
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

ChemComm

www.rsc.org/chemcomm

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS 

ARTICLE TYPE www.rsc.org/xxxxxx  |  XXXXXXXX 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  1 

Taking Baby Steps in Molecular Logic-based Computation 

Jue Ling, Brian Daly, Victoria A. D. Silverson and A. Prasanna de Silva 

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X 

First published on the web Xth XXXXXXXXX 200X 

DOI: 10.1039/b000000x 5 

Molecular logic-based computation is a broad umbrella covering 

molecular sensors at its simplest level and logic gate arrays 

involving steadily increasing levels of parallel and serial 

integration. The fluorescent PET(photoinduced electron 

transfer) switching principle remains a loyal servant of this entire 10 

field. Applications arise from the convenient operation of 

molecular information processors in very small spaces. 

1. Introduction 

Since molecular logic-based computation arrived in the primary 
literature,1 it has been embraced by around 250 laboratories in 15 

many different parts of the world (Figure 1).2 It has been 
supported by six dedicated books2-7 and by substantial chapters in 
several other volumes.8-13 A large number of review articles are 
also available,14-40 including article collections in special journal 
issues.41-43 A series of biennial conferences dedicated to the field 20 

has completed the fourth edition.44 The first commercial product 
is  serving  worldwide in  life-critical situations,45,46 with sales  of 
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Figure 1a and 1b. Approximate world maps of the sources of 
molecular logic devices. Single input - single output devices 
have been omitted. 

120M $ so far. We are grateful for this opportunity to outline the 
journey of the field and to describe the lessons learned over the 55 

past two decades. 

2. A robust design tool for molecular switches is available 

Our story starts with the heart of plant photosynthesis - 
photoinduced electron transfer (PET).47 Following Weller’s 
insights into intermolecular PET process,48 intramolecular 60 

‘fluorophore-spacer-receptor’ systems could be developed.49-51 
These have two distinct states, one where the receptor is free of 
the target species and another where the receptor has captured the 
target. Usually, the fluorescence emission of the first state is 
switched ‘off’ (output 0) and that of the second state is switched 65 

‘on’ (output 1). This is the fluorescent PET sensor/switch 
principle. It is Boolean single input - single output YES logic,2-7 
where the fluorescence output is driven by the target species 
input. Similarly, single input - single output NOT logic2-7 can also 
be arranged.   70 

If we examine the two states a bit more closely, the excited 
state energy of the fluorophore is larger than the numeric sum of 
the oxidation and reduction potentials of the receptor and 
fluorophore respectively. When the receptor captured the target 
species, the oxidation potential is raised, to the point that PET is 75 

not possible so that we have fluorescence resurrection. This 
photoelectro-chemical mechanism shows the modular 
behaviour52,53 of the ‘fluorophore-spacer-receptor’ system, which 
is molecular engineering in action. It is gratifying that such a 
design tool with several quantitative features52,53 has been taken 80 

up by around 300 laboratories.2 A snapshot of the developments 
of this tool during the past year or two is contained in a recent 
review.54   

 
 85 

 
 
 
 
 90 

 
 
 
 
 95 

 
 
 

Figure 2. Stimulus-response curve for a molecular device. 
Reprinted from ref. 2. 100 

3. Sensors are the simplest logic gates operated in the analog 
regime 

The ‘off-on’ or ‘0-1’ switching language of the previous section 
suggests binary digital molecular behaviour is being discussed. 
Indeed, the commonest and simplest ‘mass action’-type equilibria 105 
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clearly pass a molecule between bound and free states when it is 
confronted with a target species. At the limits of no and excess 
target species, the observable properties of the system are 
substantially different and distinguishable so that the binary 
digital aspect persists in the experimental output, even at the 5 

single molecule level.55-59 Additionally, many chemical tests in a 
clinical/commercial/managerial setting aspire to deliver a 
‘well/ill’, ‘pass/fail’ or ‘go/no go’ decision which is binary digital 
anyway. 

