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Crystal-to-crystal transformations and 
photoluminescence changes in the Cu(I) coordination 
networks based on a formamidinate ligand 

Wayne Hsu,a Kuan-Ting Chen,a Yu-Sian Li,a Po-Wen Cheng,a Tsun-Ren Chenb 
and Jhy-Der Chen*a  

One-pot solvothermal reactions of 4-aminopyridine and triethylorthoformate with Cu(O2CCH3)2 in 
acetone (ACT), dimethylformamide (DMF), tetrahydrofuran (THF), methanol (MeOH) and ethanol 
(EtOH) afforded 2D coordination networks anti-{[Cu(4-pyf)]·ACT}n, 1a, (4-Hpyf = N,N’-bis(pyridine-
4-yl)formamidine), anti-{[Cu(4-pyf)]·DMF}n, 1b,  anti-{[Cu(4-pyf)]·THF]}n, 1c, syn-{[Cu4(4-
pyf)4]·2MeOH}n, 2a, and  syn-{[Cu4(4-pyf)4]·2EtOH}n, 2b, whereas the reaction of Cu(O2CCH3)2, 4-
aminopyridine, triethylorthoformate and CuX2 (X = BF4

- and ClO4
-) in ethanol gave the 3D coordination 

networks syn-{[Cu3(4-pyf)2](BF4)·2H2O·EtOH}n, 3a and syn-{[Cu3(4-pyf)2](ClO4)·EtOH}n, 3b, 
respectively, which were characterized by X-ray crystallography. Complexes 1a – 3b are the first 2D and 
3D coordination networks showing closed-shell Cu(I)---Cu(I) interactions that are supported by the 
formamidinate ligands. Reversible crystal-to-crystal transformations were observed for the 2D anti- and 
syn-coordination networks upon solvent exchange. Irreversible anti to syn crystal-to-crystal 
transformations can be shown upon solvent removal and the important intermediate, syn-{[Cu4(4-
pyf)4]·2THF}n, 2c, that verifies the temperature-dependent transformation was structurally characterized. 
The configurations of the structures have significant influences on the emission properties. While the 
syn-complexes show broad emissions, those of the anti-complexes are not detectable, indicating 
cuprophilicity is unlikely to play significant roles in determining the emissions of 1a – 3b. The 2D anti- 
and syn-complexes that show outwardly  dangling pyridyl rings may adsorb the Cd salts through Cd---N 
interactions.  

Introduction 

The design and synthesis of coordination polymers with controlled 
dimensionality is a rapidly developing field in supramolecular 
chemistry and crystal engineering.1 The range and variety of the self-
assembling structures that can be constructed relies on the presence 
of suitable metal-ligand interactions and supramolecular contacts, as 
well as the solvents employed. These new complexes thus prepared 
have attracted a great attention not only due to their intriguing 
topological features but also their potential applications. The use of 
Cu(I) ions in the preparation of coordination polymers reflects their 
application in the area of luminescence that is associated with Cu(I)-
--Cu(I) interactions (cuprophilicity).2 It has been reported that the 
temperature-dependent variation of Cu---Cu distances is responsible 
for the luminescence thermochromism of  the Cu4I4 coordination 
polymers2a and the luminescence of 2D Cu(4-pt) [4-pt = 5-(4-
pyridyl)tetrazole] coordination polymers can be modified by 
grinding, which indicates that the mechanochromic properties are 
related to cuprophilicity and π-π interactions.2b Both of the metal 
ions and the organic spacer ligands provide the opportunities to 
induce the luminescence, which is also closely related to the guest 
molecules2c and the behavior of hydrogen bonding in the excited 
state.2d Crystal-to-crystal transformations involving coordination 
polymers are rare due to the involvement of breaking and forming of 

bonds in more than one direction,3 and even less common are those 
that are accompanied by the luminescence change. To our best 
knowledge, the supramolecular isomerism system of formamidinate 
ligand-based Cu(I) coordination polymers showing crystal-to-crystal 
transformations associated with luminescence changes remains 
unexploited.  

