
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Structural distortions in molecular-based quantum cellular automata:

a minimal model based study†

Alejandro Santana Bonilla,∗a,b Rafael Gutierrez,a Leonardo Medrano Sandonas,a,b Daijiro Nozaki,a

Alessandro Paolo Bramanti,c and Gianaurelio Cunibertia,d,e

Abstract

Molecular-based Quantum Cellular Automata (m-QCA), as an extension of quantum-dot QCAs, offer a novel alternative in

which binary information can be encoded in the molecular charge configuration of a cell and propagated via nearest-neighbor

Coulombic cell-cell interactions. Appropriate functionality of m-QCAs involves a complex relationship between quantum mechan-

ical effects, such as electron transfer processes within the molecular building blocks, and electrostatic interactions between cells.

The influence of structural distortions of single m-QCA are addressed in this paper within a minimal model using an diabatic-to-

adiabatic transformation. We show that even small changes of the classical square geometry between driver and target cells, such

as those induced by distance variations or shape distortions, can make cells respond to interactions in a far less symmetric fashion,

modifying and potentially impairing the expected computational behavior of the m-QCA.

1 Introduction

Quantum Cellular Automata (QCA) have been proposed as a

new and revolutionary paradigm for classical binary comput-

ing.1 The basic computational unit, the QCA cell, consists of

quantum dots connected in such a way as to allow both charge

confinement on the dots and charge exchange between pairs

of dots. Few (usually two) mobile charges can move between

strongly localized electronic states. Bits of information (0 and

1) are then encoded by different geometrical arrangements of

the charges within the cell. Information transfer between cells

occurs via nearest-neighbor Coulomb interactions, i.e. no cur-

rent flows from cell to cell, which dramatically reduces the

power consumption of the device.2

In general, the charges will arrange so as to minimize the

electrostatic energy which, for each cell, depends also on the

charge configuration of neighboring cells. In the molecular

version of QCA, the molecular-based QCA (m-QCA), quan-

tum dots are implemented by moieties carrying localized elec-

tronic states, i.e. redox centers capable of accepting and donat-

ing electrons (reduction and oxidization respectively).3 The

redox centers are usually connected by bridging ligands de-

termining the degree of localization of the charge carriers and

acting as effective tunnel barriers.4 Likewise, the electronic

structure of the bridge defines the regime where the electron

a Institute for Materials Science and Max Bergmann Center of Biomaterials,

Dresden University of Technology, 01062 Dresden, Germany
b Max Planck Institute for the Physics of Complex Systems, 01187, Dresden,

Germany.
c STMicroelectronics Srl, Distretto Tecnol, I-73100 Lecce, Italy.
d Center for Advancing Electronics Dresden, Dresden University of Technol-

ogy, 01062 Dresden, Germany.
e Dresden Center for Computational Materials Science, Dresden University

of Technology, 01062 Dresden, Germany.

transfer occurs (hopping or super-exchange processes) and,

consequently, the electron transfer rates (ET).5 The choice of

the redox centers and bridges are the knobs for fine chemical

tuning of the QCA response.

In fact, a complex relationship arises between quantum me-

chanical effects (such as ET) and classical forces (electro-

static interactions between cells), which compete in determin-

ing the equilibrium between charge localization, necessary for

the storage of readable states, and charge transfer, necessary

for state switching and then, ultimately, for computation. In

spite of the complexity of this process, some minimal mod-

els have been suggested, where a connection between the ET

process and intermolecular interactions has been established

using the diabatic-to-adiabatic transformation (DTA).6,7The

same models allow defining a response function in which the

ET coupling matrix element and the geometry of the system

are effective parameters used to quantify the switching behav-

ior necessary for the implementation of the QCA.6

However, while classical QCA configurations have been in-

vestigated quite deeply, what is the effect on computation of

real-world asymmetries is still under debate and is a crucial

point in order to understand the boundaries of applicability of

the m-QCA paradigm.8–19

In particular, QCA are based on the tacit assumption that the

cell configuration is perfectly square (in the case of four-dot

cells) and identical for all cells, a condition which is hardly

met in real-world systems, even more so at the molecular

scale, where thermal fluctuations or structural defects make it

hard even to consider a static geometry. Based on minimal m-

QCA single cell models, we address in this work the influence

of structural distortions of individual m-QCA cells on their

response function. The basic approach, introduced in Sec.2

relies on previous studies by Lent and co-workers,6 but is ex-
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tended to include conformational changes of the molecules.

