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The Case of Time-Resolved Long-Range Charge Transfer
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(Dated: March 2, 2014)

We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approx-
imation of time-dependent density functional theory in modelling time-resolved charge transfer. We
show that the model shares essential features of a ground state long-range molecule in real-space, and
by applying a resonant field we show that the model also reproduces essential traits of the CT dynam-
ics. The simplicity of the model allows us to propagate with an “adiabatically-exact” approximation,
i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact
propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in
the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of
the dimer allows a study both of charge-transfer between open-shell fragments and between closed-
shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge,
even in situations where the adiabatically-exact resonance frequency is remarkably close to the exact
resonance, and we analyze why.

I. INTRODUCTION

The transfer of an electron across a molecule is an es-
sential process in biology, chemistry, and physics, that
needs to be accurately described in order to compu-
tationally model phenomena in many topical applica-
tions, e.g. photovoltaics, vision, photosynthesis, molec-
ular electronics, and the control of coupled electron-ion
dynamics by strong lasers(e.g. Refs [1–7]). For most of
these applications, a time-resolved picture of the charge
transfer (CT) is extremely useful, and often necessary, as
has been stressed in recent work, and the correlation be-
tween electrons as well as between electrons and ions
play a crucial role [8]. The systems are large enough
that time-dependent density functional theory (TDDFT)
is the only calculationally feasible approach [9–11]. It
is well-known that the standard functional approxima-
tions considerably underestimate CT excitations, and
there has been intense development of improved func-
tionals for this; in particular the optimally tuned hybrids
present a useful non-empirical approach [12]. However
the transfer of one electron from one region of space to
another is clearly a non-perturbative process and calls
for calculations that go beyond linear response and ex-
citations. The success of TDDFT to date rests on its per-
formance in the linear regime, however the theory ap-
plies also to dynamics far from equilibrium. The per-
formance of functionals for CT in this regime paints a
more hazy picture: there have been calculations in good
agreement with experiment (e.g. Ref. [6]) but failures
have been reported too [13]. It would be fair to say that
it is not always clear to what accuracy the TDDFT results
can be trusted. Part of the problem is that there are very
few alternate practical computational methods for cor-
related electronic dynamics to test against. Calculations
on simplified model systems that can be solved exactly,
e.g. two-electron systems in one-dimension, have high-

lighted prominent features that the approximate func-
tionals lack, not just for CT dynamics [14], but also more
generally in the non-linear regime [15–18]. The errors
that result from the lack of these features appear to be
sometimes very significant, and other times less so.

TDDFT in practise is almost always synonomous with
adiabatic TDDFT, certainly in the non-linear regime.
That is, the Kohn-Sham (KS) system is propagated using
an adiabatic exchange-correlation potential, where the
evolving density at time t is input into a ground-state
(gs) functional: vA

XC[n; Ψ0,Φ0](r, t) := vgs
XC[n(t)](r). There

are two distinct sources of error in such an approxima-
tion: one is from the choice of the gs functional approx-
imation, while the other is the adiabatic approximation
itself. To separate these the adiabatically-exact (AE) ap-
proximation [18] is defined: the instantaneous density is
input into the exact gs functional, vAE

XC [n; Ψ0,Φ0](r, t) =

vAE
XC [n](r, t) := vexact gs

XC [n(t)](r). This approximation ne-
glects memory-dependence that the exact functional is
known to possess (dependence on the density’s history
and true and KS initial states Ψ0 and Φ0) but is fully non-
local in space, and, if the true and KS states at time t
were actually gs’s of some potential, it would be instan-
taneously exact at time t.

Since the exact gs exchange-correlation functional
is not known, even for one-dimensional two electron
systems, vAE

XC [n](r, t) must be found via a numerical
scheme, of an inverse problem type. A handful of pa-
pers [14, 17, 18] have found vAE

XC [n](r, t) using an iter-
ative scheme for some model systems: The exact den-
sity n(t), found by solving the interacting Schrödinger
equation, provides the input to an iterative procedure
that finds at each t of interest the interacting and non-
interacting gs’s of density n(t), along with the poten-
tial in which they are the gs. Then, vAE

XC [n(t)](r) =

vexact gs
ext [n(t)](r) − vexact gs

S [n(t)](r) − vH[n(t)](r) where
vH[n](r) is the electrostatic Hartree potential. In most
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cases studied so far the AE potential vAE
XC [n](r, t) has

been evaluated on the exact density n(t), and com-
pared with the exact (memory-dependent) exchange-
correlation potential vXC[n,Ψ0,Φ0](r, t) at that time, to
analyze how good the AE approximation is, what fea-
tures of the exact potential are missing, etc. In a few
cases, the AE potential was used to self-consistently
propagate the KS orbitals, using at each time-step, the
AE potential evaluated on the self-consistent instanta-
neous density. Such a propagation provides a more use-
ful assessment of the accuracy of the AE, as it measures
directly the impact of the AE on the resulting dynamics.
For example, it is possible that some features that might
make the AE potential look significantly different than
the exact, may in fact have a limited effect on the propa-
gation. However, self-consistent AE propagation clearly
requires much more numerical effort, as many iterations
need to be performed at every time-step to find the po-
tential to propagate in, and it has only been done in
a few examples [18–20] in one-dimensional model sys-
tems. In regions where the density becomes too small,
the inversion becomes unstable and noisy.