When the usual situation of large populations of molecules is 10 

considered, it is clear that the binary digital output is given up 
when the target species concentration is finite. Now the output 
property becomes smoothly tunable. Such a stimulus-response 
curve for a molecular device is shown schematically in Figure 2. 
This is the analogue regime, which is well-known in 15 

electronics.60 Indeed, the building blocks of digital electronics, 
e.g. diodes, triodes and transistors have their own analogue 
regimes. Even molecular versions of triodes show this 
behaviour.61,62  

 20 

 
 
 
 
 25 

 
 
 
 
 30 

 
 

Figure 3. Schematic representation of three common 
fluorescence sensing scenarios, with their Boolean logical 
designation. 35 

 
The large literature on fluorescent sensing,50,63-66 for example, 

has a small number of scenarios. Three of the most common of 
these are shown in Figure 3. The ‘off-on’ or ‘turn on’ or ‘CHEF’ 
type corresponds to Boolean single input - single output YES 40 

logic. The ‘on-off’ or ‘turn off’ or ‘CHEQ’ type corresponds to 
Boolean single input - single output NOT logic. The ‘wavelength 
shift’ type corresponds to superposed YES/NOT logic.2 
Superposition is a foundational concept in quantum information 
processing.67 Overall, it is clear that most molecular sensors 45 

(fluorescent or not) have a Boolean basis, even though they are 
operated in an analogue fashion. 
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 55 

Figure 4. ‘Fluorophore-spacer1-receptor1-spacer2-receptor2’ 
system exemplified by 1. 
 

A recent example would be in order at this point. This 
concerns a key analogue device invented during the growth of the 60 

electronics industry – the triode.60 We arrange62 a molecular 
photoionic emulation of it, similar to an all-photonic emulation 
presented by Gust’s laboratory.61 It is well-known that 
fluorescent pH sensors possess a sigmoidal intensity-pH profile.68 
As mentioned above, the input-output characteristic of the triode 65 

is also quasi-sigmoidal.60 However, this characteristic function is 
tunable with a third variable. Similar tuning of the sigmoidal 
intensity-pH profile can be arranged by employing a 
‘fluorophore-spacer1-receptor1-spacer2-receptor2’ system,53 where 
the second receptor is not capable of engaging in any major 70 

interactions with the fluorophore (Figure 4). Now, the pKa value 
of the sensor becomes adjustable by electrostatic repulsion 
between the receptor1-bound H+ and another cation held by 
receptor2 provided that the two receptors actions are orthogonal. 
The amine and 15-crown-5 ether receptors in 138 satisfy this 75 

requirement. Protonation of the amine arrests PET from the 
amine to the anthracene fluorophore and leads to switching ‘on’ 
of fluorescence. 
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4. Molecular logic gates can access very small spaces 80 

Most molecules found in chemical or biochemical laboratories 
tend to be a few nanometers or less in size. They also tend to be 
biocompatible in general. Once logically enabled, they can access 
places that far more powerful semiconductor devices cannot 
easily operate from. A marker was put down when double input - 85 

single output AND gate 2 was incorporated in an aqueous 
detergent micelle of ca. 3 nm radius.69 The amine and 
benzocrown receptors within 2 can each launch a PET process 
unless they are blocked by ‘high’ levels of H+ and Na+ 
respectively. Thus only the situation of ‘high’ H+ and ‘high’ Na+ 90 

results in ‘high’ fluorescence output. More immediately useful 
systems covalently anchor molecular PET switching devices to 
micrometric polymer particles,70-72 e.g. gates 3, 4 and 5.  
 
 95 
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Figure 5. Fluorescence micrographs demonstrating molecular 
computational identification (MCID) of polymer beads. The 
beads are tagged with different logic gates and treated with (top) 
acid and (bottom) alkali in aqueous methanol (1:1, v/v) under 
ultraviolet (366 nm) irradiation. The logic gate types of some of 115 

the beads are discussed in the text. Reprinted from ref. 72. 

Wavelength

If

Wavelength

If

Wavelength

If

‘Off-on’ sensors  

are  YES  Logic
‘On-off’ sensors  

are  NOT  Logic

‘λλλλ shift’ sensors  are  

superposed  YES/NOT  Logic

Wavelength

If

Wavelength

If

Wavelength

If

Wavelength

If

Wavelength

If

Wavelength

If

Wavelength

If

‘Off-on’ sensors  

are  YES  Logic
‘On-off’ sensors  

are  NOT  Logic

‘λλλλ shift’ sensors  are  

superposed  YES/NOT  Logic

‘Off-on’ sensors  

are  YES  Logic
‘On-off’ sensors  

are  NOT  Logic

‘λλλλ shift’ sensors  are  

superposed  YES/NOT  Logic

 