The coordination chemistry of metal complexes containing 
formamidinate ligands has been investigated extensively.4-6 The 
copper(II) linear trinuclear compounds of the general formula 
[Cu3(L)4](CF3SO3)2(Y)x [L is the dehydronated ligands of N,N’-
bis(pyridine-2-yl)formamidine, N,N’-bis(pyrimidine-2-
yl)formamidine  and N,N’-bis(methylpyridine-2-yl)formamidine; Y 
= EtOH or H2O and x = 0.5 – 1.5] have been synthesized in-situ by 
the reactions of Cu(CF3SO3)2 and triethylorthoformate with 2-
aminopyridine, 2-aminopyrimidine and 2-amino-5-methylpyridine,  

 
 

 

Page 1 of 8 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 2 

respectively, in ethanol at about 40 oC.5c,d Apparently, this type of 
formamidinate ligands could be improved by having different 
directions of donor sites to construct coordination polymers with 
higher dimensionality. We report herein the one-pot solvothermal 
synthesis, structures, crystal-to-crystal transformations and 
luminescent properties of several 2D and 3D Cu(I) coordination 
networks based on a formamidinate ligand. A striking feature is that 
the configurations of the dicopper(I) units of these complexes have a 
great influence on the luminescent properties. While all of the 2D 
and 3D syn-complexes show broad emissions, those of the 2D anti-
complexes are not detectable, indicating that the cuprophilicity is 
unlikely to play significant roles in determining the emissions. The 
important intermediate 2c provides a unique evidence that verifies 
the temperature-dependent crystal-to-crystal transformation upon 
solvent removal. The adsorption of CdCl2 by the 2D complexes are 
also investigated.  

Experimental sections 

General Procedures 

Elemental analyses were obtained from a HERAEUS VaruoEL 
analyzer. IR spectra (KBr disk) were recorded on a Jasco FT/IR-460 
plus spectrometer. Thermal gravimetric analyses (TGA) 
measurements were carried on a TG/DTA 6200 analyzer and the 
samples were heated up in N2 with a heating rate of 10 oC min-1.  
Emission spectra were obtained from a Hitachi F-4500 spectrometer. 
Powder X-ray diffraction measurements were carried out on a 
PANalytical PW3040/60 X’Pert Pro diffractometer or on a Bruker 
D2 PHASER X-ray Diffractometer. SEM/EDS experiments were 
carried on a JEOL JSM-7600F/Oxford Xmax80 spectrometer. The 
113Cd MAS NMR experiments were carried out on a wide-bore 14.1-
T Bruker Avance III spectrometer equipped with a 3.2 mm MAS 
probehead.  

Materials 

The reagents 4-aminopyridine was purchased from Alfa Aesar, 
copper(II) acetate from SHOWA, copper(II) tetrafluoroborate,  and 
triethyl orthoformate from Sigma-Aldrich Co. and copper(II) 
perchlorate from Alfa Aeasar. Caution: Perchlorate salts are 
dangerous (especially if they are dry) and should be handled with 
care. 

Synthesis of anti-{[Cu(4-pyf)]·ACT}n, 1a, anti-{[Cu(4-
pyf)]·DMF}n, 1b and anti-{[Cu(4-pyf)]·THF}n, 1c 

 A mixture of Cu(O2CCH3)2 (0.18 g, 1.0 mmol), 4-aminopyridine 
(0.75 g, 8.0 mmol), triethylorthoformate (3.0 mL, 18 mmol) and 5 
mL ACT, 1a, 5 mL DMF, 1b, or 5 mL THF, 1c,  were placed in a 23 
mL Teflon lined stainless container, which was sealed and heated at 
120 oC for 48 h under autogenous pressure and then cooled slowly to 
room temperature. Yellow block crystals were collected, washed by 
diethyl ether, and dried under vacuum. 1a: Yield: 0.19 g (56 %). 
Anal. Calcd. for C14H15CuN4O (MW = 318.84): C, 52.74; H, 4.74; 
N, 17.57. Found: C, 52.38; H, 5.25; N, 17.50. IR (KBr disk, cm-1): 
3039(w), 1712(w), 1647(w), 1593(w), 1534(m), 1487(m), 1422(w), 
1339(m), 1259(w), 1211(w), 1006(w), 966(w), 822(w), 540(w), 
420(w), 406(w). 1b: Yield: 0.27 g (81 %). Anal. Calcd. for 
C14H16CuN5O (MW = 333.86): C, 50.21; H, 5.12; N, 20.91. Found: 
C, 50.18; H, 5.03; N, 19.94. IR (KBr disk, cm-1): 2358(w), 1671(m), 
1592(m), 1521(m), 1484(m), 1435(m), 1321(m), 1250(m), 1210(m), 
1095(w), 1004(m), 990(m), 825(m), 658(w),  544(w), 410(w). 1c: 
Yield: 0.21 g (64 %). Anal. Calcd. for C15H17CuN4O (MW = 
332.87): C, 53.96; H, 5.43; N, 16.78. Found: C, 53.74; H, 5.46; N, 
16.36. IR (KBr disk, cm-1): 3433(w), 1592(m), 1526(m), 1479(m), 

