ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Journal Name

RSCPublishing

COMMUNICATION

The importance of loop length on the stability of i-motif structures

Cite this: DOI: 10.1039/x0xx00000x

Sarah Gurung^{a,b}, Christine Schwartz^a, James P. Hall^{a,b}, Christine J. Cardin^a, and John A. Brazier^{c*}

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Using UV and srCD spectroscopy it is found that loop length within the i-motif structure is important for both thermal and pH stability, but in contrast to previous statements, it is the shorter loops that exhibit the highest stability.

The i-motif is quadruplex structure that is formed by cytosine-rich sequences of DNA (Figure 1a) and has been found to form in several sequences complementary to G-quadruplexes. 1-3 The role of the imotif in modulating gene expression has recently been elucidated, with the contribution of the loop regions within the structure key to the recognition and binding of transcriptional proteins. 4, 5 The i-motif is not only of interest for its biological role in gene expression, especially due to its presence in the promoter regions of several gene associated with cancer, but also for its use as a switch within functional nanodevices. 6 The majority of studies using an i-motif based nanoswitch have used the human telomeric sequence (CCCTAA)₃CCC or a subtle variant. It is known from research on biologically derived sequences, that i-motifs formed by different sequences exhibit different thermal and pH stability.³ Recent research focussed on the design of a pH sensor based on i-motif structures has shown that changes in the sequence composition can change the pH sensitivity in a controlled way.⁷ It has been reported in the literature that i-motif forming sequences containing longer loops (N = 5-8, Figure 1b) are thermally more stable than those with short loops, with the length of the loop often suggested to be the contributing factor for this stability. 8 This is in contrast to research carried out on the loop length of G-quadruplex forming sequences, which showed that longer loops were less stable.9 Recently we published results that showed unusually high stability for a sequence containing short loops (N = 1-4, Figure 1b) which guestioned the need for long loops to impart stability.³ To probe this question further, we report here a systematic study of loop length versus both, thermal and pH stability. A series of i-motif forming sequences (Table 1), containing an increasing number

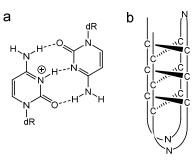


Figure 1. a) protonated-cytosine: cytosine base pair b) Schematic representation of an i-motif structure, where N de-notes any DNA heterocyclic base.

of thymine bases within the loop region, with the general sequence CCCT(3-8)CCCT(3-8)CCC, were assessed for their thermal (Figure 2a) and pH stability (Figure 2b) using both UV and synchrotron CD spectroscopy. By confining the loop bases to thymine, the possibility of interaction between the bases was limited to thymine: thymine and were consistent throughout the systematic series of oligonucleotides. The results of the thermal stability experiments show that C₃T₃₃₃ has the highest stability and C₃T888 has the lowest stability. The other sequences in the series follow a predominately linear trend with respect to thermal stability with a decreasing order of C₃T₅₅₅, C₃T₆₆₆ and C₃T₇₇₇. The only exception is C₃T₄₄₄ which has the same thermal stability as C₃T₃33. The results clearly show that the stability of the i-motif structure decreases as the length of the loop increases, a finding which is in contrast with statements made in the literature. One rationale for this observation, is as the loop length increases, the structure gains more flexibility, and therefore stabilising interactions become weaker. This decrease in stability is also present in the results from the pH titration experiments, where the transitional pH (T_{pH}, the pH at which half of the i-motif is unfolded) decreases as loop length increases. Once again C₃T₃₃₃ shows the

Journal Name

Table 1. - Sequences used in this study, with associated Tm and TpH values

Name	Sequence 5'-3'	$T_m / {}^{\circ}C$	T_{pH}
C3T333	d(CCCTTT)3CCCT	57	6.6
C3T444	d(CCCTTTT)3CCCT	57	6.4
C3T555	d(CCCTTTTT)3CCCT	49	6.2
C3T666	d(CCCTTTTTT)3CCCT	43	5.8
C3T777	d(CCCTTTTTTT)3CCCT	39.5	5.6
C3T888	d(CCCTTTTTTTT)3CCCT	36	5.4
C3T338	d(CCCTTTCCCTTT	50	6.5
	CCCTTTTTTTCCC)		
C3T383	d(CCCTTTCCCTTTTTTTT	55	6.6
	CCCTTTCCC)		
C3T833	d(CCCTTTTTTTCCC	51	6.5
	TTTCCCTTTCCC)		
C3T883	d(CCCTTTTTTTCCC	47	6.2
	TTTTTTTCCCTTTCCC)		
C3T838	d(CCCTTTTTTTTCCCTTT	40	6.1
	CCCTTTTTTTCCC)		
C3T388	d(CCCTTTCCCTTTTTTTT	46	6.1
	CCCTTTTTTTCCC)		