In particular, for CT dynamics it is particularly
challenging to converge the iterative density-inversion
scheme due to the very low density region between the
atoms. Yet, such a calculation is of great interest for
CT dynamics: not only because of its significance in
the phenomena mentioned earlier, but also because it is
known the exact functional develops features that the
usual approximations lack. Ref. [14] showed that for a
two-electron model molecule composed of closed-shell
atoms (meaning that in the dissociation limit, each of
the two atoms have spin-paired electrons) and driven at
the CT resonance, a step associated with the CT process
gradually builds up over time in the exact correlation
potential. A dynamical oscillatory step is superimposed
on this (see Refs. [17, 21]), and is a generic feature of
non-linear dynamics, not only in CT dynamics, that has
a non-adiabatic density-dependence. The AE approx-
imation fails to capture the dynamical step but, when
evaluated on the exact density, does yield a CT step al-
though of a smaller size than the exact. Such steps re-
quire functionals with a spatially non-local dependence
on the density. The available approximations do not
yield any step structure whatsover: the dismal failure
of ALDA, ASIC-LDA, and AEXX, none of which con-
tain any step in the correlation potential, to transfer any
charge was shown (Fig 3 of Ref. [14]) and attributed to
this lack of step structure. We expect some blame must
go to the adiabatic approximation itself, but a question
arises: is the partial step of the AE approximation enough
to give a reasonable description of the CT dynamics? If yes,
this would greatly simplify the on-going search for accu-
rate functionals for non-perturbative CT: it would mean
that one does need to build in spatial non-local density-
dependence into the correlation functional approxima-
tion, but that one could get away with a time-local, i.e.
adiabatic approximation. To answer the question, we

would need to propagate with the AE self-consistently,
but as discussed above, this procedure is numerically
very challenging for CT dynamics. In a recent short pa-
per [22], we have shown that the answer is no, by study-
ing CT dynamics in a two-fermion asymmetric Hubbard
dimer, which shares the essential features of CT dynam-
ics with real-space molecules. Due to the small Hilbert
space of the dimer the exact gs functional can be found
via a constrained search, parametrized into an analytic
form, and then used in vAE

XC (t) to self-consistently propa-
gate the system. No iterative scheme is needed because
the exact functional form of the gs Hartree-exchange-
correlation (HXC) potential is known. This enabled us to
assess errors in the adiabatic approximation for CT dy-
namics independently of those resulting from errors in
the gs approximation used. In this paper we give more
details on the dimer model, and the procedure followed.
Like in Ref. [22], we study both the cases of resonant CT
between closed-shells and between open-shells, by tun-
ing the potential-difference between the two sites. How-
ever, unlike Ref [22], we choose this asymmetry such
that the CT state of the first case has a very similar den-
sity as the gs of the second, and vice-versa. Although
this choice leads to the exact density-dynamics in one
case being a time-reversed version of the dynamics in
the other case, we find the AE dynamics does not have
this property. The AE approximation in the closed-shell
case is better for longer than for the open-shell case,
where it fails almost immediately; yet in either case, it
fails to properly transfer the charge. The hope that the
step seen in the AE approximation evaluated on the ex-
act density, albeit smaller than the exact, is enough to do
a reasonable job for CT processes is dashed. A further
result is an expression for the interacting frequencies of
the system in terms of the KS ones and the HXC kernel.
Using this, we compare the exact resonant frequency of
the interacting system with that predicted by the AE ap-
proximation.

In Section II we introduce the model, its ground-state
energies and potentials, and the exact time-dependent
KS potential. In Section III, we present the parameters
used to study CT between closed-shells, give details of
the eigenstates of the interacting and KS systems, and
propagate the system with a resonant field to induce
Rabi oscillations between the ground and CT excited
state. We compare the exact propagation with that re-
sulting from the AE propagation and discuss features of
the potentials. Section IV contains the analogous analy-
sis for the case of CT between open-shells. In Section V
we derive a formula for the interacting frequencies of
the system in terms of the KS ones and the HXC kernel.
This is used to find the AE resonant frequency, compare
with the exact in each case, and discuss the connection
to the time-resolved dynamics. We finish with conclu-
sions and outlook.
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site site

FIG. 1. The three states pictured form a complete basis of the
singlet sector of the Hubbard dimer.

II. THE MODEL

The Hamiltonian of the two-site interacting Hubbard
model with on-site repulsion U and hopping parameter
T [22–30] reads:

Ĥ =− T
∑
σ

(
ĉ†Lσ ĉRσ + ĉ†Rσ ĉLσ

)
+ U (n̂L↑n̂L↓ + n̂R↑n̂R↓)

+
∆v(t)

2
(n̂L − n̂R), (1)

where ĉ†L(R)σ and ĉL(R)σ are creation and annihilation
operators for a spin-σ electron on the left(right) site
L(R), respectively, and n̂L(R) =

∑
σ=↑,↓ ĉ

†
L(R)σ ĉL(R)σ are

the site-occupancy operators.
The occupation difference 〈n̂L − n̂R〉 = ∆n represents

the dipole in this model, d = ∆n, and is the main vari-
able [28]; the total number of fermions is fixed at N = 2.
A static potential difference, ∆v0 =

∑
σ(v

0
Lσ −v0Rσ), ren-

ders the Hubbard dimer asymmetric. The total external
potential ∆v(t) is given by ∆v(t) = ∆v0 + 2E(t), where
the last term represents an electric field that we will tune
to induce CT between the sites. An infinitely long-range
molecule is modelled by T/U → 0: in our calculations,
we fix the interaction strength to be unity, U = 1 and
make the hopping parameter T small, corresponding to
a large separation between the sites (equivalent to the
strongly correlated limit U/T → ∞). We use � = e = 1
throughout, and all energies are given in units of U .