1340(m), 1247(m), 1208(m), 1004(m), 961(w), 822(m), 729(w), 
645(w), 538(w). 

Synthesis of syn-{[Cu4(4-pyf)4]·2MeOH}n, 2a, syn-{[Cu4(4-
pyf)4]·2EtOH}n, 2b 

Prepared as described for 1a – 1c except that MeOH for 2a and 
EtOH for 2b were used as solvents and orange block crystals were 
collected. 2a: Yield: 0.21 g (75 %). Anal. Calcd. for 
C46H44Cu4N16O2 (MW = 1107.13): C, 49.90; H, 4.01; N, 20.24. 
Found: C, 50.47; H, 4.21; N, 19.82. IR (KBr disk, cm-1): 3353(m), 
3208(m), 2359(w), 1653(m), 1631(m), 1593(m), 1524(s), 1480(s), 
1343(s), 1248(m), 1208(s), 1056(w), 1022(m), 1004(m), 960(w), 
824(m), 669(w), 646(w), 569(w), 538(m), 472(w), 418(w). 2b: 
Yield: 0.20 g (71 %). Anal. Calcd. for C48H48Cu4N16O2 (MW = 
1135.18): C, 49.90; H, 4.01; N, 20.24. Found: C, 50.36; H, 3.87; N, 
20.19. IR (KBr disk, cm-1): 3356(w), 3037(w), 2358(w), 1592(m), 
1533(s), 1482(s), 1432(w), 1347(s), 1249(m), 1208(s), 1058(w), 
1005(m), 992(m), 971(w), 821(m), 734(w), 669(w), 649(w), 541(w), 
472(w), 418(w), 403.1(w).                                                                                        

Synthesis of syn-{[Cu3(4-pyf)2](BF4)·2H2O·EtOH}n, 3a, and syn-
{[Cu3(4-pyf)2](ClO4)·EtOH}n, 3b  

A mixture of Cu(O2CCH3)2 (0.36 g, 2.0 mmol), 4-aminopyridine 
(0.38 g, 4.0 mmol) and triethylorthoformate (3.0 mL, 18 mmol) in 
5.0 mL CH3CH2OH were placed in a 23 mL Teflon lined stainless 
container, followed by addition of Cu(BF4)2 (0.47 g, 2.0 mmol) for 
3a or Cu(ClO4)2 (0.74 g, 2.0 mmol) for 3b. The container was sealed 
and heated at 120 oC for 48 h under autogenous pressure and then 
cooled slowly to room temperature. Red block crystals were 
collected, washed by diethyl ether, and dried under a vacuum. 3a: 
Yield: 0.32 g (64 %). Anal. Calcd. for C24H28BF4Cu3N8O3 (MW = 
753.97): C, 38.23; H, 3.74; N, 14.86. Found: C, 38.17; H, 3.64; N, 
14.60. IR (KBr disk, cm-1): 3398(w), 1652(w), 1602(m), 1537(s), 
1485(s), 1348(s), 1254(m), 1208(s), 1084(m), 1053(m), 1031(m), 
824(m), 680(w), 545(w). 3b: Yield: 0.40 g (83 %). Anal. Calcd. for 
C24H24Cu3N8O4 (MW = 730.58): C, 39.46; H, 3.31; N, 15.34. Found: 
C, 39.87; H, 3.48; N, 15.42. IR (KBr disk, cm-1): 3312(w), 2359(w), 
1602(m), 1535(s), 1484(s), 1346(s), 1254(m), 1207(s), 1086(m), 
1031(w), 1006(w), 825(m), 623(w), 544(w).  