Our results strongly indicate that rather weak conformational

changes may have a dramatic influence on the cell response

of the m-QCA and hence, potentially undermining or, at least,

deeply modifying the implementation of a m-QCA network

with respect to the classical paradigm.

2 Theoretical modeling

2.1 Single-molecule QCA cell

In this study, we will consider the simplest m-QCA (half)cell

represented by two quantum dots, which are separated by an

effective tunnel barrier. The quantum dots represent the re-

gions in the molecule where a charge can be localized, while

the tunneling barrier mimics the role played by the bridging

ligands that links the redox centers.6,20 As shown in Fig.1, the

external driver molecule is simply built by two point charges,

whose main function is to start the switching process in the

second molecule (target molecule), in analogy to the external

voltage source needed to set in the switching process in semi-

conductor quantum-dot QCA implementations.8 Thus, for the

driver molecule, one can define a quantity (q1,2) that repre-

sents the excess in the charge population that can freely move

between the driver redox centers. In our case, the excess of

charge is assumed to be one electron leading to the condition

that q1 + q2 = 1. In the case of the target molecule, the net

population is related to the associated occupation probabilities

in the (ground state) wave function, which follows the nor-

malization condition (|ca|2 + |cb|2 = 1). Within the diabatic-

to-adiabatic transformation, the interplay between classical

Coulombic interactions (driver-target) and quantum mechani-

cal effects (ET process within the target) can be quantitatively

described, as illustrated in the next section.

2.2 Diabatic to adiabatic transformation of the electronic

states

To describe intra-molecular electron transfer (ET) processes,

the simplest approach relies on a two-state approximation, tak-

ing as a reference point the localized diabatic states represent-

ing initial and final stages of the ET process.4 For a minimal

m-QCA model containing only two redox centers, the corre-

sponding Hamiltonian matrix can then be written as:

[

Haa Hab

Hba Hbb

][

ca

cb

]

= E

[

ca

cb

]

, (1)

where Haa = 〈φa|H|φa〉, Hbb = 〈φb|H|φb〉 and Hab = H∗
ba =

〈φa|H|φb〉. The corresponding eigenfunctions (diabatic states)

for Haa and Hbb are denoted by |φa〉 and |φb〉 with associated

eigenvalues Ea and Eb, respectively. The overlap 〈φa|φb〉 be-

tween the diabatic states is neglected. The Haa and Hbb terms

represent the situation where the excess of charge is local-

ized either at the upper or lower part of the target molecule,

and can be considered as the initial and final stages of the ET

process, respectively. These matrix elements include the in-

fluence of the driver and, since the charge is fully localized

in those states, Haa and Hbb can be computed using classical

electrostatics. For the fully symmetrical case, where d = L,

see Fig.1(a), the result is simply:6

Haa =
e2

4πε0
[
q1

L
+

(1−q1)

2
√

L
], (2)

Hbb =
e2

4πε0
[

q1√
2L

+
(1−q1)

L
].

The Hab and Hba matrix elements can be then understood as

the quantum mechanical mixing between the two-electronic

diabatic states. Diagonalizing the Hamiltonian is straightfor-

ward and the corresponding eigenvalues are given by: 2E± =

Haa +Hbb ±
√

(Haa −Hbb)2 +4H2
ab. Furthermore, from the

adiabatic solutions, one can find the coupling between diabatic

states at the degeneracy point (Haa = Hbb) as:

γ = Hab =
E+−E−

2
. (3)

We will only consider the super-exchange regime for ET,

where the donor-acceptor charge transfer takes place via a tun-

neling process, with no population of the bridge states. In the

super-exchange regime, we can write γ as an exponential func-

tion of the donor-acceptor separation R:

γ = γ0e−αR, (4)

where α is system-dependent. Notice that in general the co-

efficient α includes information about the energetics of the

bridge states, e.g. as in the McConnell formula,21 but since

the atomistic details of the bridge are not explicitly included

in our model approach, we will not further discuss this issue

here. If not stated otherwise (see Sec. 2.3.2), the reference

values for the electronic coupling elements are listed in Table

(2), see also Ref6.

