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A simple, efficient and environmentally friendly method for iron or boron-catalyzed C-H 
arylthiation of substituted phenols at room temperature has been developed, and the corresponding 
diaryl sulfides were prepared in good to excellent yields. The protocol uses readily available 1-
(substituted phenylthio)pyrrolidine-2,5-dione as the arylthiation reagents, inexpensive and 
environmentally friendly FeCl3 or BF3·OEt2 as the catalyst, no ligand, additive and extrusion of air 10 

were required, and the reactions were performed very well at room temperature. 

Aryl sulfides are important building blocks in organic synthesis, 
materials science and the pharmaceutical industry.1 For example, 
they are used in treatment of inflammation,2 Alzheimer’s and 
Parkinson’s diseases,3 human immunodeficiency virus,4 and 15 

cancer.5 Transition metal-catalyzed cross-couplings of thiols or 
disulfides with aryl halides or pseudo halides are the most 
powerful approaches for the synthesis of aryl sulfides,6 and the 
used transition metal catalysts mainly include palladium,7 
copper,8 cobalt,9 indium,10 gold,11 rhodium,12 iron,13 and Ni.14 In 20 

addition, the diaryl sulfides were also prepared via the reactions 
of arylmagnesium halides15 or arylboronic acid derivatives16 in 
the presence of suitable electrophilic arylsulfur reagents and 
catalysts. Recently, the transition metal-catalyzed C-H 
functionalization has become a subject of intensive studies.17 25 

Obviously, a C-S bond formation via the direct C-H 
functionalization is more economical and practical. However, the 
examples by this approach are very limited thus far,18 so it is 
highly desirable to develop an efficient, practical and 
environmentally friendly method for synthesis of diaryl sulfides 30 

through C-H functionalization strategy. Herein, we reported a 
novel, simple, efficient and environmentally friendly iron or 
boron-catalyzed arylthiation of substituted phenols at room 
temperature. 

Reaction conditions including catalysts, solvents, temperature 35 

and time were first investigated for synthesis of 4-
(phenylthio)phenol (3a) via reaction of phenol with 1-
(phenylthio)pyrrolidine-2,5-dione, and the results showed that the 
optimal conditions were as follows: using 10 mol % FeCl3 or 
BF3·OEt2 as the catalyst, CH2Cl2 (DCM) as the solvent at room 40 

temperature without extrusion of air (see Supporting Information 
for details). After getting the optimum reaction conditions, we 
investigated the scope for iron or boron-catalyzed arylthiation of 
substituted phenols (1) with 1-(substituted 
phenylthio)pyrrolidine-2,5-diones (2). As shown in Table 1, the 45 

tested substrates provided good to excellent yields, and the 
reaction site for the arylthiation of substituted phenols depends on 

electronic and steric hindrance effects of phenols. For substituted 
phenols (1), the substrates containing electron-donating groups 
displayed higher reactivity than those with electron-withdrawing 50 

groups, the arylthiation mainly occurred at para-site of hydroxyl 
in phenols because of ortho steric hindrance effect, and the 
reaction was performed at ortho-site of hydroxyl when para-site 
of hydroxyl was occupied by a substituent. For 3,4-
dichlorophenol, the arylthiation occurred at ortho-site of OH and 55 

3-Cl (see 3h). However, the electrophilic substitution of 2,4-
dimethylphenol was not at OH and 3-Me because of steric 
hindrance of methyl (see 3w). For 4-phenoxyphenol, the reaction 
was carried out at para-site of ether because of low steric 
hindrance (see 3m). The arylthiation of 2-naphthalenol was 60 

performed on ortho α-carbon of OH because of its highest 
electron density for carbons of 2-naphthalenol (see 3b'). When 
1.1 equiv of 1-(phenylthio)pyrrolidine-2,5-dione reacted with 4-
methoxyphenol, only bis-substituted product 3n was observed 
because mono-substituted product displayed more higher reactive 65 

activity than 4-methoxyphenol (see 3n), so 2.2 equiv of 4-
methoxyphenol was used as the arylthiating agent to improve 
yield of 3n. For 1-(substituted phenylthio)pyrrolidine-2,5-diones 
(2), the substrates containing electron-withdrawing groups 
afforded lower yields than those with electron-donating groups. 70 