e
-

FLUOROPHORE SPACER1
RECEPTOR1 SPACER2

hννννAbs
POWER

hννννFlu
OUTPUT

H+

INPUT1

M+

INPUT2

R
E

C E PTOR
2

PET-inactive
e

-

FLUOROPHORE SPACER1
RECEPTOR1 SPACER2

hννννAbs
POWER

hννννFlu
OUTPUT

H+

INPUT1

M+

INPUT2

R
E

C E PTOR
2

e
-

FLUOROPHORE SPACER1
RECEPTOR1 SPACER2

hννννAbs
POWER

hννννFlu
OUTPUT

H+

INPUT1

M+

INPUT2

R
E

C E PTOR
2

PET-inactive

acid

alkali

A

A

B

B

C

C

D

D

E

E

F

F

G

G

I

I

J

J

A; PASS 1 

B; NOT 

C; PASS 1 

D; PASS 1 + 

YES (1:1) 

E; YES 

F; NOT 

G; PASS 1

I; YES 

J; PASS 0

acid

alkali

A

A

B

B

C

C

D

D

E

E

F

F

G

G

I

I

J

J

A

A

B

B

C

C

D

D

E

E

F

F

G

G

I

I

J

J

A; PASS 1 

B; NOT 

C; PASS 1 

D; PASS 1 + 

YES (1:1) 

E; YES 

F; NOT 

G; PASS 1

I; YES 

J; PASS 0

 

Page 2 of 7ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3 

 
The problem being solved here is one of individually 

identifying a large number of small objects. Being sub-
millimetric, these small objects cannot be conveniently tagged 
with RFID chips.73 The latter, when operated with sensible 5 

electromagnetic frequencies, cannot be easily miniaturized below 
this size-scale. On the other hand, as shown in the previous 
paragraph, molecular tags can handle far smaller-sized objects. 
Though molecular fluorescent tags are known, the broad 
fluorescence signatures do not permit the handling of more than a 10 

hundred objects.74 The needs of combinatorial chemistry 
laboratories concern much larger numbers of objects.75,76 So we 
propose the use of logically-enabled molecular fluorescent tags so 
that each colour can produce a large diversity, each with its own 
logic signature, e.g. H+-driven YES (6) and H+-driven PASS 1 15 

(7). Their carboxylic acid groups are converted to peptide links 
during the object-tagging procedure. This is the technique of 
molecular computational identification (MCID).72 Both these 
gates 6 and 7 employ the same fluorophore with the same 
emission and excitation profiles. Since 7 contains only the 20 

fluorophore, its emission is unaffected by pH and retains PASS 1 
logic. Since 6 additionally contains an amine receptor, it permits 
PET unless blocked by the application of ‘high’ levels of H+. This 
leads to strong fluorescence only in acid solution, i.e. H+-driven 
YES logic. These logic signatures of 6 and 7 are manifested 25 

experimentally by observing the fluorescence intensities of the 
tagged objects with a microscope after gentle exposure to the 
‘high’ and ‘low’ levels of H+ (Figures 5a and 5b respectively). 
The YES gate shows strong emission only in acidic solution 
(beads E and I) whereas the PASS 1 gate glows constantly 30 

whatever the pH (beads A, C and G), i.e. the two gates are clearly 
distinguishable even though they are both displaying the same 
coloured fluorescence. At the level of this demonstration, there is 
some redundancy, i.e., several beads are carrying the same tag. 
 35 
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Figures 5a and 5b also contain the case where one bead D has 
equimolar PASS 1 and YES logic tags attached so that the 
summed fluorescence is seen. This produces the logic array PASS 40 

1 + YES (1:1) where the fluorescence intensity in acid solution is 
double that seen in alkaline solution. This case opens up the use 
of various molar ratios of a given pair of logic gates so that a 
series of distinguishable logic signatures will result. Such double-
tagging seriously increases the diversity addressable by this 45 

method. This also opens the door to ternary logic77
 which, though 

more information rich than binary, is not trusted in conventional 
computers. This is because ternary and higher logic deal with 
numbers which are not as different as the simple ‘0’ and ‘1’ of 

binary. For instance, the numbers ‘1’ and ‘2’ only differ by a 50 

factor of 2. When both numbers accumulate errors of say 50%, 
which can happen easily during long series of elementary 
computing steps within a conventional computer, they overlap 
and become indistinguishable, i.e., 1+0.5 and 2+1.78 However, 
our experiment involves only a few steps and the errors stay less 55 

than 10%. So the numbers ‘0’, ‘1’ and ‘2’ are well tolerated. de 
Ruiter and van der Boom also exploit this low-error situation 
during their use of ternary logic for data storage.36  