highest T_{pH}, with C₃T888 demonstrating the lowest value. Other imotif forming sequences show a systematic decrease between these two values, with an order of C₃T₄₄₄, C₃T₅₅₅, C₃T₆₆₆ and C₃T₇₇₇. The pH sensitivity was also confirmed by srCD+, the spectra in figure 3a measured at pH 5 show the characteristic maximum at 285 nm and minimum at 265 nm associated with i-motif formation for each sequence.10 The data in figure 3b measured at pH 6.5 shows these characteristic peaks only for C₃T₃₃₃ and C₃ T₄₄₄ consistent with the T_{pH} values measured using UV absorbance, as at pH 6.5 only the C_3T_{333} and C_3T_{444} sequences are expected to show i-motif formation. Data in figure 3c measured at pH 7.5-8 lack all the characteristic signals for an i-motif structure, confirming the absence of i-motif formation under basic conditions for these sequences. These results suggest that flexibility within loop regions is detrimental to the stability of the i-motif structure, and long loop regions are only stabilising if they can form additional intramolecular interactions that limit flexibility, an explanation suggested for the high stability of the

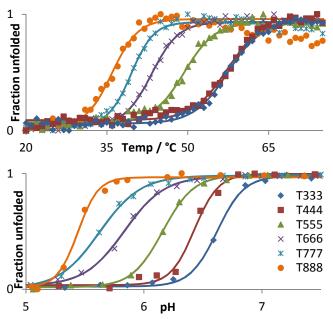
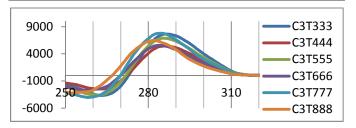



Figure 2 Normalized absorbance at 260nm versus a) temperature, b) pH

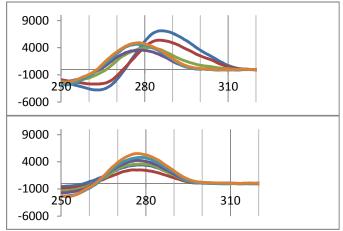


Figure 3. srCD spectra (molar elipticity Vs wavelength (nm)) at a)pH 5, b) pH 6.5, c) pH 7.5-8

BCl2 promoter i-motif, which contains long loop with a loop pattern of 8-5-7.8 Without the proposed stabilising interactions, this sequence would not be expected to have the high stability that it does. To further test this hypothesis we introduced an AA modification within a single T8 loop in the C₃T8₃8 i-motif to give a loop composition of TTTAATTT. It was expected that this would allow for a AT base pair, or other stabilising interaction to occur between the bottom two loops, and UV melting experiments show that this is the case, with an increase in T_m of 1 °C (see figure S4) irrespective of which loop contains the AA bases. One further consideration is the ionic strength of the buffer solution, with high levels of salt known to destabilise imotif structures.11 Experiments with high levels of salt present showed a small decrease in stability with regard to the short loop C₃T₃₃₃ sequence (figure S6), but did provide a stabilising effect with the C₃T888 sequence (Figure S₇). This again suggests that stabilising interaction within long loop regions, in this case, formation of salt bridges or ordering of water between the long loops by increased ionic components has led to a stabilisation of the loop structure, and ultimately stabilisation of the i-motif structure. These results confirm that the bases in the loop region are an important consideration when determining the stability of the structure of an i-motif forming sequence.12 To elucidate the contribution from each loop region, a further series of sequences were investigated, in which the length of each loop was systematically altered between 3 and 8 thymine bases. It is clear from figure 4a that introducing a single long loop into a short loop i-motif sequence, has a minimal effect on the pH stability of the structure, with C₃T8₃₃, C₃T₃8₃ and C₃T₃₃8 showing similar T_{pH} values to the parent sequence C₃T₃₃₃. In contrast, introducing a single short loop into a long loop sequence, results in a significant increase in the T_{pH} values, between C₃T888 and the C₃T8₃S, C₃T8₃S and C₃T₃88