The singlet sector of the two-electron vector space is
three-dimensional (depicted in Fig. 1),

|Ψ1〉 =
1√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ†1↓ĉ

†
2↑

)
|0〉 = 1√

2
[| ↑, ↓〉 − | ↓, ↑〉](2)

|Ψ2〉 = ĉ†1↑ĉ
†
1↓|0〉 = | ↑↓, 0〉 (3)

|Ψ3〉 = ĉ†2↑ĉ
†
2↓|0〉 = |0, ↑↓〉 (4)

For fixed T/U a constrained search search over all gs
wavefunctions |Ψ〉 = a1|Ψ1〉+a2|Ψ2〉+a3|Ψ3〉 that yield
a given ∆n [32, 33] can be straightforwardly performed
due to the small size of the Hilbert space. This results in
the Hohenberg-Kohn (HK) energy functional [31–33]:

FHK [∆n] = min
Ψ→∆n

〈Ψ∆n|T̂+Û |Ψ∆n〉 = EHXC[∆n]+Ts[∆n] ,

(5)
where T̂ and Û are the first two terms in Eq. (1),
Ts[∆n] = minΦ→∆n〈Φ∆n|T̂ |Φ∆n〉 is the non interacting
kinetic energy, and Φ denotes a single Slater determi-
nant. EHXC[∆n] is the HXC energy functional, which
must in practise be approximated for real systems, but
here for the Hubbard model we can compute the nu-
merically exact functional explicitly. The HK functional
FHK [∆n] completely determines the gs energy Egs,

Egs = min
∆n

(
FHK[∆n] +

∆v0

2
∆n

)
. (6)

The gs occupation difference ∆ngs of all possible asym-
metric (and symmetric) Hubbard dimers is determined
by ∂FHK

∂∆n

∣∣
∆ngs

= −∆v0

2 .
The minimization Eq. (5) was carried out in Mathe-

matica; the resulting discrete function F j
HK(∆nj) was

fitted and derived using splines to obtain the exact gs
HXC potential ∆vgsHXC[∆n] = 2∂(FHK [∆n]−Ts[∆n])

∂∆n (see
Fig. 2). (The factor of 2 results from expressing the en-
ergy functional in terms of the variable ∆n = nL −
nR, namely ∆vgsHXC[∆n] = vLHXC[∆n] − vRHXC[∆n] =
dEHXC[∆n]

d(∆n)
d∆n
dnL

− dEHXC[∆n]
d(∆n)

d∆n
dnR

.)
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FIG. 2. Correlation energy functional EC[∆n] for T = 1 (red
dotted) T = 0.1 (green dashed) and T = 0.05 (black solid). In-
sets: EHXC[∆n] (left) and non-interacting kinetic energy func-
tional TS[∆n] for the same parameters. Energies are in units of
U .

In Fig. 2 the different components of the energy as
functions of the occupation difference ∆n for different
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FIG. 3. Ground-state HXC potential functional ∆vgs
HXC[∆n] for

T = 1 (red dotted) T = 0.1 (green dashed) and T = 0.05 (black
solid). Left inset: Ground-state correlation potential functional
∆vgs

C [∆n]. Right inset: ∆fgs
HXC[∆n] = d2EHXC[∆n]

d(∆n)2
.

T and fixed Hubbard strength U = 1 are plotted. Note
that the Hartree-exchange (HX) part of the energy func-
tional is independent of T , EHX[∆n] = (N2 + ∆n2)U/8
(with N being the number of particles) [27]. In the limit
where the two electrons are sitting on the same site the
HXC energy is entirely due to HX and equal to the on-
site repulsion U , EHXC[∆n = ±2] = EHX = U (see left
inset in Fig. 2). The hopping parameter T plays a role
as soon as the electronic density delocalizes. As shown
in right inset of Fig. 2 the non-interacting kinetic energy
TS[∆n] depends strongly on T .

For small occupation differences ∆n → 0 (one elec-
tron on each site), in the infinite separation limit T/U →
0, the correlation energy EC[∆n] develops a disconti-
nuity in its derivative (see Fig. 2). This discontinuity
manifests in a step-like function in the correlation poten-
tial difference ∆vgs

C [∆n] = 2∂∆EC

∂∆n (see left inset Fig. 3).
This feature is related to the derivative discontinuity
of the isolated 1-electron site for the following reason.
The variable ∆n plays the role of the density-variable,
as well as directly giving the particle number on each
site, nL,R = 1 ± ∆n/2. So, in the isolated-site limit
T/U → 0, a variation δn near ∆n = 0 can be thought
of as adding(subtracting) a fraction of charge δn to the
one-fermion site on the left(right):

2dEC[∆n]
d(∆n)

∣∣∣
∆n=0+

− 2dEC[∆n]
d(∆n)

∣∣∣
∆n=0−

=

∆vgs
C [∆n = 0+]−∆vgs

C [∆n = 0−] ≡ 2∆1−site
C (N = 1)(7)

The difference in the correlation potential as one crosses
∆n = 0, therefore coincides with the derivative discon-
tinuity at N = 1 of one site; the value of ∆1−site

C (N =
1) = U . The discontinuity only shows up in the infinite
separation limit; if instead the two sites lie closer to each
other they can not be considered as two separated one-

electron systems and thus moving a fraction of electron
back or forth represents a smooth change in the energy.

In section III we will study CT dynamics between two
closed-shell fragments (cs–cs) by applying a relatively
large static potential difference such that ∆ngs ≈ 2. One
electron will be transferred to the other site by turning
on a field resonant with the CT excitation frequency.
Looking at Figs. 2-3 this corresponds to scanning the
densities starting at the outer right region and finish-
ing at the central region once the CT state (consisting
of two now open-shell sites) is reached. The AE prop-
agation is performed using the exact gs HXC potential
∆vgs

HXC[∆n] shown in Fig. 3, i.e. assuming that at every
time t the density ∆n(t) is the gs density of some po-
tential ∆v. In section IV we study instead CT between
two open-shell fragments (os–os), starting with a gs con-
sisting of two open-shell sites each with approximately
one electron (∆ngs ≈ 0) that evolves to a CT state with
∆n ≈ 2; thus scanning the densities in a “time-reversed”
way compared to Sec. III, moving from the central re-
gion in Figs. 2-3 to the outer region. We have chosen
the ∆v0’s such that the CT density of the cs–cs system is
close to the gs density of the os–os system, ∆ncs−−cs

CT ≈
∆nos−−os

gs and vice-versa, ∆nos−−os
CT ≈ ∆ncs−−cs

gs .