The iron or boron-catalyzed arylthiation of substituted phenols 
could tolerate various functional groups including C-F bond (see 
3x), C-Cl bond (see 3g, 3h, 3v-x), C-Br bond (see 3i, 3y), C-I 
bond (see 3j), ethers (see 3m, 3n), acetyl (see 3o), aldehyde (see 
3p), cyan (see 3q), carboxyl (see 3u), and nitro (see 3z-b'). 75 

 

Table 1 Arylthiation of substituted phenols (1) at room temperature a 

FeCl3 or BF3·OEt2
CH2Cl2, rt, 0.5 - 12 h
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3a (3 h, 94%c, 93%d)

S

HO
3b (2 h, 89%c, 87%d)

S

HO

3c (2 h, 95%c, 92%d)

S

HO

3d (2 h, 81%c, 81%d)

SMe
Me
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Me

3e (6 h, 81%c 79%d)

S
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Me
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HO
S
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S
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3h (6 h, 55%c, 58%d)

S
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S
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S
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S
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S
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S
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O
S
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H

O

O
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S

HO Me

3v (3 h, 96%c, 93%d)

S

HO Cl

3z (6 h, 65%c, 64%d)

S

HO NO2

3y (6 h, 82%c, 84%d)

S

HO Br
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S
OH

CN

S
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3t (1 h, 93%c, 91%d)

S
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S
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O
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S

Me
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Me
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3a' (10 h, 53%c, 57%d)

S

NO2
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S

NO2OH
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a Reaction conditions: substituted phenol (1) (0.3 mmol), 1-(substituted 
phenylthio)pyrrolidine-2,5-dione (2) (0.33 mmol), dry CH2Cl2 (2 mL), 
temperature (rt, ~25 oC), reaction time (0.5 - 12 h). b Isolated yield. c 

Using FeCl3 (0.03 mmol) as the catalyst. d Using BF3·OEt2 (0.03 mmol) as 
the catalyst. e Using 0.66 mmol of 1-(phenylthio)pyrrolidine-2,5-dione. 
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Scheme 1 Iron or boron-catalyzed arylthiation of aminophenol, coumarin 
and flavonoid derivatives. 

Inspired by the excellent results above, we extended the 
scope of substrates. As shown in Scheme 1, iron-catalyzed 5 

reaction of N-(4-hydroxyphenyl)acetamide (4) with 1-
(phenylthio)pyrrolidine-2,5-dione (2a) at 60 oC in dichloroethane 
(DCE) provided the target product (3c') in 54% yield 
(Unfortunately, the reaction did not work at room temperature) 
(Scheme 1a). Arylthiations of biologically active molecules, 10 

coumarin and flavonoid derivatives, were also investigated. Iron-
catalyzed arylthiation of 7-hydroxy-2H-chromen-2-one with 2.2 
equiv of 1-(p-tolylthio)pyrrolidine-2,5-dione gave bis-substituted 
product 3d' under the standard conditions  (Scheme 1b), and 
boron-catalyzed arylthiation of 2-(4-hydroxyphenyl)-4H-15 

chromen-4-one with 2a afforded 3e' in 69% yield in MeCN at 60 
oC  (Scheme 1c). 

During optimization of conditions, we found that FeCl3, 
BF3·OEt2, AlCl3 and H2SO4 exhibited the higher catalytic activity 
(see Supporting Information for details). Therefore, a possible 20 

mechanism on the arylthiation of substituted phenols is proposed 
in Scheme 2 according to the results above and the previous 
reference.19 Treatment of 2 with FeCl3 or BF3·OEt2 leads to 
complex I, and cleavage of N-S bond in I gives anion complex II 
and cation III. Electrophilic reaction of III to substituted phenol 25 

(1) yields IV, and treatment of IV with II provides the target 
product (3) freeing succinimide and the catalyst. 
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Scheme 2 Possible mechanism for the iron or boron-catalyzed 
arylthiation of substituted phenols. 30 

In summary, we have developed a simple, efficient and 
practical arylthiation of substituted phenols. The protocol uses 
readily available 1-(substituted phenylthio)pyrrolidine-2,5-dione 
as the arylthiation reagents, inexpensive and environmentally 
friendly FeCl3 or BF3·OEt2 as the catalyst, no ligand, additive and 35 

extrusion of air were required, and the reactions were performed 
very well at room temperature with wide tolerance of functional 
groups. We believe that the present strategy will find wide 
application in synthesis of diaryl sulfides. 

The authors wish to thank the National Natural Science 40 
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