Page 3 of 4 ChemComm

Journal Name COMMUNICATION

series, suggesting that the short loop could be acting to orient the intercalating strands together to enhance stability. The thermal stability of the mixed loop structures is far more striking, with clear changes in stability in a loop dependent manner. Alterations in length of the central loop leads to the most significant changes in stability, with C₃T₃8₃ showing the lowest decrease in stability, and C₃T8₃8 showing the largest decrease. The structures in which changes are made to the first and last looping region show similar stability irrespective of which loop is changed, although structures with two long loops are always less stable than those with two short loops. These results demonstrate that the important loops for stability must be the first and last loop, with the middle loop able to accommodate a longer sequence with minimal disruption to the stability. It has recently been shown that a small molecule can bind to the middle loop and stabilise the i-motif structure in the BCl2 promoter.⁵ This contains a loop pattern of 8,5 and 7The presence of a longer sequence in the middle loop will therefore be beneficial in terms of small molecule binding, as it may provide a unique site to distinguish between different loop sequences. It is also clear that if an i-motif forming sequence contains long sequences in the first or last loop region that it must have the ability to form additional interactions for it to form a more stable i-motif structure, such as base stacking, hydrogen bonding, or both. The difference in both thermal and pH stability as a function of loop length also provides the opportunity to tune the temperature and pH at which the i-motif structure undergoes conformational change and may be useful in developing more sensitive i-motif based switches for nano devices. A recent report has shown that tuning the sequence using different length cytosine tract and different sequences of 3-4 bases in the loop region allows switching over a well-defined pH range between pH7 and 6.5.7 Using different length loops would allow this pH range to extend to pH 5.5, and introduce the additional parameter of heat responsive conformational change. Altering loop length would also

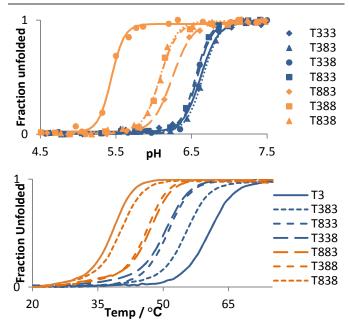
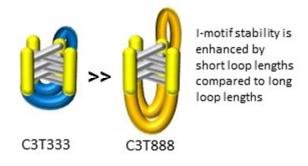


Figure 4 Normalised absorbance at 260 nm versus a) pH and b) temperature

have the added advantage of changing the distance the terminal ends of the switch can travel.

Conclusions


These results demonstrate that i-motif stability is clearly related to the sequence composition. The length of the loop region is a large contributing factor to the overall stability of the i-motif structure, but in contrast to the widely held belief, it is not long loops that give the most stable structures, but short loops. In addition, the central loop is less important in providing stability to the i-motif structure, with the first and second loop shown to influence stability more. These findings suggest that in biologically relevant sequences with long loops the sequence composition of the loops must be able to form interactions that reduce the influence of loop length and effectively mimic short loop sequences and the stability they impart. The thermal and pH responsiveness of different loop lengths may also be used to tuning the responsive nature of molecular switches based on the i-motif structural transition.

Notes and references

- ^a Department of Chemistry, University of Reading, Whiteknights, Reading, Berks, RG6 6AD
- ^b Diamond Light Source, Chilton, Didcot, Oxfordshire
- ^c School of Pharmacy, University of Reading, Whiteknights, Reading, Berks, RG6 6AD

† srCD spectra were collected on B23 at the Diamond Light Source Electronic Supplementary Information (ESI) available: Experimental details, UV melting curves at 295nm, and CD spectra at pH 5 and 8. See DOI: 10.1039/c000000x/

- 1. K. Gehring, J. L. Leroy and M. Gueron, *Nature*, 1993, **363**, 561-565.
- T. A. Brooks, S. Kendrick and L. Hurley, FEBS J., 2010, 277, 3459-3460
- J. A. Brazier, A. Shah and G. D. Brown, Chem. Commun., 2012, 48, 10739-10741
- H.-J. Kang, S. Kendrick, S. M. Hecht and L. H. Hurley, J. Am. Chem. Soc., 2014, 136, 4172-4185.
- S. Kendrick, H.-J. Kang, M. P. Alam, M. M. Madathil, P. Agrawal, V. Gokhale, D. Yang, S. M. Hecht and L. H. Hurley, *J. Am. Chem. Soc.*, 2014, 136, 4161-4171.
- 6. Y. Dong, Z. Yang and D. Liu, Acc. Chem. Res., 2014, 47, 1853-1860.
- I. V. Nesterova and E. E. Nesterov, J. Am. Chem. Soc., 2014, 136, 8843-8846.
- S. Kendrick, Y. Akiyama, S. M. Hecht and L. H. Hurley, J. Am. Chem. Soc., 2009, 131, 17667-17676.
- A. Guédin, P. Alberti and J.-L. Mergny, *Nucleic Acids Res.*, 2009, 37, 5559-5567.
- G. Manzini, N. Yathindra and L. E. Xodo, *Nucleic Acids Res.*, 1994, 22, 4634-4640.
- J. L. Mergny, L. Lacroix, X. G. Han, J. L. Leroy and C. Helene, J. Am. Chem. Soc., 1995, 117, 8887-8898.
- Y. Yang, Y. Sun, Y. Yang, Y. Xing, T. Zhang, Z. Wang, Z. Yang and D. Liu, 2012, 45, 2643-2647.

79x39mm (96 x 96 DPI)