A. Time-dependent Kohn-Sham potential

The KS Hamiltonian has the form of Eq. (1) but with
U = 0 and ∆v(t) replaced by the KS potential difference,

∆vs[∆n,Φ(t0)](t) = vHXC[∆n,Ψ(t0),Φ(t0)](t) + ∆v(t),
(8)

defined such that the interacting ∆n(t) is reproduced.
The exact time-dependent KS potential can be found by
inversion of the time-dependent KS equations [10] as-
suming a doubly-occupied singlet state. This yields [29]

∆vs[∆n,Φ(t = 0)] = −

 ∆̈n+ (2T )2 ∆n√
(2T )2 (4− (∆n)2)− (∆̇n)2


(9)

when the KS initial state is the KS gs. ∆n(t) is time-
dependent non-interacting V -representable as long as
the denominator in Eq. (9) does not vanish,

|∆̇n| < 2T
√

4− (∆n)2. (10)

Condition (10) fixes an upper bound to the absolute
value of the link-current |∆̇n|, which can be identified
with the sum of currents flowing along links attached to
the site. On a lattice the maximum link-current depends
on T (see [29] and refs. therein).

III. CLOSED-SHELL TO CLOSED-SHELL CT

To model CT between two closed-shell fragments we
choose the static external potential difference in the

4
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FIG. 4. Model of CT between two closed-shell fragments at
large separation: a large static potential difference ∆v0 =
−1.5 U is chosen such that in the gs almost two electrons are
sitting on the left site (∆ng ≈ 2) and T/U = 0.05. In the top
panel the results of the propagation are shown: exact dipole
∆n(t) (black solid), self-consistent AE dipole ∆nAE

sc (t) (red
dashed) and self-consistent adiabatic EXX dipole ∆nAEXX

sc (t)
(pink dotted). Time is given in units of 1/U , CT state is reached
at TR/2 ≈ 128/U .

Hubbard dimer to be ∆v0 = −1.5 U , which results in
a gs with almost two fermions sitting on the left site
∆ngs = 1.9620 (see Fig. 4). The vector space is built
from the three singlet states introduced in Fig. 1 and
Eqs. 4, the eigenstates are presented in detail Table I.
The interacting states in this basis were found by first
computing the matrix elements of the static Hamilto-
nian Eq. 1 (E(t) = 0) in basis Eqs. 4 and then diag-
onalizing the matrix. The calculation was performed
in a self-developed code written in the second quanti-
zation formalism. The interacting gs is predominantly
|Ψ2〉, while the first excited state is mainly |Ψ1〉, i.e. is
a CT excitation with about one electron on each site.
There is a second CT excited state Ψcs−−cs

e2 , dominated
by |Ψ3〉. The KS states Φ are obtained from diagonal-
ization of the exact gs KS Hamiltonian, which corre-

TABLE I. Interacting and Kohn-Sham states for the asymmet-
ric dimer with cs-cs ground state.

∆v0 = −1.5 U |Ψ1〉 |Ψ2〉 |Ψ3〉
|Ψcs−cs

gs 〉 - 0.13781 0.99045 0.00323
|Ψcs−cs

e1 〉 0.990054 - 0.13785 0.02809
|Ψcs−cs

e2 〉 -0.02827 0.000666 0.9996

|Φcs−cs
gs 〉 0.13724 0.99049 0.0095073

|Φcs−cs
e1 〉 0.980985 - 0.13724 0.13724

|Φcs−cs
e2 〉 -0.137236 0.0095072 0.990492

sponds to taking U → 0 and ∆v = ∆v0 + ∆vHXC[∆n]

in Eq. 1, with ∆vHXC[∆n] = 2∂EHXC[∆n]
∂∆n and EHXC[∆n]

found by constrained search as discussed in section II.
The non-interacting two-electron KS gs is also predom-
inantly |Ψ2〉, while the first KS excited state, predomi-
nantly |Ψ1〉, corresponds to a single excitation to a CT
state. The second KS excited state Φcs−−cs

e2 is dominated
by |Ψ3〉 and is actually a double excitation. Comparing
the KS states with the interacting ones for the cs-cs case
we observe that they are very similar.

Table II contains the energies, site-occupation differ-
ences ∆n = 〈Ψcs−cs|∆̂n|Ψcs−cs〉 of the three interact-
ing and KS states enumerated in Table I, and the tran-
sition matrix elements from the gs to the CT excited
states, dgs→e1(2) = 〈Ψcs−cs

e1(2) |∆̂n|Ψcs−cs
gs 〉 for both interact-

ing and Kohn Sham systems. By construction the exact
gs HXC functional EHXC reproduces the exact gs energy
Egs and gs density ∆ngs. All other KS variables shown
such as interacting excitation frequencies ωS and tran-
sition matrix elements dS

gs→e1(2) have limited physical
meaning. For the case of the cs–cs CT we are studying
in this section however, they turn out to be good approx-
imations to the exact quantities,ωS

e(2) = εSe(2) − εSgs ≈ ω,

and dS

gs→e1(2) = 〈Φgs|∆̂n|Φe(2)〉 ≈ dgs→e1(2) . In con-
trast to the interacting system the non-interacting Kohn-
Sham system has equidistant excitations εse2 − εse1 =
εse1 − εsgs. That is, the second KS excitation is a pure
double-excitation out of the doubly-occupied gs KS or-
bital; consequently, its dipole transition matrix element
is exactly zero. In the interacting system, the second
excitation has a very small but non-zero transition ma-
trix element (see Table II). We will choose a field reso-
nant with the first excitation, weak enough that only the
ground and first excited interacting states get occupied
during the dynamics.