X-ray Crystallography  

The diffraction data were collected on a Bruker AXS SMART 
APEX II diffractometer equipped with a graphite-monochromated 
MoKα (λα = 0.71073 Å) radiation at 295K (1a, 1b, 1c, 2a, 2c, 3a and 
3b) or 100 K (compounds 2b, 2d and 2e). Data reduction was carried 
out by standard methods with use of well-established computational 
procedures.7 The structure factors were obtained after Lorentz and 
polarization correction. An empirical absorption correction based on 
“multi-scan” was applied to the data. The positions of some of the 
heavier atoms, including the copper atoms, were located by the 
direct method. The remaining atoms were found in a series of 
alternating difference Fourier maps and least-square refinements.8 
All the hydrogen atoms were added by using the HADD command 
in SHELXTL 5.10 and refined as riding atoms. Basic information 
pertaining to crystal parameters and structure refinement for 1a, 1b, 
1c, 2a, 2b, 2c, 3a and 3b is summarized in Table 1 and that for 2d 
and 2e is shown in Table S1. Selected bond distances and angles are 
listed in Table S2 - Table S4.  
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Structures of 2a – 2c  

The structures of 2a – 2c were solved in the space group C2/c. Fig. 
S2(a) depicts a representative drawing showing the coordination 
environments about the Cu(I) ions. The core structures of the 
dicopper units are similar to those of 1a – 1c, in which pairs of Cu(I) 
ions are bridged by two 4-pyf- ligands and coordinated by the pyridyl 
nitrogen atoms, leaving one dangling pyridyl nitrogen atom for each 
of the 4-pyf- ligands and resulting in 2D pleated layers, Fig. S2(b). 
The Cu(I) ions show T-shaped coordination environments with the 
Cu(I)---Cu(I) distances in the range 2.4968(13) - 2.5463(12) Å. In 
marked contrast to 1a – 1c, the N-Cu-Cu-N dihedral angles of 2a – 
2c involving the two pyridyl nitrogen atoms that are coordinated to 
the Cu(I) ions  are 0.23 - 8.78o, which are less than 90o and are 
designated as the syn-configurations. Fig. 1(b) depicts a schematic 
drawing for the 2D pleated layer and the outwardly dangling pyridyl 
nitrogen atoms. The 2D pleated layers of 2a – 2c can also be 
simplified as the 4-connected net with the {44·62}-sql topology, Fig. 
S2(c). Short intralayer π-π distances in the range 3.49 – 3.76 Å are 
also observed in the 2D layers of 2a – 2c. and 2b, which increases 
the vibration modes and thus reduces the time for vibrational 
relaxation. 

Structures of 3a and 3b  

The structures of 3a and 3b were solved in the space group P21/c. 
Fig. S3 depicts a representative drawing showing the coordination 
environments about Cu(I) ions. The Cu(I) ions show T-shaped 
coordination environments with the Cu(I)---Cu(I) distances of 
2.5540(9) and 2.5716(4) Å for 3a and 3b, respectively. The N-Cu-
Cu-N dihedral angles involving two pyridyl nitrogen atoms are 1.17o 
for 3a and 4.02o 3b, respectively, showing the syn-configurations as 
complexes 2a – 2c. The striking feature is that dangling pyridyl 
nitrogen atoms in 2a and 2b are now coordinated by the Cu(I) ions, 
resulting in 3D coordination networks, with Cu(3)-N distances of 
1.873(8) - 1.938(16) Å for 3a and 1.876(2) - 1.888(3) Å for 3b, 
respectively. The 3D structures can be simplified as the 6-connected 
nodal nets with the {412·63}-pcu topology, Fig. 2. Short π-π 
distances of 4.00 and 3.98 Å are also observed in 3a and 3b, 
respectively.  

The Cu---Cu distances of 1a – 3b, 2.5027(5) – 2.5716(4) Å, are 
shorter than the sum of the Van der Waals radii of Cu(I) centers (2.8 
Å), indicating the existence of “cuprophilicity”. It is also noted that 
in the dicopper units of 1a – 3b, the Cu-N distances to the inner 
nitrogen atoms that are 1.927(5) - 1.978(2) Å are significantly 
shorter than those to the pyridyl nitrogen atoms, which are 2.075(4) - 
2.191(4) Å. 