 
 60 

 
 
 
 
 65 

 
 
 
 

Figure 6. Effective local H+ density (as measured by the shift of 70 

acidity constant relative to bulk water, ∆pKa) as a function of 

position of 7 (as measured by the local dielectric constant, ε) 
within an aqueous micelle solution of Triton X-100. Plotted from 
data in ref. 79. 

 75 

Even smaller space resolution within small spaces is 
achievable in useful contexts.79 This involves the mapping of H+ 
near membranes on sub-nanometric length scales. The basic 
‘fluorophore-spacer-receptor’ system is expanded by adding two 
terminals which allow gross and fine positional targeting 80 

respectively. Such a molecule, e.g. 8 will take up an average 
position in an aqueous detergent micelle which depends on the 
nature of these targeting units. This position can be related to the 
polarity that the molecule sees, since the polarity increases 
gradually as we move away from the micelle center along a radial 85 

line. By employing a push-pull fluorophore with substantial 
internal charge transfer (ICT) character in its excited state, the 
local polarity becomes determinable from the emission 
wavelength.50,65,66 Separately, the expanded ‘fluorophore-spacer-
receptor’ system can measure the local H+ density via its 90 

emission intensity. More such local H+ density-position pairs can 
be obtained by employing variants of 8 with other targeting 
groups. Thus the spatial distribution of H+ in the micellar milieu 
is revealed (Figure 6). The pKa shift in the micellar medium 
versus bulk water gives the local H+ density (referred to that in 95 

bulk water). It is seen that the H+ density decreases rapidly as we 
approach the micelle from bulk water. 

5. Molecular logic gate arrays of increasing complexity are 

accumulating 

The Boolean insight into the logical power of the symbols ‘0’ and 100 

‘1’80 was developed by his followers into a family of logic 
operations of gradually increasing complexity.81-84 Furthermore, 
all-electronic semiconductor logic gates can be integrated85 
serially and in parallel into arrays of dizzying complexity and 
power which drive our current technologies. So the challenge for 105 

molecular logic-based computation is to build useful molecular 
logic arrays. 
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Parallel integration is relatively straightforward since several 
gates can be present in one solution so that each gate can receive 
their inputs respectively. The first small-molecule half-adder was 
built in this way.86 H+, Ca2+-driven AND gate 9 has a 
fluorescence output and functions on PET principles. H+, Ca2+-5 

driven XOR gate 10 is used in transmittance mode at a carefully 
selected wavelength of 390 nm. This XOR logic action depends 
on the ICT (internal charge transfer) excited state of 10 being 
stabilized by bound H+ and destabilized by bound Ca2+ in nearly 
equal amounts. Though simple, this case showed that small 10 

molecules could be numerate like children by expressing the 
ascending number hierarchy 0, 1 and 2. 

Unlike parallel integration, serial integration presents a 
stumbling block since most molecular logic devices use 
distinguishable inputs and outputs. Such input – output 15 

heterogeneity prevents the output of one logic device to be passed 
as input into another gate. However, there are several general 
avenues along which progress is being made. 

The commonest of these avenues is functional 
integration.87 Instead of physically linking elementary gates, 20 

relatively complex input-output patterns are arranged within 
molecules outfitted with several supramolecular interactions. 
Several switching pathways are also allowed for. Computer 
science textbooks81-84 have procedures which can analyze an 
input-output truth table according to a minimal array of 25 

elementary double input AND, double input OR and single 
input NOT gates. 