We induce the CT dynamics by turning on a field res-
onant with the lowest excitation, E(t) = 0.09 sin(ω t),
with ω = ωgs→e1 = 0.5177 U . All propagations were
performed using a Crank-Nicolson scheme, time-step
is 0.01/U . The TDDFT calculations have been per-
formed using a predictor-corrector scheme. We evolve
the interacting gs in the Hamiltonian of Eq. 1 to ob-
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TABLE II. Eigenstates, energies, and transition matrix ele-
ments for the dimer with ∆v0 = −1.5 U, T = 0.05, U = 1.
Energies are given in units of U . Note that e1 and e2 are CT
excitations for both the interacting and KS systems.

∆v = −1.5 U

interacting Kohn-Sham

∆ngs 1.9620 1.9620
Egs -0.5098 -0.5098
εgs -0.5152

∆ne1 0.0364 0.0000
εe1 0.0078 0.0000
ωgs→e1 0.5177 0.5152
dgs→e1 -0.2733 -0.2745

∆ne2 -1.9980 -1.9620
εe2 2.5020 0.5152

ωgs→e2 3.0118 1.0304
ωe1→e2 2.4942 0.5152
dgs→e2 -0.0052 0.0000
de1→e2 -0.0563 -0.2745

tain the exact dipole shown in Figure 4 for a little over
half a Rabi period; the CT excited state is reached at
around t = 128/U . The physics is similar to the real-
space CT dynamics in the long-range one-dimensional
molecule shown in Figure 4 of Ref. [14] (see also Figure
3 in Ref. [22]) and also in the three-dimensional LiCN
molecule in Figures 3 and 4 in Ref. [13]. (Note that Fig-
ure 3 of Ref. [22], which was for the Hubbard dimer with
a larger asymmmetry, happens to have a closer match
with the real-space case. The resonant frequency was
larger, so the dipole oscillates faster in the half-Rabi pe-
riod and also the transition matrix element dgs→e1 was
smaller, making the amplitude of the fast oscillations
smaller). Fig. 4 shows also the dipole under propaga-
tion with the adiabatic exact-exchange (AEXX) approx-
imation, ∆vAEXX

HXC = ∆vHX = 2∂EHX[∆n]
∂∆n = U

2 ∆n(t) [27].
∆nAEXX

sc does not show any charge-transfer, resembling
the real-space AEXX case of Ref. [14]. Other adiabatic
approximations were also shown to fail in a similar way
[13, 14]. However in Refs. [13, 14] it was not possible to
determine whether the culprit was the adiabatic approx-
imation itself or the chosen gs approximation. For the
Hubbard dimer, with its vastly reduced Hilbert space,
and the exact HXC potential found by the constrained
search (section II) we are able to propagate the KS sys-
tem with the AE functional; at each time-step insert-
ing the instantaneous density ∆nAE

sc into the exact gs
HXC potential ∆vgs

HXC[∆nAE
sc ] (Fig. 3). The result is ∆nAE

sc

in Fig. 4: ∆nAE
sc closely follows the exact density for a

longer time than the AEXX does, but ultimately fails to
transfer the charge. As was concluded in Ref. [22], it is
essential to have a memory-dependent functional in or-

der to correctly describe a full charge transfer.
Ref. [22] plotted the exact and AE potentials for the

case of cs–cs CT studied there, which illuminated some
of the aspects of the dynamics, and strengthened the
comparison with the real-space molecular case. Al-
though the case studied in Ref. [22] was for a more
asymmetric dimer (∆v = −2), resulting in a higher
resonant field frequency and more oscillations over the
Rabi period, the essential observations carry over to the
present case, and the potentials follow similar features
to those shown in Ref. [22]. In particular, (i) the exact
correlation potential drops from its gs value to that of
−∆v0 after half a Rabi cycle, such that the total KS po-
tential ∆vS = ∆v0 + ∆vHXC goes to zero, equalizing the
levels on each site. This exactly mirrors the real-space
case, where a spatial step in the correlation potential in
the intermolecular bonding region develops such that at
half-Rabi cycle, the two atomic levels are aligned with
each other, i.e. the step has a size equal to the differ-
ence in the ionization potentials of the (N − 1)-electron
ions. (ii) The AE correlation potential evaluated on the
exact density, ∆nAE[∆n], tracks the ground-state corre-
lation potential shown in Fig. 3, moving from the right
inwards to the central region, gently oscillating around
it, in synch with the density. As ∆n(t) → 0 and the
CT state is reached it tracks the approaching discontinu-
ity, which in the limit of T/U → 0, is equal to the one-
site one-fermion derivative discontinuity [22], in com-
plete analogy with the infinite-separation limit of the
real-space molecular case [14]. The donor potential is
shifted upwards relative to the acceptor by an amount
equal to the derivative discontinuity of the donor, and
in both the real-space and Hubbard cases, this underes-
timates the shift provided by the exact correlation po-
tential. (iii) The self-consistent AE correlation poten-
tial, vAE

C [∆nsc](t), deviates from the true potential quite
early on. As a consequence of this, the two sites remain
far from being “aligned”, forbidding the possibility that
a stable CT state with one electron on each, can be ap-
proached in the self-consistent AE propagation.

