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Solid-Ionic Liquid Interfaces: Pore Filling Revisited 

M. T. Heinze,a J. C. Zill,b J. Matysik,b W.D. Einicke,a R. Gläser,a A. Stark*a,c 

The properties of ionic liquids on ordered and non-ordered mesoporous silicas (silica gel, 

MCM-41, SBA-15) were studied by nitrogen sorption, mercury intrusion and 

thermogravimetric analyses, as well as 129Xe-NMR spectroscopy. The ionic liquids 

investigated are based on the 1-hexyl-3-methylimidazolium cation, which was combined 

with anions of low (bis(trifluoromethanesulfonyl)imide; [NTf2]-), medium 

(trifluoromethylsulfonate; [CF3SO3]-) to high (acetate; [OAc]-) basicity. The surface 

coverage depends on both, the type of ionic liquid and support used. This results not only in 

layer or droplet formation, but also in different physico-chemical properties of the ionic 

liquid when compared to the bulk, depending mainly on the strength of interaction at the 

interface. Furthermore, the mercury intrusion analysis of mesopores is shown not to be 

suitable for supported ionic liquids. 

 

 

 

 

Introduction 

In 2002, Mehnert et al. introduced Supported Ionic Liquid 
Catalysis (SILC) on the example of hydroformylation and 
hydrogenation. The catalyst material consisted either of a 
covalently anchored ionic liquid on silica gel, on which 
additionally a solution of a catalyst-containing ionic liquid was 
physisorbed,1 or only of a physisorbed ionic liquid supported on 
silica gel.2 This approach of immobilising ionic liquids was 
extended by Riisager and Wasserscheid, who extensively 
investigated SILP (Supported Ionic Liquid Phase) materials for 
various gas or liquid phase reactions.3-6  
Nowadays, SILP materials are defined as materials that feature 
a solid porous support containing a certain amount of 
physisorbed and/or covalently anchored ionic liquid, and in 
which a well-defined molecular catalyst is dissolved. If, on the 
other hand, a solid catalyst (dispersed in the ionic liquid, 
deposited on the support, or acting as carrier itself) is present, 
the material is referred to as Solid Catalyst with Ionic Liquid 
Layer (SCILL).7, 8 
Irrespective of the physical state of the catalyst, Supported 
Ionic Liquid-type materials (from hereon referred to as SIL) 
have been used in several reactions, such as 
hydroformylations,5, 9 hydrogenations,2, 7, 8, 10-13 the water-gas 
shift reaction,14 hydroaminations,15 Heck reactions,16 
epoxidations, 17 etc.. These reactions have been reported to 
proceed with good reaction rates, leading to high yields and 
often improved selectivities,18 as well as improved catalyst 
stability.6 Other applications lie in the areas of gas cleaning, 
e.g. removal of sulfur-containing compounds from 
hydrocarbons, and gas separations.19-23 These and other 
applications, as well as derivatives of SIL-type materials have 
been reviewed.24-29 Compared to processes using non-confined 

ionic liquids in the bulk phase, SIL concepts feature a 
tremendous reduction of ionic liquid inventory and hence 
process costs, a potential improvement where mass transfer 
limitations play a role due to an increased interface  (catalysis 
in the diffusion layer), and the possibility to operate 
continuously, using fixed bed reactors. Furthermore, the large 
variability of the ionic liquid structures that can be applied offer 
the advantage of being able to control the interface properties of 
the materials regarding e.g. the solubility of the starting 
materials or intermediates, and thermal stability.7, 9  
A typical model representation of the circumstances in SILP 
catalysis is shown in Figure 1.5 A non-ordered silica gel with a 
homogeneous layer of ionic liquid of constant thickness is implied, 
in which a molecular catalyst is dissolved. Earlier findings of some 
of us showed that the physical properties of ionic liquids in 
confinement deviate tremendously from those of the bulk phase, as 
demonstrated by a combined temperature-resolved 2H and 19F solid-
state Nuclear Magnetic Resonance (NMR) spectroscopic and 
differential scanning calorimetric study of perdeuterated N-
ethylpyridinium bis(trifluoromethanesulfonyl)imide confined in 
silica gel. The confined salt showed only one broad phase transition 
(at 215-245 K; solid II/liquid), indicating solidification as 
amorphous phase, while the bulk ionic liquid showed two phase 
transitions (at 287-289 K; solid II/solid I; rotation of the ethyl group, 
and 298-306 K, solid I/ liquid). Hence, the solid-liquid transition of 
the ionic liquid in confinement is reduced by 80 K when compared 
to the bulk material.30 Related solid-state NMR studies of 1-ethyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide 
([C2mim][NTf2]) confined in technical grade silica gel 100 (0-56 
vol.%) indicated surface-alkyl chain interactions at low loadings.14  
In general, in the majority of cases, studies of the solid-ionic 
liquid interface are carried out on non-porous substrates using a 
macroscopic, thick film, demonstrating the formation of solid-
like layered structures parallel to the surface, independent of the 
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Experimental 

Support Preparation

Spherical silica gel MB 75
Silysia Chemicals Ltd. was dried at 
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Preparation 

MB 75-200 (herein referred to as MB) from Fuji 
Silysia Chemicals Ltd. was dried at 
synthesised from silica gel MB 75-
dried at 423 K) by pseudomorphic transformation

cetyltrimethylammonium hydroxide solution (0.08 M) was 
added per 1 g MB 75-200 in a Teflon container
conditions for 72 h at 393 K under autogenous 
material was filtered, washed with d

in air to remove the 
to the procedure of Zhao et al.

