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The synthesis of the novel azomethine ylide, 

isoquinolino[4,3,2-de]phenanthridine, and its use in 1,3-

dipolar cycloaddition with various alkenes and alkynes to 

form the corresponding fused pyrrolidines and pyrroles is 

reported. 

Cycloadditions between 1,3-dipoles and unsaturated 

dipolarophiles are an indispensable tool for the construction of 

5-membered heterocyclic structures.1 An especially impressive 

demonstration of their versatility and efficiency led to the 

concept of “click chemistry” using the Huisgen reaction.2 

Depending on the combination between 1,3-dipoles and 

dipolarophiles, a wide variety of heterocyclic rings can be 

synthesized. Among the various 1,3-dipoles, azomethine ylides 

are particularly useful intermediates to prepare pyrrolidines and 

pyrroles, which are important building blocks for many natural 

products and pharmaceuticals.3 However, only few examples of 

1,3-dipolar cycloaddition of azomethine ylides focus on the 

preparation of polyaromatic hydrocarbons (PAHs),4 despite the 

increasing importance of nitrogen-containing PAHs.5,6,7 Our 

research group focuses on isoquinolino[4,3,2-de]phenanthridine 

(1) as a novel class of azomethine ylide to generate pyrrolidines 

and dihydropyrroles containing a fused isoquinolino[4,3,2-

de]phenanthridine structure, which in turn can be converted to 

the corresponding pyrroles upon oxidative dehydrogenation 

(Figure 1). Herein we report the synthesis of 

isoquinolino[4,3,2-de]phenanthridine (1) and its use in 1,3-

dipolar cycloadditions with various alkenes and alkynes to form 

the corresponding pyrrolidines, 2,5-dihydropyrroles, and 

pyrroles.8,9 The method presented is highly effective for the 

synthesis of fused 1,2,3,4,5-pentaarylpyrroles via reactions with 

diarylacetylenes. To the best of our knowledge, only few 

compounds with a fused 1,2,3,4,5-pentaarylpyrrole structure, 

such as 2,3-diaryl fused pyrroles (dibenzo[e,g]indole10 and 

diacenaphtho[1,2-b:1',2'-d]pyrrole11), 3,4-diaryl fused pyrroles 

(dibenzo[e,g]isoindole12,13 and acenaphtho[1,2-c]pyrrole14), and 

pyrrole-fused azacorronenes,5b have been reported. 

N

1

tBu

N

tBu

R R

R R

N

tBu

R R

oxidative

dehydrogenation

H H

  
Figure 1. Structure of isoquinolino[4,3,2-de]phenanthridine 1 

and its cycloaddition with dipolarophiles. 

 

Scheme 1 illustrates the synthesis of isoquinolino[4,3,2-

de]phenanthridine (1) starting from 2,6-dibromo-4-tert-

butylaniline (2). Initially, a palladium-catalyzed Suzuki-

Miyaura reaction of 2 with 1,3-dihydro-1-hydroxy-2,1-

benzoxaborole generated 2,6-diarylaniline 3.15 A subsequent 

intramolecular cyclization of 3 by treatment with hydrogen 

chloride in 1,4-dioxane/1,2-dichloroethane at 100 °C afforded 

cyclized product 4 as a yellow crystalline powder in good yield 

(74%). When 4 was dissolved in carbon tetrachloride under 

exposure to irradiation of ambient light, the color of the 

reaction mixture changed from yellow to red, suggesting the  
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formation of radical species such as 4' (Scheme 2). Since this 

reaction was not observed in the dark, the reaction might be 

initiated by a homolytic cleavage of a Cl3C–Cl bond.16 

Gradually 4 was converted to iminium chloride 5, presumably 

through chlorinated intermediate 4". Conversion of 4 and 4' 

into 5 was found to be accelerated by addition of hydrogen 

chloride, which led to a color change from red to yellow. 

Compound 5 exhibited characteristically unsymmetrical NMR 

resonances in chloroform-d with a distinctive iminium proton 

observed at 11.6 ppm. Subsequent deprotonation of compound 

5 was accomplished by treatment with triethylamine under inert 

conditions to generate isoquinolino[4,3,2-de]phenanthridine 1 

in situ.17 

 

Scheme 2 

 

In order to elucidate the properties of 1, we performed 

density functional theory (DFT) calculations using the B3LYP 

hybrid functional at the 6-31G(d,p) basis set on model 

compound 1', in which the t-butyl group of 1 is replaced by a 

hydrogen (Figure 2). Compound 1' can adopt a closed-shell 

zwitterionic structure as (1'-C) or an open-shell biradical 

structure as (1'-O). Our calculations revealed that 1'-C is by 

21.9 kcal/mol more stable than 1'-O, indicating that 1 should 

exist as the azomethine ylide form (Figure 2a). Azomethine 

ylides are electron-rich species with high-lying HOMOs and 

LUMOs; accordingly, they preferentially react with electron-

deficient dipolarophiles whereby the HOMO of the dipoles 

interacts with the LUMO of the dipolarophiles.3d The calculated 

HOMO of 1'-C is predominantly located in both α-positions of 

the nitrogen atom, suggesting that 1 reacts with an unsaturated 

dipolarophile in these positions (Figure 2b). 