We now turn to one aspect of the exact correlation
potential that was discussed only briefly in Ref. [22].
It was found that the exact correlation potential af-
ter a very short time develops large oscillations which
appear to be related to maintaining non-interacting v-
representability. Since the system begins with ∆n =
1.960, close to 2, and T is small, the right-hand-side of
Eq. 10 starts out quite small. The left-hand-side starts
from zero and increases but it does not take a very
large link-current for the two sides of Eq. 10 to ap-
proach each other, leading to the denominator of ∆vS

to approach zero and hence becoming close to violating
the non-interacting v-representability condition. Fig-
ure 5 shows the early-time behavior of the KS potential:
∆vS first swings sharply to −∆vS (near time of 19/U )
when the denominator gets very close to zero, caus-
ing the acceleration ∆̈n to change direction (smoothly)
and a consequent decrease in the current. This moves
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FIG. 5. ∆v0 = −1.5 U cs–cs CT: KS potential ∆vS (black solid),
denominator of ∆vS (red dashed), link-current ∆̇n (blue dot-
ted), acceleration ∆̈n (green dashed-dotted) and dipole ∆n
(pink dotted).

the denominator away from zero, escaping the viola-
tion of v-representability. The system oscillates due
to the field, and again the denominator becomes very
small at around time of 22/U , when again the ∆vS

changes direction, avoiding again the crash into non-v-
representability. As time evolves the density transfers,
∆n moves further from 2, and so larger currents are pos-
sible without danger of the v-representability condition
being violated. The potential oscillations then become
more gentle, as shown in the figure.

IV. OPEN-SHELL TO OPEN-SHELL CT

To study CT between two open-shell fragments we
choose the static external potential difference to be
∆v0 = −0.5 U , which results in a gs with about one
electron on each site, ∆n = 0.0329 (see Fig. 6). The
eigenstates for the os-os ground-state case are presented
in detail in Table III. The value of ∆v0 has been cho-
sen such that ∆n∆v=−0.5

gs ≈ ∆n∆v=−1.5
CT of the cs–cs case

in the previous section, and the CT excitation in the
present os–os case has ∆n∆v=−0.5

CT ≈ ∆n∆v=−1.5
gs of the

os–os case. (Compare Table II and Table IV). The gs of
this problem is dominated by |Ψ1〉, while the CT excited
state is mainly |Ψ2〉, with almost two electrons on the left
site. Again there is a second CT state, with much smaller
gs dipole transition matrix element dg→CT2

<< dg→CT

(see Table IV), and close to both electrons on the right
(|Ψ3〉). The ground and excited KS states have a very
different form: instead of the predominantly Heitler-
London-like nature of the interacting gs, the ground-KS
state is a SSD. This is quite analogous to the real-space
molecular case where the KS state is a doubly-occupied
bonding orbital, a single Slater determinant, while the

cs -- csos -- os

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

time

U

FIG. 6. Model for CT between two open-shell fragments
at large separation:a small static potential difference ∆v0 =
−0.5 U , is chosen such that the gs is close to homogenous
(∆ng ≈ 0), and again T/U = 0.05. In the top panel the results
of the propagation are shown: exact dipole ∆n(t) (black solid),
self-consistent AE dipole ∆nAE

sc (t) (red dashed). Time is given
in units of 1/U ; the CT state is reached at TR/2 ≈ 129/U .
(The AEXX dipole is not included, because of difficulties in
converging to a stable os–os gs for these parameters).

interacting is of Heitler-London form in the infinite sep-
aration limit, requiring minimally two determinants to
describe. The KS excitations are also similar to those of
the real-space case: the first KS excitation is not a CT
state, but rather a single-excitation to the antibonding
state, and second KS excitation is a double-excitation to
the antibonding state. As a consequence the KS excita-
tion energies become very small as T/U → 0 in contrast
with the true energies, just as in the infinite-separation
limit of the real-space case, and it can also be under-
stood from the above that the transition matrix elements
are large in the KS case while small in the true case (Ta-
ble IV).

We now turn to the dynamics, taking E(t) =
0.09 sin(ωt), resonant with the lowest CT excitation res-

7

Page 7 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



TABLE III. Interacting and Kohn-Sham states for the assymet-
ric dimer with os-os ground state.

∆v0 = −0.5 U |Ψ1〉 |Ψ2〉 |Ψ3〉
|Ψos−os

gs 〉 0.989568 0.136387 0.04625
|Ψos−os

e1 〉 -0.13608 0.99065 -0.0097168
|Ψos−os

e2 〉 -0.0047131 0.0033222 0.99888

|Φos−os
gs 〉 0.707011 0.50823 0.49177

|Φos−os
e1 〉 -0.016462 0.707011 -0.707011

|Φos−os
e2 〉 -0.707011 0.49177 0.50823

TABLE IV. Eigenstates, energies, and transition matrix ele-
ments for the dimer with ∆v0 = −0.5 U, T = 0.05, U = 1.
Energies are given in units of U . Note that e1 and e2 are CT
excitations for the interacting system.

∆v = −0.5 U

interacting Kohn-Sham

∆ngs 0.0329 0.0329
Egs -0.0131 -0.0131
εgs -0.1000

∆ne1 1.9626 0.000
εe1 0.5097 0.000
ωgs→e1 0.5228 0.1000
dgs→e1 0.2711 1.4140

∆ne2 -1.9955 -0.0329
εe2 1.5033 0.1000

ωgs→e2 1.5164 0.2000
ωe1→e2 0.9936 0.1000
dgs→e2 -0.0915 0.0000
de1→e2 0.0260 1.4140

onance, ω = ωgs→e1 = 0.5228 U , and compare the exact
and AE dipoles, as in the previous section. Due to the
present choice of parameters, the exact dipole looks al-
most exactly like a mirror image of the cs–cs case in the
previous section, i.e. the dipole dynamics in the os–os
case resembles that of the cs–cs case starting at the CT
state. However the AE dipole does not at all. The AE
dipole for the os–os case fails badly even after a very
short time, as shown in Fig. 6; for all times one electron
more or less remains on each site during the AE propa-
gation, while in the exact propagation, (almost) one elec-
tron transfers from the left to the right site.