Pluronic P123 was dissolved in a mixture of 15 g water and 30
HCl (2N) at 308 K. After dissolution, 2.1 g of tetraethylorthosilicate 
was added dropwise. After aging for 
kept under static conditions for 48 h at 363 K in a Teflon container 
under autogenous pressure. The resulting mater
washed with deionised water and calcined at 813 K for 6
remove the surfactant.  
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purchased from Merck and used as received
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prepared by ion exchange in a column
62 (33 g) was treated with acetic acid (1000 cm

neutral with deionis
methylimidazolium chloride solution (c=0.4 mmol cm

passed over the column and all fractions were 
with silver nitrate. All chloride-free fractions where combined and 

methylimidazolium acetate was separated b
distillation. The resulting ionic liquid

%). 

type Material Preparation 

The incipient wetness impregnation method was used for the 
preparation of the SIL-type materials. 200 mg of the dried support 
were immersed within a solution of
in acetone using varying concentrations of ionic liquid. 
the samples were placed in a vacuum oven at 363 K for 6 h to 
remove acetone. The ionic liquid content (weight constancy) was 
ascertained gravimetrically after cooling.
are specified as follows: “Type of material” (MB,
“type of ionic liquid” (OAc, OTf, NTf
methylimidazolium acetate, trifluoromethanesulfonate o
bis(trifluoromethanesulfonyl)imide, respectively) 
liquid per gram support” (mmol g-1

Material Characterisation 

Nitrogen sorption isotherms were measured at 77 K using an ASAP 
2010 volumetric adsorption analyzer 
sample was degassed at 393 K for 24 h 
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method in the t-regions from 0.35-0.5 nm and 1.1-1.8 nm, 
respectively.55 Pore diameter distributions were calculated with 
carbon-based DFT models from Quantachrome as specified. 
The relative percentage error of the density at 77 K of the confined 
ionic liquid, as calculated from the remaining free pore volume and 
the amount of ionic liquid present, has been estimated as 10.1% (t-
plot + balance). Thermogravimetric Analysis (TGA) measurements 
were carried out on a Netzsch STA 409 apparatus in flowing air (75 
cm3 min-1) with a heating rate of 5 K min-1. Mercury intrusion 
measurements were performed on a Quantachrome® 
POREMASTER using a contact angle for mercury of 141. The total 
specific pore volumes from the mercury intrusion curves were 
calculated as the cumulative specific pore volume of all non-
interparticle pores with pore diameters above 4 nm. NMR spectra 
were recorded on a Bruker DRX-400 spectrometer operating at 
110.63 MHz for 129Xe. Samples were placed in tubes of 5 mm outer 
diameter and exposed to 327 cm3min-1 of hyperpolarised 129Xe under 
continuous flow at ambient pressure. Hyperpolarised 129Xe was 
obtained by spin-exchange optical pumping using circular polarized 
light from a 100 W diode array laser (Lissotschenko Mikrooptik) for 
optical pumping at the D1 transition of rubidium (794.7 nm) within a 
Pyrex pumping cell placed in a field of 1.3 mT containing a small 
amount of rubidium. A mixture of 88.7% helium, 8.9% nitrogen and 
2.4% xenon (natural abundance) was optically pumped at 418 K and 
a total pressure of 4 bar to a polarisation grade of about 12% 
hyperpolarisation. 256 FIDs were accumulated with 9.2 ms (p) 
pulses and 5 s delays. The chemical shifts are referenced to the 
signal of hyperpolarised xenon gas measured before and after spectra 
acquisition. Batches of SIL-materials prepared for NMR 
measurements are denoted MCM-NTf2-0.23-NMR, MCM-NTf2-
0.47-NMR and MCM-NTf2-0.78-NMR.  

Results and Discussion 

Silica Support Characterisation 

Table 1 details the structural parameters of the pristine support 
materials MCM-41, silica gel (MB) and SBA-15. Detailed 
information including the nitrogen sorption isotherms and pore 
diameter distributions etc. are shown in the Supporting 
Information (see Tables SI 1-3 and Fig. SI 1a, 2a, 3a, ESI). The 
isotherms of the silica support materials show typical type IV 
N2-sorption isotherms with capillary condensation at p/p0 ≈ 
0.35, 0.6 and 0.65 for MCM-41, silica gel (MB) and SBA-15, 

respectively. Furthermore, MB exhibits a characteristic H2, and 
the SBA-15 a characteristic H1 hysteresis, according to the 
IUPAC classification.56 The non-ordered MB material shows a 
broad pore diameter distribution between 4.5 and 9.5 nm with a 
maximum at 6.9 nm. In contrast, the pores of the ordered 
MCM-41 and SBA-15 are very uniform causing narrow pore 
diameter distributions51, 57 with maxima at 4.2 and 8.1 nm, 
respectively. The pores of MCM-41 are hexagonally arranged 
in a honeycomb-like structure with thin pore walls between 1 
and 1.5 nm.57 In contrast, SBA-15 possesses thick pore walls 
between 3.1 and 6.4 nm in which additionally micropores are 
present.51, 58, 59 These ordered supports show negligible pore 
connectivity in contrast to the typical high pore connectivity of 
non-ordered silica gel (MB). 

SIL-type Material Characterisation: Nitrogen Sorption Isotherm 
Analysis 

Figure 2 shows the nitrogen sorption isotherms obtained for 
[C6mim][OAc] on MCM-41 (both, as function of the mass of 
material (left) and normalised to the mass of the pristine 
support (right)) as calculated by eq. 1, 
 

silica

ILsilican

m

mm
VV

)( 


              

(eq. 1) 
where V is the adsorbed volume per sample mass at a given 
partial pressure, msilica and mIL are the mass of the support and 
the mass of the immobilised ionic liquid, respectively. The  
 
Table 1: Silica support characterisation. 

 MCM-41 MB SBA-15 

Vmicro /cm3g-1 0.00 0.00 0.11 

Vmeso /cm3g-1  1.00 0.89 0.92 

ABET /m2g-1 1155 567 888 

DP /nm a 4.2 6.9 8.1 

a determined by Gaussian fit from pore diameter 
distribution 
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Figure 2: N2-sorption isotherms at 77 K of MCM-41-based materials impregnated with incrementally increasing amounts of 
[C6mim][OAc], as volume absorbed per mass of material (left) and as volume absorbed per mass of support (right). Note that the 
number of data points displayed is reduced for clarity. Complete data can be found in Fig. SI 25. 
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isotherms already imply that - as expected - the impregnation of 
porous silica supports with increasing amounts of ionic liquid 
leads to a loss of pore volume and surface area accompanied by 
a decrease of the mean pore diameter.18 However, choosing a 
model to calculate the surface area and the pore diameter 
distribution of ionic liquid-based materials proved to be not 
trivial: The incremental addition of ionic liquid first leads to a 
partial, then complete coverage of the support surface. This 
might be explained by a chemical heterogeneity which causes 
significant changes in the interaction between the dinitrogen 
molecules and the surface, depending on the amount of ionic 
liquid physisorbed. This effect is illustrated by a strong shift of 
the CBET constant with varying ionic liquid loadings (see Table 
SI 1-3, ESI), which can be interpreted as a parameter describing 
the interaction between dinitrogen and the surface. None of the 
commonly applied models allow for a change in the 
interactions of dinitrogen molecules with the surface. 
Especially at high loadings of ionic liquid, the silica-based 
NLDFT (Non-Localized Density Functional Theory) models 
for cylindrical pores do only poorly fit the measured isotherms. 
Different available DFT fit models of the Quantachrome 
software which are in principle suitable for the measured N2-
isotherms at 77 K for cylindrical pores were applied.60 More 
accurate pore diameter distribution results can be obtained from 
the carbon-based QSDFT (Quenched Solid Density Functional 
Theory) models as shown exemplary for the material which 
contains 2.12 mmol [C6mim][OAc] per gram of support 
(MCM-[OAc]-2.12) in Figure 3. The QSDFT models based on 
the assumption of cylindrical pores show for all silica-
supported ionic liquid materials a good fit of the isotherms in 
the range of capillary condensation. Best fits of the measured 
isotherms especially at high ionic liquid loadings were obtained 
with QSDFT-N2-carbon equilibrium and QSDFT-N2-carbon 
adsorption based on a cylindrical pore model for MCM-41 and 
silica gel MB, respectively. For SBA-15, good fits were also 
obtained with QSDFT models. However, in the case of 
[C6mim][NTf2], the NLDFT-N2-carbon equilibrium model was 
superior to the QSDFT models. In order to be able to compare