Physical linking of simpler gates to result in more 
complex arrays is also possible. Light has been demonstrated 
to serve as the linker via electronic energy transfer (EET)50,65 30 

between two gates.88 When such systems are endowed with 
separately switchable optical properties, e.g. H+-switched 
photochromics, rather complex arrays of elementary gates can 
emerge.89 Chemical species, e.g. H+,90 metal ions91 and 1O2,

92 
have also been shown to serve as the linker between gates. For 35 

instance, once switched with a dose of uv light, the 
photochromic 1193 transfers a H+ to 12. This H+ transfer is 
signalled by a change in the uv-visible absorption spectrum of 
12, which is the origin of the output(s).90 The use of Zn2+ as a 
gate linker is illustrated by Akkaya’s 13 and 14.91 13 40 

represents ‘caged’ Zn2+ which is released upon the supply of a 
dose of uv light absorbable by 13. Once liberated into 
solution, Zn2+ has the chance to bind to the receptor moiety of 
14, so that its fluorescence can be switched ‘on’ and be 
observed as the output. 45 
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Akkaya goes further by applying a non-ionic messenger, 1O2, 
between gates.92 H+, light dose-driven AND gate 15 produces 1O2 50 

as output only under acidic conditions when light of a carefully 
selected wavelength (660 nm) light is applied. 15 absorbs this 
light only when it is in the protonated (phenol) form but not when 
it is in the deprotonated (phenolate) form. Upon light absorption, 
the lowest singlet excited state of 15 quickly evolves to its lowest 55 

triplet excited state owing to the heavy atom nature of the internal 
iodine atoms. This, in turn, transfers its energy to form 1O2 from 
ubiquitous 3O2. 

The integration of gate 15 with gate 16 is facilitated by 
placing them in a soap micelle in D2O (where the lifetime of 1O2 60 

is extended). 16 contains an intramolecular pair of fluorophores 
so that the donor’s emission at 537 nm is hardly seen due to EET 
to the acceptor. However, 1O2 destroys the alkenic connection 
between the two fluorophores so that EET virtually ceases and 
537 nm emission emerges strongly. Since glutathione would be a 65 

sacrificial protector of 16, we have a 1O2, glutathione - driven 
INHIBIT(glutathione) gate where glutathione is the disabling 
input. 

 
 70 

 
 
 

Figure 7. Enzyme-based logic array involving serial integration. 
The enzymes involved are acetylcholine esterase, choline 75 

oxidase, microperoxidase and glucose dehydrogenase. 
 

The Krebs cycle of early biochemistry classes is a 
reminder to us that the product from one enzyme can serve as 
the substrate for the next enzyme. Since enzyme-based logic 80 

is well-developed,30 this path can be used to cascade enzymes 
to produce biomolecular logic arrays. For example, Willner, 
Katz and their colleagues combine acetylcholine esterase, 
choline oxidase, microperoxidase and glucose dehydrogenase 
to achieve the minimized gate array shown in Figure 7.94 The 85 

selectivity of acetylcholine esterase is not so extreme. So it 
hydrolyzes acetylcholine and butyrylcholine with comparable 
efficiency in an OR logical manner. The product, choline, is 
seized by the next enzyme, choline oxidase, if dioxygen is 
supplied as the oxidant. H2O2 is produced from this step 90 

according to choline, O2-driven AND logic. The third enzyme, 
microperoxidase, uses H2O2 to oxidize NADH, while the 
fourth enzyme, glucose dehydrogenase, processes glucose 
with the aid of NAD+. Another publication from the same 
laboratory shows how a combination similar to the third and 95 

fourth enzymes leads to XOR logic behavior when the NADH 
concentration is monitored under certain conditions.95 

The success of enzymes outlined in the previous paragraph 
can be emulated by oligonucleotides. DNA-based logic gate 
arrays with serial integration depend on strand displacement by 100 

another strand with a longer run of hybridization.96-100 This 
depends on a duplex containing an overhang region, which can 
serve as a toehold for the encroaching strand. Indeed, the inputs, 
outputs and devices are all composed of oligonucleotides. Even 
solid-phase versions are available.101  105 

At a larger size-scale, cuvet arrays and microtiter plates are 
also playing a part in the drive towards higher serial integration 
of molecular gates. Raymo and Giordani102 employ photo-
chromics in cuvet arrays and measure optical transmittance of the 
reading light through the queue of cuvets, while dosing each 110 

cuvet independently with the writing light as inputs. Choosing 
such queues in 2- and 3-dimensional cuvet arrays can extend this 
approach further. Szacilowski103 uses environmentally-sensitive 
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colour-forming reactions towards the same end via a similar 
tactic, but creates more complexity through the environmental 
variables, e.g. ion concentration, ionic strength etc. Schiller104 
translates each serial connection of a chosen logic array expressed 
exclusively in terms of IMPLICATION gates into an algorithm 5 