The exact and AE potentials are similar to the os–os
case studied in Ref. [22] for a slightly smaller asymme-
try (∆v0 = −0.4 in Ref. [22]). The essential features
are as follows. The exact correlation potential has the
same property as in the real-space case: it starts with
a value to exactly cancel the asymmetry in the external
potential, such that the KS potential sees the two sites

aligned. In the real-space case, the HXC gs potential
of a long-ranged heteroatomic diatomic molecule has a
step in the bonding region that aligns the highest oc-
cupied orbital energies on each atom [34–36]. In both
real-space and Hubbard dimer cases, this is a ground-
state correlation effect. Then, as the charge transfers,
the relative shift in the correlation potential between the
sites oscillates on the optical scale while dropping to
the value predicted by subtracting the external poten-
tial from Eq. (9), putting ∆̇n = ∆̈n = 0, when the CT
excited state is reached. As for ∆vAE

C [∆n](t), it tracks
∆vgs

C [∆n(t)] of Fig. 3 moving from near the center out
to the right; with gentle oscillations reflecting the os-
cillations in ∆n(t). Again we note that its value at the
CT excited state is the correlation potential of a gs of
density ∆n = 1.9626 as opposed to the exact correla-
tion potential which is that for an excited-state of the
same density. On the other hand, the self-consistent AE
potential, although it starts correctly (both KS and in-
teracting initial states being ground-states) and captures
the relative shift between the sites, quite quickly devi-
ates from the exact. This is because the energy of the
lowest excitation of the KS system is very close to the
gs (see Table IV); the system becomes increasingly de-
generate as T/U → 0. This is quite in contrast to the
true interacting system which has Heitler-London form
in the gs and a finite gap ωgs→e1. To open the vanish-
ing KS gap ωS

gs→e1 strong non-adiabaticity is required in
the linear response kernel [37, 38]; the reason is that the
double excitation is nearly degenerate with the single
excitation and thus critical to incorporate. Given that at
short times the dynamics is close to the linear response
regime, this might explain why the adiabatic propaga-
tion of the os–os system fails so early. Given the anal-
ogous structure of the states for a real-space molecule
composed of open-shell fragments, we expect that also
in real space a self-consistent AE calculation will lead to
a very poor dipole.

V. LINEAR RESPONSE FORMULA

The results above show the failure of AE TDDFT to
yield accurate CT dynamics in both the case when the
CT is between closed-shell sites and when it is between
open-shell sites. In the former case we noted that the KS
excitation frequencies were close to the exact, while in
the latter case they were significantly different. We now
ask what the AE TDDFT frequencies are in each case, i.e.
when an AE kernel is used in linear response, to check
whether there is an indication of the bad CT dynamics
of the AE in its predicted excitation energies.

First we derive a general expression for the TDDFT
excitation energies of the Hubbard dimer, based on the
dipole-dipole response function:

χ∆̂n,∆̂n(ω) =
d∆n

d(∆v/2)

∣∣∣∣
∆ngs

, (11)
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where the factor of 1/2 comes from the fact that the po-
tential difference couples to the dipole operator ∆̂n =
n̂L − n̂R with a factor of 1/2 in Hamiltonian in Eq. (1).
From the relation ∆vS = ∆v + ∆vHXC, we then find a
Dyson-like equation relating χ∆̂n,∆̂n(ω) to the KS linear
response function and the kernel:

χ−1

∆̂n,∆̂n
(ω) = χ−1

s,∆̂n,∆̂n
(ω)−∆fHXC(ω), (12)

where ∆fHXC[∆n] = d(∆vHXC[∆n]/2)/d(∆n). In the KS
linear response function,

χs,∆̂n,∆̂n(ω) =
∑
j

〈Φgs|∆̂n|Φej〉〈Φej |∆̂n|Φgs〉
ω − ωgs→ej + iη

+ c.c.

(13)
there is only one term in the sum, since only one exci-
tation contributes, that due to the KS single-excitation
e1, as the double-excitation e2 yields a zero numera-
tor. At a true excitation, χ∆̂n,∆̂n(ω) has a pole in ω, and
χ−1

∆̂n,∆̂n
(ω) vanishes. So putting the right-hand-side of

Eq. 12 to zero, we obtain the excitation frequencies of
the interacting system from:

ω2 = ω2
S + 2ωS|dsgs→e1|2∆fHXC[∆n](ω), (14)

where ωS is the KS eigenvalue difference ωS = ωS
gs→e1.

Eq. (14) has the same form as the “small matrix ap-
proximation” of the real-space TDDFT linear response
equations [10] except for a factor of 2, again due to the
use of ∆n as main variable. But an important differ-
ence is that Eq. (14) is exact, since there is only one
KS single-excitation in the Hubbard dimer. The correc-
tion to the bare KS eigenvalue difference (second term
in Eq. 14) is most significant for os–os ground states,
because, as discussed at the end of section IV, the ex-
act resonant frequency of the interacting os–os system
is finite, while the resonant frequency of the KS sys-
tem is very small (bonding – antibonding transition).
As a consequence the exact, frequency-dependent ker-
nel ∆fHXC[∆n](ω) must be very large in the os–os case.
On the other hand, if we consider the exact gs HXC ker-
nel (shown in inset of Fig. 3), that yields the TDDFT fre-
quency in the AE approximation, it also becomes large
around ∆n = 0 (see the inset of Figure 3). That is,

∆fAE
HXC =

d(∆vgs
HXC/2)

d∆n

∣∣∣∣
∆ngs

=
d2EHXC

d∆n2

∣∣∣∣
∆ngs

(15)

has a sharp peaked structure at ∆n = 0. In the limit
that T/U → 0, it becomes proportional to a δ-function.
This divergence of the static kernel is consistent with
what is found for real os–os molecules at large separa-
tion, Refs. [38, 39].