Table 1 Typical reference parameters used in Eq. 4 for the two

studied molecule types6 22

Complex α(nm−1) γ0(eV ) γ(eV)

1,4-diallyl butane 4.66 6.68

allyl-(CH2)3-allyl 0.52

allyl-(CH2)9-allyl 0.0119

diferrocenylpolyenes 0.84 0.12

FC-1-FC 0.061

FC-5-FC 0.028
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Fig. 1 Schematic representation for the driver-target configurations studied in this article. Only the case of the Aviram molecule (1,4-diallyl

butane) is shown, for the ferrocene-based compound a similar representation holds. The driver molecule is represented by two partial charges

q1,q2 such that q1 +q2 = 1, and separated by a distance d. The electric field of the driver induces a switching process in the target, which in

general depends on the global geometric conformation of the system as well as on different electronic coupling parameters. Upper panel left:

Symmetrical situation where both components are static. Upper panel right: The driver molecule is allowed to move along a line

perpendicular to the axis of the target. Bottom panel left: Stretching and compression of the target molecule by δx that only affect the lenght

of the bridge. Bottom panel right: Coordinated rotations between the driver and the target. In the small anngle approximation, the angular

distortions can be related to the linear displacements δd and δt of the driver and target molecules, respectively.

2.3 Response function

In order to quantify the efficiency of a candidate molecule for

its implementation in a m-QCA cell, a quantity needs to be

defined that relates the cell response to an external driver. In

particular, a well-defined switching between two states should

take place in order to efficiently encode the two bits 0 and 1.

These two states are related to charge reorganization inside

the target cell under the action of the driver molecule. Such

processes can be related to a polarization function, defined by

P2 = Tr{ρtσ3} = |ca|2 − |cb|2 = 2|ca|2 − 1. Here, ρt is the

density matrix of the target and σ3 = diag(1,−1) is a Pauli

matrix. Within the two-state approximation, the ca,b are the

coefficients of the expansion of the ground state wave function

in the diabatic basis. The corresponding polarization for the

(classical) driver is then simply P1 = q1 −q2 = 2q1 −1.

Using the adiabatic energy eigenvalues E±, the expansion

coefficient can be written as c2
a = γ2/(γ2+(E+−Haa)

2). After

some simple manipulations,6 the target polarization P2 can be

expressed as a function of the driver polarization P1 as:

P2 =
2

1+{βP1 +
√

(βP1)2 +1}2
−1, (5)

with

β =
e2

4πε0
[
2−

√
2

2
]

1

γL
. (6)

Notice that the parameter β encodes information on both the

electronic properties of the target (γ) and geometrical features

of the problem (L). This expression was derived in Ref.6 for a

fully symmetric geometry (d = L). It is however of interest to

address the problem of how resilient the system will be with

respect to static (and dynamic, thermally induced) distortions

of this ideal conformation, since such scenarios may be ex-

pected in real m-QCA networks. In what follows, we consider

some basic geometrical distortions and how do they influence

the polarization function P2.

2.3.1 Relative translations between the driver and the

target. The simplest modification will be to allow for a

change in the linear driver-target distance. The driver is thus

translated along a line perpendicular to the molecular axis as

shown in Fig.1(a), where we define L as the distance between

molecules and d the distance between redox/acceptor centers

in the target molecule. Varying the driver-target distance will

clearly affect the polarization switching of the target, since

it determines the relative position of the diabatic states and
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whether they will display a crossing point (or anti-crossing

if speaking in terms of adiabatic states). The corresponding

diabatic states for an arbitrary separation between target and

driver L(6= d) is:

Haa =
e2

4πε0
[
q1

L
+

(1−q1)√
L2 +d2

],

Hbb =
e2

4πε0
[

q1√
L2 +d2

+
(1−q1)

L
]. (7)

Along similar lines as in the previous section, the response

function can be recast as:

P2 =
2

1+{β ∗P1 +
√

(β ∗P1)2 +1}2
−1, (8)

where now

β ∗ =
e2

4πε0

1

γL
[1− 1

√

1+( d
L
)2

]. (9)

Clearly, for the case d = L we recover Eq. (6). For d/L ≪ 1

the β ∗-parameter scales as β ∗ ∼ (d2/L3) and the correspond-

ing polarization as P2 ∼ (1/L)(d/L)2P1, i.e. becomes asymp-

totically insensitive to the driver polarization P1, as expected.

In the opposite case (d/L ≫ 1), β ∗ ∼ (1/L)∼ β .

2.3.2 Elongations in the target molecule. The next pos-

sible distortion of the ideal driver-target geometry is a mis-

match between the lengths of the driver and of the molecule.

