐C2	
  127.84(15),	
  C1-­‐B1-­‐H1	
  
116.07,	
  C2-­‐B1-­‐H1	
  116.08.	
  5b	
  B1-­‐C1	
  1.4692(16),	
  B1-­‐C2	
  1.5521(17),	
  B1-­‐H1	
  1.107,	
  
C1-­‐N1	
  1.4262(15);	
  C1-­‐B1-­‐C2	
  128.50(10),	
  C1-­‐B1-­‐H1	
  121.58,	
  C2-­‐B1-­‐H1	
  111.86.	
  

 
Fig.	
  2	
  HOMO	
  diagrams	
  for	
  5a	
  (left)	
  and	
  5b	
  (right)	
  [BVP86/6-­‐311+g(2d,p)	
  level	
  of	
  
theory]	
  	
  

 
Fig.	
  3	
  Simulated	
  (top)	
  and	
  experimental	
   (bottom)	
  EPR	
  spectra,	
  and	
  spin	
  density	
  
representation	
  (right)	
  of	
  6b.	
  [(U)BVP86/6-­‐311+g(2d,p)	
  level	
  of	
  theory]	
  

The synthetic route described herein paves the way for the 
preparation of a variety of bis(carbene)borylene adducts, which 
are isoelectronic with amines and phosphines. Their reactivity 
and ligand behavior for transition metal centers are under active 
investigation. 
This work was supported by the DOE (DE-FG02-13ER16370) 
and the NSF (CHE-1316956). D. A. R. gratefully acknowledges 
the U.S. Department of Education for a GAANN fellowship. 
Thanks are given to L. Liu for his assistance with the 
computational studies.  
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