 the calculated pore diameter distributions, the NLDFT model 
was applied to all SBA-15-based materials since good fits were 
also obtained for the other ionic liquids investigated. However, 
all tested models fail to exactly describe the dinitrogen 
monolayer formation at low partial pressures for SIL-type 
materials, even at low ionic liquid loadings (Figure 3, left part 
of the isotherm). We hence note that the surface area calculated 
by the BET equation will be slightly overestimated for high 
ionic liquid loadings, through a decreased CBET constant. In 
order to describe the observed trends in the pore diameter 
distribution, the carbon-based DFT models were also applied to 
the pristine support materials for comparison (Figure 4 and 
Table 1). The DFT-N2-carbon model-based results are in good 
agreement with the NLDFT-N2-silica-based models typically 
applied for silica-based materials. Only the pore diameter 
distribution of SBA-15 is shifted by about 0.4 nm to higher 
values. A comparison of the applied QSDFT and NLDFT 
models for all materials investigated is shown in the 
Supplementary Information (see Fig. SI 1-3, ESI). 
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Figure 4: Pore diameter distributions for the pristine supports 
studied herein, calculated by NLDFT or QSDFT. 
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Figure 3: N2-sorption isotherm of MCM-OAc-2.12 (left; measured: squares; calculated using NLDFT and QSDFT: open circles 
and open stars, respectively), and resulting pore diameter distributions (right). Note that the number of data points displayed is 
reduced for clarity (left). Complete data can be found in Fig. SI 1d. 

Page 4 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name RSCPublishing 

ARTICLE 

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 5 

Ionic Liquids Confined in MCM-41 

[C6mim][OTf] supported on MCM-41. Figure 5, left, shows 
that in the N2 isotherms, which are shown normalised to their 
total pore volume (V/Vtotal; Vtotal is the single point adsorption 
total pore volume at a relative pressure > 0.99), the capillary 
condensation is shifted to lower partial pressures and the 
isotherms become less steep when the loading of the ionic 
liquid is increased from 0.00 to 1.97 mmol g-1 support, a clear 
indication of decreasing pore diameter. Additionally, the shape 
of the isotherms gradually changes from type IV to type I 
which is typical for microporous materials (see Figure SI 4, 
ESI). Correspondingly, the QSDFT-calculated pore diameter 
distribution analysis (shown in Figure 5, right) indicates that the 
mean pore diameter is gradually reduced from 4.2 to 3.0 nm. 
This reduction of the mean pore diameter is accompanied by a 
linear decrease of the free pore volume, as shown in Figure 6, 
left. The question arises as to how far the density of an ionic

 liquid confined in the investigated silica supports equals the 
bulk density. Densities of ionic liquids in proximity to 
interfaces are known to depend on layer thickness and 
molecular orientation. For example, at the vapour-liquid 
interface, a 12% higher density and anion enrichment at the 
interface has been reported.61, 62 Atomic force microscopy 
(AFM) measurements have demonstrated that at solid-liquid 
interfaces, droplet formation or ordering of the ionic liquid’s 
ions in distinct layers can occur, depending on the nature of the 
ions and that of the solid. If formed, the layer number can be as 
high as six,33, 63 before strict layering is lost with increasing 
film thickness.64 Clearly, such ordering likely will lead to 
deviations of the layer properties (density, viscosity, melting 
point etc.) compared to the bulk. The ionic liquid density at 
77 K of the confined ionic liquid was calculated directly from 
the remaining free mesopore volume Vn and the amount of ionic 
liquid present, as displayed in Figure 6, right. 
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Figure 5: N2-sorption isotherms normalised to the mass of support at 77 K (left) and pore diameter distribution (right) of MCM-41 
modified with incrementally increasing amounts of [C6mim][OTf]. Note that the number of data points displayed is reduced for 
clarity. Complete data can be found in Fig. SI 26. 
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Figure 6: Pore volume (left) and calculated density (right) vs. loading of MCM-41 modified with incrementally increasing 
amounts of [C6mim][OTf].  
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The calculated density increases from 0.41 to 0.86 g cm-3 
(where it levels of) with increasing amounts of [C6mim][OTf] 
present, indicating that the ionic liquid is initially not present as 
a bulk phase, but the ionic liquid likely exists as ion pairs or 
small clusters on the surface. For the assessment of the bulk 
densities of [C6mim][OAc], [C6mim][OTf] and [C6mim][NTf2], 
a group contribution model was used for calculation, which has 
been shown to predict densities to within ±0.36%. Comparison 
with available literature data shows good agreement (Table 2). 
Taking into account the densities thus calculated, and the 
correlation between liquid and solid densities determined for 
ionic liquids by Ye and Shreeve,65 the densities for the solid 
ionic liquids were estimated, and are shown in Table 2. Both 
the liquid and solid phase densities of [C6mim][OTf] (1.24 and 
1.42 g cm-3, respectively) are much higher than that estimated 
from the sorption isotherm analysis, demonstrating that the bulk 
density deviates substantially from the density in confinement. 
If the maximum density in confinement (determined by linear 
extrapolation of the pore volume/loading-plot to complete pore 
filling, see Fig. SI 7, ESI) is considered, which reflects the most 
dense packing achievable in this confinement (i.e. lowest free 
molar volume), one can calculate a theoretical monolayer 
thickness41 and thus estimate the minimum number of moles 
required for monolayer formation, should this indeed occur. For 
this purpose, we define a monolayer as a layer of ion pairs 
assuming a cubic model for the determination of the layer 
thickness from the bulk density, which has proven to give 
reliable estimations in the literature.66 From Tables 1 and 2 it 
becomes obvious that complete monolayer formation could 
occur in principle for loadings between materials MCM-OTf-
1.35 and MCM-OTf-1.97, which is also the range where the 
density levels off (Figure 6). At this stage, the question arises 
whether layer formation does take place in a way that the ions 
are successively added to the surface to form a monolayer, 
before adding on top of already deposited ions (first case). This 
would indicate stronger silica-ion interactions than ion-ion 
interactions. Otherwise, one could imagine the initial (forced) 
deposition of some ions on silica, and further accumulation 
(aggregate- or drop-formation) of successively added ions on 
top of the already deposited ones (second case). This case 
would indicate preferred ion-ion interactions. In the first case, 
one would expect that the pore diameter distribution becomes 
slightly broader by a maximum of the thickness of two 
monolayers (in this case 2 x 0.84 nm). Furthermore, the mean 
diameter should shift linearly to smaller numbers with 
increasing ionic liquid loading. In the second case, the pore 
diameter distribution should become broader and the mean 
diameter should remain constant at the value of the pristine 
support, and only if a certain threshold is overcome in which 
the drops merge, a shift to lower values should occur. 
Closer analysis of the data shown in Figure 5, right, reveals that 
[C6mim][OTf] is an example of the first case, in which the 
interactions between silica and ionic liquid are more 
energetically favored than drop formation. Hence, the 
maximum of the pore diameter distribution reaches 1.8 nm in 
material MCM-OTf-1.97, and a linear shift of the pore diameter 
distribution maximum occurs (see Fig. SI 5, ESI). 