Denoting by δx (positive and negative) the stretching of the

target length d (keeping the length of the driver constant and

equal d), the diabatic matrix elements read:

Haa =
e2

4πε0
[

q1√
L2 +δx2

+
(1−q1)

√

L2 +(d +δx)2
],

Hbb =
e2

4πε0
[

q1
√

L2 +(d +δx)2
+

(1−q1)√
L2 +δx2

], (10)

and the corresponding polarization becomes:

P2 =
2

1+{β ∗∗P1 +
√

(β ∗∗P1)2 +1}2
−1, (11)

with the new effective parameter

β ∗∗ =
e2

4πε0

1

γL
[

1
√

1+( δx
L
)2

− 1
√

1+( d+δx
L

)2

]. (12)

2.3.3 Angular distortions. The last, more involved,

static distortions we are going to study, are in- and out-of-

phase concerted motions of the driver and the target. In

Fig.1(d) we schematically illustrate this situation, where both,

target and driver molecules with length d rotate about their

corresponding center-of-mass. We will limit our discussion to

small angular distortions of size θt,d such that sinθt,d ≈ θt,d =
2δt,d/d, with t,d denoting the target and driver distortions, re-

spectively. In this limit, θ was expressed in terms of the linear

displacements δt ,δd and the diabatic states are found to be:

Haa =
e2

4πε0
[

q1

(L−δd −δt)
(13)

+
(1−q1)

√

(L+δd +δt)2 +(d2 −4δ 2
t )

],

Hbb =
e2

4πε0
[

q1
√

(L−δd −δt)2 +(d2 −4δ 2
d )

+
(1−q1)

(L+δd −δt)
].

The corresponding polarization function can be cast as:

P2 =
2

1+{(β1P1 +β2)+
√

(β1P1 +β2)2 +1}2
−1. (14)

In contrast to linear deformations, small angular distortions

lead to an additional term (β2). The new parameters are given

by:

β1 =
e2

4πε0

1

2γ
[

1

(L−δd +δt)
+

1

(L+δd −δt)

− 1
√

(L+δd +δt)2 +(d2 −4δ 2
t )

− 1
√

(L−δd −δt)2 +(d2 −4δ 2
d )

],

(15)

β2 =
e2

4πε0

1

2γ
[

1

(L−δd +δt)
− 1

(L+δd −δt)

+
1

√

(L+δd +δt)2 +(d2 −4δ 2
t )

− 1
√

(L−δd −δt)2 +(d2 −4δ 2
d )

].

(16)

In the previous equations, we have considered in general dif-

ferent distortions for the driver (δd) and the target (δt ). How-

ever, to simplify the discussion we will consider in the fol-

lowing, if not stated otherwise, only symmetric cases where

|δt | = |δd | = δ . Notice however, that δ can still take both,

positive and negative values. Based on this model, we can

define two types of distortions: (i) in-phase displacements,

where sgn(δt) = sgn(δd), and (ii) out-of-phase displacements

with sgn(δt) =−sgn(δd).
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3 Results

3.1 Single target molecule

In this section we will discuss the dependence of the target

polarization function on the different geometrical distortions

introduced in the previous sections and which are encoded in

the different renormalized β -parameters. The main issue at

stake is to which degree the strongly non-linear response of

the target, required to guarantee a reliable QCA behavior, can

be weakened or even destroyed by conformational distortions.

Moreover, we will also address the differences in the molec-

ular composition by comparing organic (diallyl butane) and

diferrocenyl-based target molecules.

In Fig.2 the results are first presented for linear distortions

and displacements in the driver-target configuration, for both,

alkyl-diene and diferrocenyl based targets. The insets in all

graphs refer always to longer bridges of the corresponding

molecular system.

We remark at this point that the reference starting confor-

mation for each of the cases presented in Fig. 2 is always

that, where driver and target build a square with side length

L = d = dbridge, so that changes in the driver-target configu-

ration (stretching, compression, separation) are performed as-

suming the allyl-(CH2)n-allyl molecules considered with both

the short and long bridge −dbridge =0.54 nm and 1.35 nm, re-

spectively. Similarly, dbridge=0.7 nm (short bridge) and 1.63

nm (long bridge), for the Fc-n-Fc molecules. The correspond-

ing electronic couplings for these reference configurations are

listed in Table 2.