Using Eq. (15) in Eq. (14) gives the AE resonant fre-
quency ωAE . For the ∆v0 = −0.5 U os–os CT of section
IV we find the AE resonance ωAE

os−−os = 1.1681 U overes-
timates the physical resonance ωos−−os = 0.5228 U sig-
nificantly. There is a large non-adiabatic correction to

the static kernel in this case. On the other hand, for the
cs–cs CT of section III, the bare KS eigenvalue difference
is already a good approximation to the true resonance
(see table II), and the correction due to ∆fAE

HXC brings
the AE resonance even closer, ωAE

cs−−cs = 0.5187 U , only
0.001 U away from the true exact resonance. This is con-
sistent with our finding that for short times, the AE cs–cs
dipole followed the exact one closely, while the AE os–os
one did not (at short enough times the system responds
in a linear way). Similarly in Ref. [13] it was shown that
despite relatively good LR spectra (Figure 5), the time-
resolved CT within LiCN molecule was not predicted
by any of the approximate adiabatic functionals tested.
The linear response performance is however irrelevant
for the highly non-linear process of the transfer of one
electron across a molecule.

These findings are analogous to the real-space case:
here CT excitation energies of a long-range molecule
composed of closed-shell fragments can be well-
captured by an adiabatic approximation (e.g. Ref. [40]),
but the non-linear process of fully time-resolved CT,
requires a non-adiabatic approximation. When the
molecule consists of two open-shell fragments, non-
adiabaticity is essential even in the linear response
regime [38].

VI. CONCLUSIONS AND OUTLOOK

The Hubbard dimer with small T/U parameters is
useful for studying real-time CT dynamics in a long-
range molecule. Due to its small Hilbert space much
can be done numerically exactly or even analytically, so
enabling a thorough study of the performance of the
adiabatic approximation in TDDFT, which can not be
easily studied in real-space. In particular, we examined
here the performance of the AE propagation to describe
time-resolved CT dynamics. Although previous work
on real-space molecules has shown that the usual adia-
batic approximations perform poorly [13], whether this
is largely due to the choice of gs functional or to the
adiabatic approximation itself was not known. Ref. [14]
showed that the AE approximation when evaluated on
the exact density, yields a step structure known to be
important in CT dynamics. This AE step has exactly
the right size in the case of CT between two open-shell
atoms, where the step appears in the initial potential,
but the wrong step-size for CT between two closed-
shell atoms when the step appears in the final CT ex-
cited state. By propagating the Hubbard dimer self-
consistently with the AE approximation, a numerically
very challenging task in real-space, we were able to
show that the AE approximation qualitatively fails to
decribe time-resolved CT dynamics. In the case of CT
between open-shell fragments AE fails very early, and
actually does not transfer any charge. In the case of CT
between closed-shells the collapse of the adiabatic ap-
proximation shows up later in the dynamics: the AE
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dipole follows the exact one for a significant part of the
Rabi cycle, but it drops back to its initial value way be-
fore the physical system has reached the CT state. One
may think that the failure is due to the AE resonant fre-
quency being detuned from the exact one, but for the
cs–cs case the AE resonance is actually very close to the
exact resonance! Clearly memory effects are essential to
describe time-resolved CT.

In both the cs–cs CT and the os–os CT, the form of
the interacting state undergoes a fundamental change:
in the cs–cs case, from approximately a single-Slater
determinant initially to a double-Slater determinant of
Heitler-London type in the CT state, while the reverse
occurs for the os–os case. The KS state however re-
mains a single Slater determinant throughout (a doubly-
occupied orbital singlet state). In a sense, this is the un-
derlying reason for the development (or loss) of the step
structure in the exact potential in real-space, reflected
in the Hubbard model by the realignment of the two
sites, signifying strong correlation. An AE approxima-
tion does capture this strong correlation effect perfectly
when it occurs in the gs, but our work here shows it can-
not propagate well. In the cs–cs case, the AE potential
was ultimately unable to develop the shift needed for
the CT state. In the os–os case it begins with the correct
shift but the near-degeneracy in the KS system meant
that even as soon as we begin to evolve away from the
gs, the AE approximation fails. The main features of the
exact time-dependent HXC potential and the exact gs

potential are analogous to the real-space case, in partic-
ular the relative shifts between donor and acceptor and
the relation with the derivative discontinuity. This shift
appears as an intermolecular step in the real-space case,
but we show here that an ’adiabatic step’ is not enough
to model the dynamics: the results here suggest that its
nonlocal dependence on both space and time must be
modelled to yield accurate CT dynamics in molecules.

Of course there are many aspects of a real CT within
a molecule that cannot be modeled by a two-site lat-
tice, nevertheless we stress here that even for such a
simple model relevant physics of the electronic process
is missed if an adiabatic approximation is used. The
impact of the step structure is likely to be dampened
by the effect of many electrons, three-dimensions, cou-
pling to ionic motion, etc, but there is no reason to be-
lieve that the shortcomings of the adiabatic approxima-
tion to describe time-resolved long-range CT starting in
the ground-state will completely disappear when more
complexity is added to the model.
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