for pipetting input species into wells containing the molecular 
IMPLICATION  logic device59 in a microtiter plate, while 
exploiting the ‘universal’ or ‘complete’ nature of the gate pair of 
IMPLICATION and PASS 0. The ‘universal’ nature of the 
NAND or NOR gates are widely exploited in the semiconductor 10 

industry during integrated circuit manufacture.81,83  

6. Molecular logic-based computation at the human level is 

now possible 

A part of our (and animal) visual attention process is the rapid 
detection of edges of approaching objects.105 This is critical for 15 

our survival and hence its presence deep within our nature. This 
is how we quickly judge approaching objects according to our 
expectation from memory so that we can make an appropriate 
response. Here is an experiment that the reader can do to directly 
feel this truth. This is an experiment that many of us do often, 20 

rather inadvertently. We sit in a bus shelter waiting for the bus to 
come round the corner in the road some distance away. 
Sometimes we spot a tall profile growing around the corner 
within milliseconds, and our leg muscles tense and raise us off 
the seat. This is the edge detection in our eyes and brains kicking-25 

in, concluding rapidly that the tall profile peeking round the 
corner matches the tall profile of a bus (as compared to the many 
cars on the road). But then, as more of the object emerges from 
round the corner, its details show that it is not the bus but only a 
lorry. We sink into the seat again. This is the slower, but more 30 

comprehensive, computation being conducted centrally in our 
brains. We refer the reader to detailed psychological tests 
concerning objects approaching at moderate speeds,106 which 
confirms this analysis. 

Edge detection is also an important activity in machine 35 

vision, as well as in image processing software.107 For instance, 
the Canny algorithm exploits the large gradient of light intensity 
at the edge. When the Canny algorithm is run on a picture, pixels 
are raster-scanned and central differences are taken (meaning the 
intensity of the pixel ahead minus the intensity of the pixel 40 

behind in the horizontal line) after each pixel has been averaged 
in a Gaussian distribution with intensities in pixels vertically 
above and below. Then all pixels which display a higher central 
difference than a chosen threshold are declared as edge pixels. A 
further check of contiguity is applied so that isolated edge pixels 45 

are declared as ‘false positive’ and rejected. It is crucial to note 
that the Canny (and similar) algorithms require a substantial 
‘stored program’ computer with a graphical user interface. A 
small-scale integrated logic gate array will not suffice. This 
relative complexity is in keeping with the deep-seated 50 

human/animal nature of edge detection. 
Amazingly, such edge detection can be arranged in 

genetically-engineered bacteria108 and also in reactive DNA 
networks.109 Still, it would be remarkable if small molecules 
devoid of any connection with life could perform the same feat. 55 

This has been achieved very recently by employing a small 
molecular logic system composed of a fluorescent pH ‘off-on’ 
sensor (of the YES logic type) and a photoacid generator on 
lightly buffered and partially dried paper.110 An object mask is 
imaged onto the paper by means of writing 254 nm light. In the 60 

irradiated regions, a light dose-driven ‘off-on-off’ fluorescence 
function, with binary XOR and ternary logic characteristics, is 
observed. The slow diffusion of protons, to overcome the pH 
buffer just outside the irradiated regions, creates the observable 

edge via bright fluorescence by escaping a bimolecular quencher 65 

which is the second product of the photoacid generator. 

7. Conclusions 

We have seen how simple photochemical ideas have driven an 
early approach to molecular logic-based computation. Some of 
the earliest cases which can, in hindsight, be interpreted as 70 

molecular logic, are also photochemical in nature and are 
available from the work of Wolfbeis111 and Shinkai.112 Other 
photochemical approaches, e.g. those based on 
photochromism,113,114 are equally productive. General chemical 
phenomena, e.g. gel swelling,115,116 also yield rich rewards. 75 

Looking even further afield, molecular biologists are converting 
to the Boolean logic approach117-119 from the 1994 method for 
exploiting parallel DNA processing to tackle hard computing 
problems.120 We now need the communities separately focussing 
on oligonucleotides, enzymes and small molecules to come 80 

together and pool intellectual resources. Such a common front 
would provide usable insights for gene28-, cell108,121- and DNA 
reaction network109-based information processing. Then the baby 
steps that we all have taken until now could develop into bigger 
strides. 85 
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