Thermal Properties  

Thermal gravimetric analyses (TGA) and differential scanning 
calorimetry (DSC) were carried out to examine the thermal 
stabilities of complexes 1a – 2b. The TGA curves of complexes 1a – 
2b, Fig. S4(a) and Table S5, involve two major weight losses. The 
first weight losses in the range 60 - 220 oC are due to the removal of 
the solvent molecules, whereas the second weight losses in 280 - 800 
oC can be ascribed to the decomposition of the 4-pyf- ligands. The 
DSC curves, Fig. S4(b) and Fig. S4(c) and Table S6, show 
exothermic peaks at 81, 73 and 81 oC for 1a - 1c, respectively, which 
can be ascribed to the anti to syn transformation in which the solvent 
molecules are retained, vide infra. The large endothermic peaks at 
153, 179 and 155 oC are due to the removal of the solvent molecules. 
The DSC curves show stepwise solvent losses with endothermic 
peaks at 86 and 172 oC for 2a and 75 and 143 oC for 2b, respectively. 
The small exothermic peaks at 201, 199, 196, 202 and 203 oC for 1a 
– 2b, respectively, are due to the phase transition of the desolvated 
1a – 2b. The DSC curves show endothermic peaks at 105 oC for 3a  

 
Fig. 3. (a) Reversible and irreversible crystal-to-crystal 
transformations among syn and anti complexes. (b) Crystal-to-
crystal transformations between 1c and 2c. 
 
and 135 oC for 3b, which are due to removal of the solvent 
molecules, Fig. S4(c). 
 

Crystal-to-Crystal transformation 

Reversible syn ⇌ anti transformations due to solvent exchange 

Complexes 1a – 2b provide an opportunity to investigate the 
structural transformations due to solvent exchange and solvent 
removal in the Cu(I) coordination networks containing the 
formamidinate ligands. To confirm the transformations in 1a – 2b, 
we first checked their purities by measuring the powder X-ray 
diffraction patterns. Fig. S5 – Fig. S9 show that the powder patterns 
of these five complexes match quite well with those simulated from 
single-crystal X-ray data, indicating the bulk purities of these 
complexes. We then investigated the solvent-exchange reactions of 
these 2D coordination networks. We first heated 0.10 g of 1a, 1b or 
1c in 10 mL MeOH or EtOH to reflux for 30 minutes. The insoluble 
crystalline solids were then collected and then dried under vacuum. 
By using the PXRD patterns, as shown in Fig. S10 – Fig. S21, we 
found that these complexes have been transformed to 2a or 2b. 
Similarly, by heating 2a or 2b in ACT, DMF and THF to reflux for 
30 minutes, complexes 1a, 1b and 1c can be obtained, respectively, 
indicating the reversible syn ⇌ anti structural transformations due to 
the solvent exchange at refluxing temperatures. The syn ⇌ anti 
isomerization should involve the breaking of the Cu-N bonds to the 
pyridyl nitrogen atoms and the coordination of the dangling pyridyl 
nitrogen atoms to the Cu(I) ions. 

Irreversible anti to syn transformation due to solvent removal  

To investigate the structural transformation upon solvent removal, 
we have heated the crystals of 1a – 2b at 240 oC to remove the 
solvents. It is noted that removal of the solvent molecules from 1a – 
1c under vacuum at room temperature is not possible, probably due 
to the encapsulation of the solvent molecules in the structures, vide 
supra. Fortunately, we were able to obtain two types of crystals 
suitable for X-ray diffraction measurements by heating 2b at 140 oC 
and 180 oC, which conform to the space groups I-4, 2d, and I-4c2, 
2e, respectively, Table S1. Analysis of the powder X-ray diffraction 
patterns of the desolvated products of 1a - 2b at 240 oC shows that 
the major components of each of these desolvated products is a 
mixture of 2d and 2e with a ratio of about 1 : 1, Fig. S22 – Fig. S23. 
Although the qualities of the crystals of 2d and 2e are poor, their 
structures clearly indicate the formation of 2D layers with the 
dicopper units adopting the syn-configuration. Most interestingly, we 
were able to obtain single crystals of syn-{[Cu4(4-pyf)4]·2THF}n, 2c, 
by heating 1c at 80 oC for 30 minutes. Structural determination using 
single-crystal crystallography revealed that 2c adopts the syn  
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Fig. 6. Adsorption isotherms for CdCl2 by 1a and 2a 
 

 
Fig. 7. (a) SEM image for crystalline 2b  at RT, scal bar is 100 nm. 
(b) SEM image  for crystalline 2b after heated at 180 oC, scal bar is 1 
μm. 
 