 

 

Scheme 1 
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Figure 2. (a) DFT-calculated energy difference between the 

closed-shell zwitterionic state (1'-C) and open-shell biradical 

state (1'-O) at the B3LYP/6-31G(d,p) level of theory. (b) DFT-

calculated HOMO and LUMO of 1'-C using the same DFT 

parameters. 

 

Indeed, we observed that azomethine ylide 1 underwent 1,3-

dipolar cycloadditions, when it was generated in situ and 

concurrently treated with internal alkynes.18 The reaction with 

dimethyl acetylenedicarboxylate (DMAD) at room temperature 

afforded 2,5-dihydropyrrole 7a in 60% yield (Scheme 1). In the 
1H NMR spectrum, the benzylic proton of 7a was observed at 

5.28 ppm in chloroform-d. The cycloadditions with 

diarylacetylenes, Ar–C≡C–Ar (Ar = Ph or C6H4-4-CO2Me), 

proceeded at a high temperature of 100 °C produced pyrroles 

8b and 8c in 30 and 20% yields, respectively, via subsequent 

dehydrogenation of 7.9 All the compounds were characterized 

by 1H and 13C NMR spectroscopic analyses. 

The solid-state structures of 7a, 8b, and 8c were confirmed 

by single crystal X-ray crystallographic analysis (Figure 3). 

Suitable crystals were obtained by slowly evaporating 

dichloromethane solutions of these compounds. The top view 

of 7a indicates that the three benzene rings and the 2,5-

dihydropyrrole ring are not aligned in a coplanar fashion. The 

dihedral angles between the central benzene and the adjacent 

benzene rings are 23.7° (C14–C15–C17–C18) and −18.8° (C9–

C10–C11–C12). In case of 8b and 8c, the three benzene rings 

and the pyrrole ring share a highly coplanar geometry with 

dihedral angles between the pyrrole moiety and the adjacent 

benzene rings of less than 3°. The C–N bond lengths and C1–

N1–C4 angles in these pyrrole structures are consistent with 

those of previously reported fused 1,2,3,4,5-

pentaarylpyrroles.11,14 

Azomethine ylide 1 was found to react with electron-

deficient alkenes. The reaction with methyl acrylate produced 

pyrrolidine 6d in 61% yield as an inseparable mixture of endo 

and exo adducts (ca. 1:1). N-Phenylmaleimide also reacted with 

1 to give pyrrolidine 6e in moderate yield. The product was 

obtained as a mixture of diastereomers which could be 

separated by silica gel column chromatography to afford the 

endo isomer in 26% yield and the exo isomer in 22% yield. As 

fullerene C60 is known to be a good dipolarophile, the 1,3-

dipolar cycloaddition of 1 with C60 was also investigated in 

order to form a hybrid of pyrrolidine and C60.
19 The reaction of 

1 with C60 at 40 °C afforded adduct 9, which was successfully 

purified by preparative HPLC with a buckyprep® column, in 

65% yield (Scheme 3). In the 1H NMR spectrum of 9, three 

singlet resonances were observed for the t-butyl group (1.46 

ppm), for the benzylic protons (6.26 ppm), and the aromatic 

protons in ortho positions to the t-butyl group (7.74 ppm). 

Moreover, two doublet (7.95/7.73 ppm) and two triplet 

(7.52/7.40 ppm) resonances were observed for the aromatic 

protons of the peripherally fused benzo groups. The 13C NMR 

spectrum of 9 shows 45 signals (32 signals for the C60 unit and 

13 signals for the isoquinolino[4,3,2-de]phenanthridine unit), 

indicating that compound 9 is of Cs symmetry. The UV/vis 

spectrum of 9 showed a local-maximum signal at 433 nm, 

which is a characteristic band for 6:6 ring-bridged 58 π-electron 

fullerenes.20 All the observed data are consistent with an 

addition of azomethine ylide 1 onto the 6:6 ring junction of C60. 

  

 
Figure 3. X-ray structures of 7a, 8b, and 8c. Hydrogen atoms for all structures and t-butyl groups for top views are omitted for clarity. 
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Scheme 3 

 
Furthermore, we found that the cycloadditions were affected 

by the polarity of the solvent. The reaction of 1 in acetonitrile at 

80 °C produced dimerized product 10 in 3.5% yield.21 This 

homo coupling reaction of azomethine ylide 1 could potentially 

be applied to the synthesis of nitrogen-containing nanographene 

or graphene nanoribbons via subsequent oxidative cyclization 

and dehydrogenation. 

In summary, we have developed a new method to 

synthesize the azomethine ylide, isoquinolino[4,3,2-

de]phenanthridine 1, that undergoes 1,3-dipolar cycloadditions 

with various alkenes and alkynes. This study presents a 

potentially useful method to form nitrogen-containing PAHs 

with fused pyrrole structures. 

The authors would like to thank Prof. Eiichi Nakamura, Dr. 

Koji Harano, and Ms. Utako Takeda (The University of Tokyo) 

for the preparative HPLC separation of compound 9. 

 

Scheme 4 
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