Table 2: [C6mim]X ionic liquid properties. 

  [OTf]- [OAc]- [NTf2]
- 

(bulk, 298.15K, pred.) [g cm-3] 67 1.24 1.04 1.37 

(bulk, 298.15K, lit.) [g cm-3] 1.24 
68

 1.02 69 1.37 70, 71 

(bulk, solid, pred.) [g cm-3] 65
 1.42 1.22 1.54 

(confined, 100% filling, MCM-41)
[g cm-3]

0.87 0.79 1.03 

Max. mols per mass of MCM-41 

(100% filling) [mmol g-1] 
2.74 3.48 2.30 

Theoretical monolayer thickness 

(MCM-41) [nm]a 
0.84 0.78 0.90 

Min. mols per mass of MCM-41 

(monolayer) [mmol g-1]b 
1.74 2.08 1.53 

(confined, 100% filling, MB)
[g cm-3]

0.87 0.82 1.08 

Max. mols per mass of MB 

(100% filling) [mmol  g-1] 
2.45 3.24 2.16 

Theoretical monolayer thickness 

(MB) [nm]a 
0.85 0.77 0.88 

Min. mols per mass of MB 

(monolayer) [mmol g-1]b 
1.06 1.29 0.97 

(confined, 100% filling, SBA)
[g cm-3]

0.76 0.65 1.31 

Max. mols per mass of SBA 

(100% filling) [mmol g-1] 
2.45 2.92 3.00 

Theoretical monolayer thickness 

(SBA) [nm]a 
0.89 0.84 0.83 

Min. mols per mass of SBA 

(monolayer) [mmol g-1]b 
0.95 1.08 1.10 

a presuming cubic geometry of the ion pair.66  
b calculated with a pore diameter of 4.2, 6.9 and 8.1 nm (MCM-41, 
MB and SBA, respectively) 
 

[C6mim][OAc] and [C6mim][NTf2], respectively, supported 
on MCM-41. In order to understand if there is an effect of the 
ionic liquid anion, an ionic liquid with a very high (acetate) or 
very low (bis(trifluoromethanesulfonyl)imide) tendency for 
hydrogen bonding46, 47 was added to the experimental layout. 
Hydrogen bonds may arise within the ionic liquid (cation-
anion), and between the anion or the cation with the support’s 
surface. The N2-sorption isotherms of the acetate-based 
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materials are shown in Figure 2, while those of the [NTf2]
--

based materials are presented together with the materials 
characterisation in the Supplementary Information (see Fig. 
SI 6 and Table SI 1, ESI). The change in the shape of the 
isotherms for loadings above 1.16 mmol g-1 and 1.27 mmol g-1 
to type I (for the [OAc] and [NTf2]-based materials, 
respectively) is also observed, as is the case for the 
[C6mim][OTf]-containing materials. Likewise, the pore volume 
decreases linearly with increasing amount of ionic liquid 
present (R2 ≈ 0.96), and the maximum densities of the ionic 
liquids were hence calculated at complete pore filling (see 
Table 2 and Fig. SI 7). Again, the densities were found to be 
lower than those predicted for the solid state. Materials with the 
respective highest loadings contained sufficient ionic liquid to 
theoretically allow for monolayer formation. The most striking 
difference of the ionic liquids investigated is found for the 
calculated densities: they increase continuously for 
[C6mim][OAc]-based materials with increasing amount of ionic 
liquid loading, while they decreases for the [C6mim][NTf2]-
based materials (see Fig. SI 7, ESI). In fact, at the lowest 
loading (material MCM-NTf2-0.58), the density of 1.72 g cm-3 
is close to that of the bulk solid density (1.54 g cm-3, see 
Table 2), suggesting that this ionic liquid is present in a quasi-
bulk state in this confinement. This would imply that in 
[C6mim][NTf2]-based materials, ion-ion interactions, leading to 
drop formation, are more favored than ion-silica interactions. In 
order to shed light on this, Figure 7 compares the pore diameter 
distribution profiles of the two material types.  
In the case of [C6mim][OAc]-based materials, the pore 
diameter distribution maximum shifts linearly to lower values, 
and the pore diameter distribution increases with increasing 
amounts of ionic liquid, similar to what has been observed for 
[C6mim][OTf]-based materials (see Fig. SI 5, ESI). The pore 
diameter distribution for materials MCM-OAc-1.5 and -2.12 is 
between 2.0 and 2.5 nm, respectively. Regarding the silica-
ionic liquid interface, this corresponds to 1.0 – 1.25 nm of film 
thickness, translating into 1.3 – 1.6 layers of 0.78 nm thickness 
(Table 2). These values lie somewhat above the theoretical 
value of the monolayer thickness, and indicate the presence of 
some heterogeneities. Additionally, the profiles display 
shoulders or second maxima, with an approximate least 
common multiple of 0.5 nm of distance. Although the 
deposition of ions on silica prevails the deposition of ions on 