Cartesian coordinate system, assuming Ci (gerade symmetry) and C2 
(ungerade symmetry) point groups with Cu-Cu vector along the z 
axis. The ligands that link the Cu2(4-pyf)2 units were reduced as 
pyridine molecules. The results show that the HOMOs of both the 
syn and anti complexes are mainly composed of d orbitals (61.06 % 
for syn and 63.26 % for anti) of the Cu(I) ions and the LUMOs are 
mainly composed of *-orbitals from the ligand, with the HOMO-
LUMO separations of 2.61 eV for syn complex and 3.23 eV for anti 
complex, respectively, Table S8 and Fig. S28. The lowest energy 
bands of 1a – 3b in the solid state UV-vis spectra can thus most 
probably be assigned to the 3dσ*/δ*→pπ* transitions,2g,2h which are 
also responsible for the emission bands of 2a – 3b. 

CdCl2 adsorption 

Complexes 1a – 2b show 2D layers with outwardly dangling pyridyl 
nitrogen atoms. The adsorptions of CdCl2 by 1a and 2a were thus 

investigated by using SEM-EDS and elementary analysis, Fig. S29 
and Fig. S30 and Tables S9 and S10. Adsorption isotherms, Fig. 6, at 
different molarities of dissolved CdCl2 show that the number of 
mole of adsorbed CdCl2 increases as the concentration of the 
dissolved CdCl2 increases, which may reach the maximum 
adsorption at about 1.0 mmol of the dissolved CdCl2. It is noted that 
there is only one dangling nitrogen atom per formula of 1a or 2a and 
1.0 mmol of 1a or 2a was used for adsorbing CdCl2. To evaluate the 
interactions between the adsorbed CdCl2 and the coordination 
network, we have measured the solid state 113Cd MAS NMR spectra 
of the adsorbed products, Fig. S31.  It has been shown that the 
reported 113Cd chemical shifts of the compounds coordinated by 
nitrogen atoms are between 200 – 380 ppm,17 and the crystalline 
CdCl2 shows peak at 183.0 ppm.17a Because the spectrum of the 
product obtained by adding CdCl2 to the ACT solution of 1a shows 
three board peaks at 126.4, 186.1 and 220.2 ppm, and that of CdCl2 
in 2a shows a board peak at 229.9 ppm, we suggest that most of the 
adsorbed CdCl2 interact with 1a and 2a through the Cd---N 
interactions to the nitrogen atoms of the dangling pyridyl rings. 

Scanning electron microscopy (SEM)  

Fig. S32 depicts SEM images of the crystals of  2b at room 
temperature, and Fig. 7(a) shows a 40000 magnification image. The 
structure of the crystals  is  lamellar with slits between layers and the 
thickness of the layers are in the range of 51.6 - 82.3 nm. The image 
of 2b after heated to 180 oC, Fig. 7(b), shows the disappearance of 
the slits and the the formation of cubical defects. Inspection of the 
surfaces of the defects reveals the round cavities, Fig. S33, with 
diameters  near 50 nm. Such huge defects may be responsible for the 
irreversible transformations of 1a – 2b to the desolvated products. 

Conclusions 

By one-pot solvothermal reactions of 4-aminopyridine and 
triethylorthoformate with divalent copper salts, several 2D and 3D 
coordination networks have been prepared, in which the aprotic 
solvents ACT, DMF and THF and the protic solvents MeOH and 
EtOH favor the formation of complexes with anti- and syn-
configurations, respectively. The 2D anti- and syn- coordination 
networks can be reversibly interconverted through solvent 
exchanges, resulting from the breaking and making of the Cu-N 
bond to the pyridyl nitrogen atoms. The characterization of the 
intermediate 2c demonstrates that the irreversible anti-to-syn  
transformations upon solvent removal are temperature-dependent. 
The configurations of the structures have  significant influences on 
the emission properties. While the syn-complexes show broad 
emissions, those of the anti-complexes are not detectable, indicating 
that cuprophilicity is unlikely to play significant roles in determining 
the emissions of 1a – 3b. The solvents in the present system are 
important in determining the structural diversity; however, they are 
not responsible for the luminescene since the desolvated products are 
luminescent. We have also shown that the 2D anti- and syn-
complexes that show outwardly dangling pyridyl rings may adsorb 
the Cd(II) salts through Cd---N interactions  
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