Let’s first consider changes in the target-driver separation,

as shown in the upper panel of Fig. 2. In all cases, we show the

relative separation L/dbridge, since absolute values are clearly

very much dependent on the specific molecule type and con-

formation. The size of the L/dbridge ratio will also strongly

depend on its origin like mismatches in the assembly process.

Since we are not addressing such issues in a realistic model,

we consider different situations to show how they influence

the cell response.

In the case of the carbon-only target molecules, Fig. 2(a),

for short bridges, the non-linear response is rapidly suppressed

for larger target-driver separations (∼ 1.10 nm), since the con-

tribution from the tunnel coupling γ = 0.52 eV is too large

for short bridges, supporting charge delocalization and hence

reducing the parameter β ∗ (β ∗ ∼ γ−1). Only for rather short

driver-target separations the polarization function would re-

cover its non-linear S-shape. For long bridges, see the inset of

Fig.2(a), the non-linear dependence is largely preserved, since

in this case the tunnel coupling is small enough, γ = 0.012 eV,

to still guarantee charge localization on the redox centers.

Consider now the diferrocenyl-based molecules, Fig.2.(b).

The first point to notice is that for both bridge lengths n = 1

Table 2 Changes in the electronic coupling γ upon stretching and

compression of the target molecular bridge. The values of γ have

been computed according to Eq. 4. All values are given in eV.

Molecule γ1% γ−1% γ10% γ−10%

allyl-(CH2)3-allyl 0.49 0.54 0.31 0.86

allyl-(CH2)9-allyl 0.0105 0.0136 0.00338 0.042

FC-1-FC 0.0670 0.0686 0.0602 0.0763

FC-5-FC 0.0303 0.0320 0.0237 0.0409

and n = 5, the tunnel couplings are considerably smaller than

for the carbon-based molecule allyl-(CH2)n-allyl: γ = 0.061

eV (short bridge) and γ = 0.028 eV (long bridge), see also Ta-

ble 2. This suggests that the non-linear response of the target

may be less sensitive to variations of the driver-target distance.

This is clearly seen for the short Fc-1-Fc bridge, where the

non-linear response is preserved except for the largest target-

driver separation (1.40 nm). The relatively weak change of

the tunnel coupling with increasing bridge length also implies

that the polarization function does not strongly depend on the

bridge length (compare with the inset of Fig.2.(b)).

In the second case, introduced in Sec.2.3.2, we simulate

possible linear distortions of the target molecule and inves-

tigate the influence of such distortions in the switching behav-

ior for the m-QCA implementation. The results are shown

in the lower panel of Fig.2, again for the carbon-only and

the ferrocene based targets. Since now the length of the tar-

get molecule is changing, we compute the corresponding γ-

coupling terms according to Eq. 4. Due to the assumed small

ratio δx/L, the influence of such distortions turns out to be less

dramatic than changes in the target-driver separation. This is

clearly the case for longer bridges, where the strong non-linear

response is well preserved for distortions of up to ±10 %. For

shorter bridges, the most affected one is, as expected, the allyl-

(CH2)3-allyl due to the rather (on average) large γ .

In general terms, elongations of the molecule on the order

of ±1% are reasonable and supported by quantum molecular

dynamics simulations, while the other values of ± 10% are

extreme cases that have been treated for the only purpose of

showing how strong a structural distortion may be in order to

considerably perturb the non-linearity of the cell response.

The last issue to be addressed are coupled motions of the

target-driver system, as presented in Sec. 2.3.3. As men-

tioned before, two types of collective motions will be consid-

ered here. Firstly, in-phase rotations, in which both molecules

move in the same direction along the line connecting both

molecular axis creating a back and forth movement. Secondly,

out-of-phase rotations, where one of the δt,d variables is taken

negative, while the second one is chosen positive (although

with the same absolute value). The results shown in Fig. 3 are

all obtained for the special case L = d/2; the main qualitative

features to be discussed below are similar for other separa-
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tions between the target and the driver (as far as a switching

is possible). The main influence of angular distortions is to

shift the target polarization along the P1-axis in a way that

sensitively depends on the type of the considered collective

distortions (in- or out-of-phase). This clearly induces a strong

perturbation of the QCA response function. The value of P2

at zero driver polarization is related to the β2 parameter as

P2 = 2/(1+ {β2 +
√

(β2)2 +1}2)− 1, so that as long as β2

does not vanish, a non-zero, topology-induced, residual po-

larization will exist and thus the target polarization displays a

lag w.r.t. the driver. Hence, an additional field may be nec-

essary to reset P2 to zero in order to preserve the appropriate

response of the target molecule in presence of static angular

distortions. The strongest modifications of the polarization are

found to occur for the out-of-phase distortions, which can in-

duce a strong shift for angular displacements of the order of

θ = ±7◦. Our choice of relatively large angular distortions

aims at illustrating in a clear way their effect on the cell po-

larization. In real molecular systems we may expect in gen-

eral smaller angular distortions; their influence should be most

likely noticeable for situations where no strong covalent bond-

ing to the substrate takes place or when the active molecular

species are attached to the substrate via longer inert linkers,

which might increase the mechanical flexibility of the system.

This latter case may be more realistic, since a good electronic

decoupling from the substrate may turn out to be important in

order to preserve the charge bi-stability of the mQCA cells.

The sensitivity on the relative phase of the distortions

can be qualitatively understood by looking at the behav-

ior of the β2 parameter in the limit of |δ/(d/2)| ≪ 1.

For in-phase motions (sgn(δt) = sgn(δd)), we get β2 ∼
−(1/γL)(1 + (d/L)2)−3/2(δ/L), while for the out-of-phase

motion (sgn(δt) =−sgn(δd)), β2 ∼ (1/γL)(δ/L). Hence, this

correction has different signs depending on the type of distor-

tion and it is easy to realize that the shift in P2 (at P1 = 0) will

be stronger for the out-of-phase displacements.

So far, different types of static deformations have been

treated. Angular distortions have turned out to have the

strongest impact on the cell polarization. The influence of

(small angle) thermal fluctuations is however more difficult to

assess without computing in detail the vibrational spectrum

of specific mQCA candidates, also taking into account the

way such molecules would be attached to substrates, since this

will clearly influence their mechanical degrees of freedom. To

catch, at least in a qualitative way, the influence of small an-

gle fluctuations, we have performed additional calculations to

include the effect of thermal fluctuations of both, the driver

and the target molecules. For this purpose, we have assumed

now the displacements δd , and δt in Eqs. 15 and 16 to be

random variables with a Gaussian distribution with zero mean

and a variable width σ taking values up to 3◦. Moreover, we

do not consider in- or out-of-phase movements separately, but

subsume them in the random fluctuations. In Fig.4 we show

the results only for the longer bridges, since the behavior for

shorter bridges is qualitatively similar. First of all, the strong

shift of the polarization function along the P1 axis, found in

the case of static distortions, is now averaged out already for

rather small fluctuations, so that the response function van-

ishes at P1 = 0. This result can be understood by looking at

the expression for zero driver polarization in the case of static

disorder, P2 = 2/(1+ {β2 +
√

(β2)2 +1}2)− 1. This func-

tion is odd with respect to a change in the sign of β2, so that

it vanishes when performing a conformational average over a

Gaussian distributed disorder with zero mean. We also see

in Fig.4 that with progressive increase of the disorder fluctua-

tions (roughly equivalent to an increase of temperature, since

we may expect σ ∼ kBT ), the switching behavior is smoothed

and rapidly becomes linear for |P1| ≤ 0.5. Assuming weak

thermal disorder, it is possible to show that the configurational

averaged slope < η >=< dP2/dP1|P1=0 > can be written as

< η >= g(β2)β1, where g(β2) is a rational function of β2

alone. Making the (rough) assumption that the fluctuations

of the stochastic variables β1 and β2 are approximately inde-

pendent, we can write after some simplifications the analytical

result: < η >∼ − < β1 > (1− (3/2) < β 2
2 >). Since < η >

is always negative, this shows that the slope will be reduced

with increasing fluctuations, i.e. with increasing temperature.

However, the condition < β 2
2 >≤ 2/3 needs to be fulfilled to

make the approximation meaningful. This is guaranteed by

the assumption of weak fluctuations.