ions, the deposition of ions on already deposited ions occurs 
also to a certain degree. In the case of [C6mim][NTf2]-based 
materials, the pore diameter distribution varies non-linearly, as 
it firstly increases, then decreases upon addition of incremental 
amounts of ionic liquid (see Fig. SI 5, ESI). This means that in 
certain areas of the material, the pores are decisively narrowed, 
while others remain virtually free of ionic liquid. In the light of 
the highest density of the ionic liquid being determined for the 
lowest loadings, this clearly shows that drop formation prevails, 
before the surface is completely covered.  
This view is complimented by 129Xe-NMR spectroscopy. 
Nuclear magnetic resonance is a powerful tool for probing the 
morphology of surfaces dependent on their chemical properties, 
molecular structure and dynamics. Since direct surface NMR 
signals are often not distinguishable from the bulk signals, gas 
NMR provides an alternative approach. Adsorbed 129Xe gas is 
frequently used to probe surfaces in terms of their chemical 
nature and pore sizes.72 Due to the low number of spins 
contributing to the surface signals, these NMR studies can be 
improved by the introduction of hyperpolarisation techniques, 
such as spin-exchange optical pumping (SEOP).73 Figure 8 
shows the spectra for the materials MCM-NTf2-0.23_NMR, -
0.47_NMR and -0.78_NMR (for material characterisation, see 
Fig. SI 8 and Table SI 4, ESI). 
The spectra of materials with low loading (MCM-NTf2-
0.23_NMR and -0.47_NMR) show two very broad signals at 
about 68 ppm and 74 ppm. For a material with a very narrow 
pore diameter distribution such as the investigated MCM-41, 
two separate signals are an indicator for at least two kinds of 
surfaces with different chemical properties. The fact that these 
two signals are broad (552 Hz FWHM) and only shifted by 
approximately 6 ppm indicates a high exchange rate of xenon 
between both chemical types of surfaces and supports the 
interpretation droplets of ionic liquids in close distance to the 
surface of MCM-41. At higher [C6mim][NTf2] loadings 
(MCM-NTf2-0.78_NMR), only a single resonance at 73.2 ppm 
is visible, suggesting that the ionic liquid droplets have merged 
and that the surface of MCM-41 is covered with ionic liquid 
completely, as the signal at 68 ppm has vanished. 
In the literature, diverging evidence has been presented 
regarding the behavior of [NTf2]

--based ionic liquids on silicate 
supports. AFM measurements suggested three-dimensional 
growth of nano-droplets34 instead of layer formation. 
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Figure 7: Pore diameter distribution of MCM-41-based materials with incrementally increasing amounts of [C6mim][NTf2] (left) 
[C6mim][OAc] (right). 
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acetate-based ionic liquid is deposited on the surface to give a 
monolayer, and for the second layer, the ions are not deposited 
randomly, but rather successively growing from one point 
onwards. Figure 14 shows the corresponding pore filling mode 
for the three ionic liquids confined in SBA-15. 

Mercury Intrusion Analysis 

Mercury intrusion measurements were performed on selected 
examples of [C6mim][OTf] supported on SBA-15 and MB 
(Figure 15). Comparison to Figure 10, left, shows that the data of the 
MB-based materials is much less resolved than that obtained by 
nitrogen sorption measurements. Due to the general, lower accuracy 
of mercury intrusion measurements for small mesopores, 
quantitative analysis is not possible. Nevertheless, it can be stated 
that the accessible pore volume decreases with increasing amount of 
ionic liquid present and that small mesopores are filled first. The 
data of the SBA-15-based materials, on the other hand, shows a 
distinct pore diameter distribution, with the maximum of the pristine 
material at about 5.5 nm. Comparison to Figure 13, left, shows that 
the mercury intrusion experiments result in somewhat lower values 
than nitrogen adsorption experiments. However, as opposed to the 
nitrogen adsorption experiments, the maximum of the pore diameter 
distribution is shifted slightly to a higher value of 6.0 nm with 
increasing ionic liquid loading, while the pore volume decreases. 
These findings suggest that when the dense mercury is pressed into 
the materials pores, the ionic liquid is pushed together and hence 
removed from the larger pores, leaving only the ionic liquid 
deposited in smaller pores on the support (see Fig. SI 20, ESI for a 
model representation). This overall leads to a lower number of pores 
with smaller pore diameters. It can hence be concluded that high 
pressure mercury intrusion cannot be used to investigate the 
resulting mesoporosity in SIL-type materials, making nitrogen 
sorption the method of choice. Further investigations need to explore 
the limiting applicable pressure in dependence of pore size for this 
method. 

Thermogravimetric Analysis of the Materials 

Several of the materials were analysed by thermogravimetric 
analysis (see Fig. SI 21-24 and Table SI 5-7, ESI) and 
compared to the bulk ionic liquids’ decomposition profiles. The 
decomposition point (defined as the point of inversion of the 
TGA curve) of the bulk ionic liquids decreases in the series 
[C6mim][NTf2] (739 K) > [C6mim][OTf] (693 K) > 

[C6mim][OAc] (519 K); i.e. with increasing nucleophilicity of 
the anion, which catalyses Hoffmann degradation.77  
The thermal stability of [C6mim][OTf] in confinement 
essentially remains the same (maximum deviation about 10 K) 
as for the bulk, and is independent of the type of silica support. 
The different porous silica supports hence do not appear to 
affect the decomposition. Furthermore, in none of the 
confinements does the ionic liquid loading influence the 
thermal stability. 
The thermal stability of confined [C6mim][NTf2] is decreased 
on all silica supports by a maximum of about 45 K when 
compared to the bulk, indicating that the surface is involved in 
the decomposition of the ionic liquid. This has also been 
reported for 1-octyl-3-methylimidazolium hexafluorophosphate 
([C8mim][PF6]).

76 For similar loadings, the stability differs 
slightly for the different supports, with a decrease in stability in 
the order of SBA-15 > MB > MCM-41. Interestingly, as 
pointed out in the discussion above, [C6mim][NTf2] shows a 
higher tendency to form aggregates (i.e. less ionic liquid-
surface interaction) following the order SBA-15 > MB > 
MCM-41. Hence, a lower degree of interfacial contact appears 
to be beneficial for the stability of this ionic liquid. This is 
further supported by the fact that in loading-dependent studies 
of [C6mim][NTf2] on SBA-15 and MB, the decomposition 
temperature is not affected for the former, while it increases for 
the latter (Table SI 7, ESI). The more bulk-like the state of this 
ionic liquid is, the higher is its thermal stability. 
Surprisingly, the thermal stability of [C6mim][OAc] increases 
when confined in the silica support pores by a maximum of 
60 K. Taking into account the known role of this nucleophilic 
anion in the decomposition of the cation,77 this effect may be 
explained by a reduction of the acetate’s activity, e.g. by strong 
interactions with the silicate’s surface (e.g. by hydrogen 
bonding78). This explanation is supported by the relative 
stability of [C6mim][OAc], which increases in the order of 
SBA-15 < MB < MCM-41 (Table SI 5, ESI). This trend follows 
the reversed order of that observed for [C6mim][NTf2]. 
Unfortunately, to the best of our knowledge, no evidence exists 
that demonstrates strong silica-anion interactions. Furthermore, 
only few studies investigate the interface properties of acetate-
based ionic liquids, and the molecular arrangement on silicates 
does not appear to deviate tremendously when compared to 
ionic liquids containing an anion of lower hydrogen-bonding 
ability. 
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Figure 15: Pore diameter distribution profiles determined from Hg-intrusion of MB (left) and SBA-15 (right) with increasing loads of 
[C6mim][OTf]. Note that the number of data points displayed is reduced for clarity. Complete data can be found in Fig. SI 27. 
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Hence, AFM studies show that the cation of [C2mim][OAc] is 
in closest vicinity to the surface, with the ethyl group oriented 
perpendicularly to the surface.35 In the same way, for ionic 
liquids containing anions with little hydrogen-bonding ability, 
Sum-Frequency Vibrational Spectroscopy (SFVS) showed that 
the imidazolium ring interacts with fused silica via hydrogen 
bonding of the acidic C2-H. The methyl group on the 
imidazolium cation is directed toward the silica surface, while 
the alkyl chain of the 1-alkyl-3-methylimidazolium cation 
protrudes almost perpendicularly relative to the surface. 
While this angle was found to be dependent on the size of the 
anion, the HCCH tilt angle is independent on the anion size, but 
affected by the alkyl chain length. The cation head group 
orients more parallel to the surface when its alkyl substituent is 
shorter.79, 80 These findings are supported by molecular 
dynamics simulations.81 Overall, it can be stated that these 
studies place a strong focus on the elucidation of the structural 
orientation of the cation, and little is known about the 
arrangement of the anion. 
Hence, whether or not the increased stability of the acetate-
based ionic liquid is due to surface-acetate interactions, which 
might well be more prevalent in materials of smaller pore 
diameter (and hence larger available surface area at constant 
ionic liquid loading) remains speculative, and must be the topic 
of further studies. 

Conclusions 

The present study has shown that surface-coverage of porous 
silicates with ionic liquid is highly dependent on both, the type 
of ionic liquid and the support material. A strong anion-
dependent effect was observed. Hence, acetate- and 
trifluoromethanesulfonate-based ionic liquids exhibit 
preferential interactions with the surface leading to the 
formation of homogeneous layers. While for the 
trifluoromethanesulfonate-based ionic liquid, ion deposition on 
the surface appears to be rather random, the acetate-based ionic 
liquid shows a peculiar behaviour pointing to a side-by-side 
deposition of the ions, hence completing the monolayer. 
However, non-coordinating anions such as 
bis(trifluoromethanesulfonyl)imide may lead to aggregate 
formation rather than homogeneous distribution of ionic liquid 
on the surface. 
It can be therefore stated that the model presented in the 
literature (Figure 1) represents an oversimplified picture, which 
is only correct for certain combinations of ionic liquid and 
support materials. On ordered mesoporous silica supports such 
as MCM-41 or SBA-15, homogeneous layers of ionic liquid are 
formed, if the ionic liquid is not too hydrophobic and hence 
tends to rather form aggregates than wet the surface. For 
disordered supports, such as silica gel (MB), the regions of 
smaller pores are filled first, before the surface is completely 
covered. While it cannot be stated whether initially layer- or 
aggregate-formation occurs on the disordered MB support, it is 
clear that at low to medium loadings of ionic liquid, free silica 
surface may still be present, and the layer thickness of the ionic 
liquid is not uniform.  

The support itself not only exhibits an effect on the materials 
physicochemical properties (density, viscosity, melting point, 
diffusivity, compressibility, etc.)43,61,62,82,83 but thermo-
gravimetric analysis of materials obtained in dependence of the 
type of silica support, and ionic liquid loading has shown that 
the thermal stability is also strongly affected. Hence, SIL-type 
materials are highly tuneable regarding their specific properties, 
a benefit in process optimisation. Nevertheless, it can be stated 
that the predictability of properties of the ionic liquids in 
confinement from bulk properties is not necessarily possible. In 
addition, this study has demonstrated that as opposed to 
mercury intrusion, nitrogen sorption isotherm measurement is 
the method of choice to investigate the textual properties of 
SIL-type materials. 

Acknowledgements 
The authors thank the Deutsche Forschungsgemeinschaft (DFG) for 

funding within the Leipzig Graduate School of Natural Sciences 

“Building with Molecules and Nano-objects (BuildMoNa)” and 

within the priority program Ionic Liquids (SPP 1191 and 1708; 

STA1027/2-3 and /6-1).  

Notes and references 
a Institute of Chemical Technology, Universität Leipzig, Linnéstrasse 3, D-
04103 Leipzig, Germany. 
b Institute of Analytical Chemistry, Universität Leipzig, Linnéstrasse 3, D-
04103 Leipzig, Germany. 
c Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, 
Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany. 
Annegret.stark@outlook.de 
 

Electronic Supplementary Information (ESI) available: N2 sorption isotherms 

and pore diameter distributions of the pristine supports MB, MCM-41 and 

SBA-15, comparison of the QSDFT and NLDFT models for all the materials 

investigated; N2 sorption isotherms of all ionic liquids investigated on MB, 

SBA-15 and MCM-41-materials; pore diameter distribution and mean pore 

distribution maximum of all materials based on the MCM-41-type; linear 

regressions of pore volume vs. loading; density vs. loading and density vs. 

surface area for MCM-41-, MB- and SBA-15-type materials; tables 

containing details on the textural properties of all materials; a scheme 

demonstrating failure of the mercury intrusion technique to determine textual 

properties of SIL-type materials; thermogravimetric data for bulk ionic 

liquids and ionic liquids confined in the silicate materials; see 

DOI: 10.1039/b000000x/ 

1. C. P. Mehnert, R. A. Cook, N. C. Dispenziere and M. Afeworki, 

JACS, 2002, 124, 12932-12933. 

2. C. P. Mehnert, E. J. Mozeleski and R. A. Cook, Chem. Commun., 

2002, 3010-3011. 

3. A. Riisager, K. M. Eriksen, P. Wasserscheid and R. Fehrmann, Catal. 

Lett., 2003, 90, 149-153. 

4. A. Riisager, P. Wasserscheid, R. van Hal and R. Fehrmann, J. Catal., 

2003, 219, 452-455. 

5. A. Riisager, R. Fehrmann, M. Haumann, B. S. K. Gorle and P. 

Wasserscheid, Ind. Eng. Chem. Res., 2005, 44, 9853-9859. 

Page 12 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 13 

6. A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann and P. 

Wasserscheid, Angew. Chem., Int. Ed., 2005, 44, 815-819. 

7. U. Kernchen, B. Etzold, W. Korth and A. Jess, Chem. Eng. Technol., 

2007, 30, 985-994. 

8. P. Virtanen, T. Salmi and J.-P. Mikkola, Ind. Eng. Chem. Res., 2009, 

48, 10335-10342. 

9. Y. Yang, C. Deng and Y. Yuan, J. Catal., 2005, 232, 108-116. 

10. A. Wolfson, I. F. J. Vankelecom and P. A. Jacobs, Tetrahedron Lett., 

2003, 44, 1195-1198. 

11. J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and G. 

Zhao, Angew. Chem. Int. Ed., 2004, 43, 1397-1399. 

12. M. Steffan, M. Lucas, A. Brandner, M. Wollny, N. Oldenburg and P. 

Claus, Chem. Eng. Technol., 2007, 30, 481-486. 

13. P. Virtanen, T. Salmi and J.-P. Mikkola, Top. Catal., 2010, 53, 1096-

1103. 

14. M. Haumann, A. Schönweiz, H. Breitzke, G. Buntkowsky, S. Werner 

and N. Szesni, Chem. Eng. Technol., 2012, 35, 1421-1426. 

15. S. Breitenlechner, M. Fleck, T. E. Müller and A. Suppan, J. Mol. 

Catal. A: Chem., 2004, 214, 175-179. 

16. H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi and T. Suzuki, Org. 

Lett., 2004, 6, 2325-2328. 

17. K. Yamaguchi, C. Yoshida, S. Uchida and N. Mizuno, JACS, 2004, 

127, 530-531. 

18. A. Jess, C. Kern and W. Korth, OIL GAS European Magazine, 2012, 

38-45. 

19. F. F. Krull, M. Hechinger, W. Kloeckner, M. Verhuelsdonk, F. 

Buchbender, H. Giese and T. Melin, Colloids Surf., A, 2009, 

345, 182-190. 

20. S. H. Barghi, M. Adibi and D. Rashtchian, J. Membr. Sci., 2010, 362, 

346-352. 

21. D. D. Iarikov, P. Hacarlioglu and S. T. Oyama, Chem. Eng. J., 2011, 

166, 401-406. 

22. O. C. Vangeli, G. E. Romanos, K. G. Beltsios, D. Fokas, C. P. 

Athanasekou and N. K. Kanellopoulos, J. Membr. Sci., 2010, 

365, 366-377. 

23. F. Kohler, D. Roth, E. Kuhlmann, P. Wasserscheid and M. Haumann, 

Green Chem., 2010, 12, 979-984. 

24. C. P. Mehnert, Chem. Eur. J., 2005, 11, 50-56. 

25. A. Riisager, R. Fehrmann, M. Haumann and P. Wasserscheid, Eur. J. 

Inorg. Chem., 2006, 695-706. 

26. C. Van Doorslaer, J. Wahlen, P. Mertens, K. Binnemans and D. De 

Vos, Dalton Trans., 2010, 39, 8377-8390. 

27. A. Monge-Marcet, R. Pleixats, X. Cattoen and M. Wong Chi Man, 

Catal. Sci. Technol., 2011, 1, 1544-1563. 

28. T. Selvam, A. Machoke and W. Schwieger, Appl. Catal., A, 2012, 

445, 92-101. 

29. A. Stark, M. Wild, M. Ramzan, M. M. Azim and A. Schmidt, in 

Product design and engineering, volume III, eds. U. Bröckel, 

G. Wagner and W. Meier, Wiley-VCH, Weinheim, 2013, pp. 

169-220. 

30. M. Waechtler, M. Sellin, A. Stark, D. Akcakayiran, G. Findenegg, A. 

Gruenberg, H. Breitzke and G. Buntkowsky, PCCP, 2010, 12, 

11371-11379. 

31. Y. Yokota, T. Harada and K.-i. Fukui, Chem. Commun., 2010, 46, 

8627-8629. 

32. M. Mezger, H. Schröder, H. Reichert, S. Schramm, J. S. Okasinski, 

S. Schöder, V. Honkimäki, M. Deutsch, B. M. Ocko, J. 

Ralston, M. Rohwerder, M. Stratmann and H. Dosch, Science, 

2008, 322, 424-428. 

33. Y. Liu, Y. Zhang, G. Wu and J. Hu, JACS, 2006, 128, 7456-7457. 

34. S. Bovio, A. Podestà, C. Lenardi and P. Milani, J. Phys. Chem. B, 

2009, 113, 6600-6603. 

35. R. Atkin and G. G. Warr, J. Phys. Chem. C, 2007, 111, 5162-5168. 

36. S. Rivera-Rubero and S. Baldelli, J. Phys. Chem. B, 2006, 110, 4756-

4765. 

37. R. M. Lynden-Bell, M. G. Del Pópolo, T. G. A. Youngs, J. Kohanoff, 

C. G. Hanke, J. B. Harper and C. C. Pinilla, Acc. Chem. Res., 

2007, 40, 1138-1145. 

38. N. Sieffert and G. Wipff, J. Phys. Chem. C, 2008, 112, 19590-19603. 

39. F. Endres, O. Hofft, N. Borisenko, L. H. Gasparotto, A. Prowald, R. 

Al-Salman, T. Carstens, R. Atkin, A. Bund and S. Zein El 

Abedin, PCCP, 2010, 12, 1724-1732. 

40. T. Cremer, M. Killian, J. M. Gottfried, N. Paape, P. Wasserscheid, F. 

Maier and H.-P. Steinrück, ChemPhysChem, 2008, 9, 2185-

2190. 

41. T. Cremer, L. Wibmer, S. K. Calderon, A. Deyko, F. Maier and H. P. 

Steinruck, PCCP, 2012, 14, 5153-5163. 

42. A. Deyko, T. Cremer, F. Rietzler, S. Perkin, L. Crowhurst, T. 

Welton, H.-P. Steinrück and F. Maier, J. Phys. Chem. C, 2013, 

117, 5101-5111. 

43. B. Coasne, L. Viau and A. Vioux, J. Phys. Chem. Lett., 2011, 2, 

1150-1154. 

44. X. Gong, S. Frankert, Y. Wang and L. Li, Chem. Commun., 2013, 49, 

7803-7805. 

45. T. Cremer, M. Stark, A. Deyko, H. P. Steinrück and F. Maier, 

Langmuir, 2011, 27, 3662-3671. 

46. R. Lungwitz and S. Spange, New J. Chem., 2008, 32, 392-394. 

47. R. Lungwitz, M. Friedrich, W. Linert and S. Spange, New J. Chem., 

2008, 32, 1493-1499. 

48. W. D. Einicke, H. Uhlig, D. Enke, R. Gläser, C. Reichenbach and S. 

G. Ebbinghaus, Colloids Surf., A, 2013, 437, 108-112. 

49. H. Uhlig, M.-L. Gimpel, A. Inayat, R. Gläser, W. Schwieger, W.-D. 

Einicke and D. Enke, Microporous Mesoporous Mater., 2013, 

182, 136-146. 

50. W.-D. Einicke, D. Enke, M. Dvoyashkin, R. Valiullin and R. Gläser, 

Materials, 2013, 6, 3688-3709. 

51. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. 

Chmelka and G. D. Stucky, Science, 1998, 279, 548-552. 

52. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, JACS, 

1998, 120, 6024-6036. 

53. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. 

Broker and R. D. Rogers, Green Chem., 2001, 3, 156-164. 

54. S. Brunauer, P. H. Emmett and E. Teller, JACS, 1938, 60, 309-319. 

55. B. C. Lippens and J. H. de Boer, J. Catal., 1965, 4, 319-323. 

56. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. 

Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. 

Chem., 1985, 57, 603-619. 

57. V. Meynen, P. Cool and E. F. Vansant, Microporous Mesoporous 

Mater., 2009, 125, 170-223. 

Page 13 of 14 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Journal Name 

14 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

58. K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. 

Schrijnemakers, P. Van Der Voort, P. Cool and E. F. Vansant, 

Chem. Mater., 2002, 14, 2317-2324. 

59. A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi and F. 

Fajula, New J. Chem., 2003, 27, 73-79. 

60. Quantachrome, DFT MODELS LIBRARY OF DFT AND GCMC 

METHODS IN QUANTACHROME'S DATA REDUCTION 

SOFTWARE, 

http://www.quantachrome.com/technical/dft.html, Accessed 

1.08.2014, 2014. 

61. E. Sloutskin, B. M. Ocko, L. Tamam, I. Kuzmenko, T. Gog and M. 

Deutsch, JACS, 2005, 127, 7796-7804. 

62. J. Bowers, M. C. Vergara-Gutierrez and J. R. P. Webster, Langmuir, 

2003, 20, 309-312. 

63. R. Hayes, S. Z. El Abedin and R. Atkin, J. Phys. Chem. B, 2009, 113, 

7049-7052. 

64. A. J. Carmichael, C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen 

and K. R. Seddon, Mol. Phys., 2001, 99, 795-800. 

65. C. Ye and J. n. M. Shreeve, J. Phys. Chem. A, 2007, 111, 1456-1461. 

66. R. G. Horn, D. F. Evans and B. W. Ninham, J. Phys. Chem., 1988, 

92, 3531-3537. 

67. J. Jacquemin, P. Nancarrow, D. W. Rooney, M. F. Costa Gomes, P. 

Husson, V. Majer, A. A. H. Pádua and C. Hardacre, J. Chem. 

Eng. Data, 2008, 53, 2133-2143. 

68. N. V. Ignat’ev, P. Barthen, A. Kucheryna, H. Willner and P. Sartori, 

Molecules, 2012, 17, 5319-5338. 

69. X.-X. Ma, J. Wei, Q.-B. Zhang, F. Tian, Y.-Y. Feng and W. Guan, 

Ind. Eng. Chem. Res., 2013, 52, 9490-9496. 

70. R. D. Chirico, V. Diky, J. W. Magee, M. Frenkel and N. Marsh, Pure 

Appl. Chem., 2009, 81, 791-828. 

71. J. Jacquemin, R. Ge, P. Nancarrow, D. W. Rooney, M. F. Costa 

Gomes, A. A. H. Pádua and C. Hardacre, J. Chem. Eng. Data, 

2008, 53, 716-726. 

72. J. Fraissard and T. Ito, Zeolites, 1988, 8, 350-361. 

73. B. M. Goodson, J. Magn. Reson., 2002, 155, 157-216. 

74. R. Hayes, G. G. Warr and R. Atkin, PCCP, 2010, 12, 1709-1723. 

75. R. G. Horn and J. N. Israelachvili, J. Chem. Phys., 1981, 75, 1400-

1411. 

76. J. Lemus, J. Palomar, M. Gilarranz and J. Rodriguez, Adsorption, 

2011, 17, 561-571. 

77. J. E. Gordon, J. Org. Chem., 1965, 30, 2760-2763. 

78. A. Stark, M. Sellin, B. Ondruschka and K. Massonne, Sci. China 

Chem., 2012, 55, 1663-1670. 

79. B. D. Fitchett and J. C. Conboy, J. Phys. Chem. B, 2004, 108, 20255-

20262. 

80. J. B. Rollins, B. D. Fitchett and J. C. Conboy, J. Phys. Chem. B, 

2007, 111, 4990-4999. 

81. C. Pinilla, M. G. Del Pópolo, R. M. Lynden-Bell and J. Kohanoff, J. 

Phys. Chem. B, 2005, 109, 17922-17927. 

82. K. Ueno, M. Kasuya, M. Watanabe, M. Mizukami and K. Kurihara, 

PCCP, 2010, 12, 4066-4071. 

83. M. Kanakubo, Y. Hiejima, K. Minami, T. Aizawa and H. