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Abstract. The new radical FBNCO and the new cation FBNCO+, 
containing all the 2p-block elements, have been detected in the 
gaseous isolated state. Theoretical calculations predict that these 
species are very stable toward the dissociation.  
 

Following the Bartlett’s early study of the structure and properties of 
28-electron tetratomic molecules, 1 some elusive species such as N4, 
2 BNO2 

3
 and N2CO 4 have been experimentally detected by mass 

spectrometric experiments 2, 4 and matrix isolation infrared 
spectroscopy. 3 Others, such as for example BFN2, B2F2 and BFCO, 
still wait for experimental observations. In some cases, the first 
experimental evidence of these species was successfully followed by 
the observation or synthesis of other isomers, as viable observable 
entities, 5 for instance diazirinone N2CO has been found to have a 
quite surprisingly half-life of 1.4 h at ambient temperature. 4 The 
BNO2 species was assigned the OBON structure, and other simple 
molecules and radicals containing NBO or BNO groups were 
prepared in the same experiments. 3 Species containing the BN 
kernel are of great interest as building blocks of atomic layers and 
nanofilms, analogues to the most popular carbon nanotubes 
containing the isoelectronic CC group. 6 In this field, special 
attention is given to hybrid BNC films relevant to materials with 
tunable electronic properties, from insulating to conducting, 
depending on the carbon concentration. 6 While few-atoms species 
containing either B, N, O or B, C, O atoms have been experimentally 
detected, 3, 7 to the best of our knowledge, very little is known on 
simple radicals and molecules containing the BNC group. Early 
theoretical studies predicted the stability of structures having HBNC 
chains, with three-coordinate boron atoms; 8 HBNC was then 
observed as a minor product of the reaction of laser-ablated boron 
atoms with HCN. 9 FBNC chains can be found in F2BNCO and 
FB(NCO)2, where boron is three-coordinate. 9  

In this work we report the first experimental evidence for the 
intriguing radical FBNCO, a 35-electron species containing all the 
2p-block elements. The mass spectrometric technique adopted 
requires that a precursor ion is preliminarily built, thus, the hitherto 
unknown FBNCO+ ions also have been prepared and detected for the 
first time. 
The synthesis exploits an ion-molecule reaction (IMR) between BF2

+ 
and isocyanic acid HNCO. The latter has been prepared according to 
established procedures, 10 and BF2

+ is the most abundant ion 
obtained by ionization of BF3 in the gas phase. The reaction occurs 
through a reaction intermediate [BF2

+ -- HNCO], that yields  [B, C, 
N, O, F]+ ions by HF loss. The B2F5

+ ions also give this adduct by 
ligand exchange between BF3 and HNCO, as observed with other 
nitrogen bases. 11 
 
BF2

+  +  HNCO → [BF2-HNCO]+  →  [B,C,N,O,F]+  +  HF      (1) 

The reaction sequence has been identified through mass 
spectrometric experiments performed by different equipment. First, 
the [11BF2 -- HNCO]+ adduct has been prepared and assayed by 
energy-resolved collisionally activated dissociation (CAD) (Figure 
1A). At collision energies higher than 4 eV center of mass (CM), the 
spectrum is dominated by the loss of the HNCO molecule leading 
back to the 11BF2

+ fragment. However, at the minimum collision 
energy required to the loss of the HNCO moiety, ca. 0.5 eV, the [11B, 
C, N, O, F]+ ion is also formed by HF loss. Secondly, the [11BF2 -- 
HNCO]+ and [10BF2 -- HNCO]+ adducts have been prepared under 
the same experimental conditions employed to detect the radical, 
then mass-selected and assayed by CAD. They both gave intense 
fragments at m/z 72 and 71 corresponding to the [11B, C, N, O, F]+ 
and [10B, C, N, O, F]+ ions, respectively (Figure 1B).  
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The experiments were performed using a TSQ700 mass spectrometer from 
Finnigan Ltd. and a modified ZABSpec oa-TOF instrument (VG Micromass) 
described elsewhere. 13 The elemental composition of the ions was 
unambiguously confirmed by CAD spectra of mass- and energy-selected 
precursor ions. The neutralization-reionization (NR) experiments, using Xe 
and O2 as colliders, were  performed as described elsewhere. 13 Experimental 
and computational details are described in the Supporting Information.  
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           The new radical FBNCO and the new FBNCO+ cation,  

           containing all the p-block elements, have been identified  

           in the gas phase, as species having a dissociation energy 

           of 50 and 161 kcal mol-1, respectively.  
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