3.2 Validating the minimal model: first-principle calcula-

tions

It is desirable to validate the results obtained using the previ-

ously introduced minimal models using some simple molecu-

lar system. Mainly the influence of static angular distortions

needs to be further clarified. We have thus performed first-

principle based calculations of the 1,4-diallyl butane radical

cation using the density-functional tight binding code includ-

ing self-consistent charge calculations (SCC-DFTB)23–25 as

well as dispersion interactions.26 In this approach, a mini-

mal valence basis set is used to represent the molecular or-

bitals within a LCAO approximation. Likewise, charge re-

distribution is taken into account through the incorporation

of a self-consistent scheme for Mulliken charges based on a

second-order expansion of the Kohn-Sham energy functional

in terms of charge density fluctuations. As starting point, a

dipole driver has been placed parallel to the 1,4-diallyl bu-

tane radical cation in order to maintain the same geometri-

cal configurations used in our minimal models. As previously

indicated, the total charge of the driver is 1 and we plot the

variation of the molecular orbitals of the target while vary-

ing the driver polarization P1. To provide a mobile charge in
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the system, we consider the molecular cation, where an elec-

tron has been removed from the lower allyl-group leading to

a situation where the anti-bonding level is singly occupied in

the upper group and non-occupied in the lower allyl group.

Charge transfer is expected, since the localized electron at the

lower allyl-group can occupy one of the non-bonding levels

at the opposite allyl-end group as it has been already demon-

strated.27 In our approach, for a given configuration of the

driver polarization P1 ranging from -1 to 1, the molecule is

allowed to relax by using the conjugate gradient algorithm un-

til the root mean square force was less than or equal to 10−4

a.u. Since the point charges on the driver induce an effective

force on the molecule, the carbon atoms located at the cen-

ter of each of the allyl-end groups are maintained fixed. In

Fig.5, the HOMO and LUMO energy levels for the molecule

are plotted as a function of the driver polarization P1 for the

case of out-of-phase rotations by 7 degrees.

At this point, we remark that in general terms, the switching

of the target polarization while smoothly (adiabatically) vary-

ing the driver polarization takes place around the anti-crossing

region of the adiabatic states (or at the crossing point of the di-

abatic states). In a real molecule, these states can be related to

the HOMO and LUMO frontier orbitals. This picture is simi-

lar to a Landau-Zener28 interpretation of charge transfer: the

effective (time-dependent) reaction parameters can be associ-

ated with the driver-target distance L and, once L is fixed, with

the rate of change of the driver polarization. In the case of

a square geometry with the driver-target distance being simi-

lar to the distance between the allyl groups, the anti-crossing

point is found at zero driver polarization. Hence, the target

response function also vanishes at P1 = 0. However, in the

case of angular distortions, a shift in the anti-crossing point

is found, whose sign depends on the relative orientation of

driver and target, compare the top and bottom panels of Fig.5,

where the results for the two possible out-of-phase conforma-

tions are displayed. This means, the target polarization is non-

vanishing at P1 = 0, the target response shows a lag with re-

spect to the driver, and this is just the effect found in the mini-

mal model calculations for static angular distortions, see Fig.3

for comparison. Similar shifts were also found in the in-phase

distortions (not shown), but they turn out to be smaller, also in

qualitative agreement with the model results. We remark that

the found shifts of the target polarization are not fully sym-

metric around the vertical axis P1 = 0 as in the case of the

model calculations. This apparently relates to the fact that the

real molecular system has a full three-dimensional structure,

so that there may may slight asymmetries in the relative orien-

tation of driver and target.

4 Conclusions

Static geometric distortions and thermal fluctuations in m-

QCA have been studied systematically with respect to their

impact on the functional response of the cell. The current

investigation suggests that conformational changes related to

static distortions of an m-QCA network may have deeper im-

plications in determining the response of a network and hence,

potentially alter its functionality. Further investigations are

however necessary in order to fully validate this statement.

Any real-world implementation of these systems will have to

account for these effects, estimating the potential distortions

and evaluating their effect on the final digital machine.
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Fig. 3 Response function of the target molecule as a function of the driver polarization for the case of coupled angular distortions. Results for

the alkyl-diene molecules with two different bridge lengths as well as for the diferrocenyl based systems are shown. The general notation

θd ,θt indicates the angular distortions (in degrees) of the driver (d) and target (t). As mentioned in the text, we assume for simplicity

|θd |= |θt |= θ . The differences in the signs correspond to two qualitative different situations: in-phase displacements of the target and the

driver (θ(−θ),θ(−θ)), and (ii) out-of-phase displacements (θ(−θ),−θ(θ)). The main effect of the angular distortions is to induce a

horizontal shift of the target’s response function, so that a non-zero target polarization may appear even if the driver polarization is zero. Thus,

even small angular displacements can dramatically destroy the required sstructure of the response function of the m-QCA.
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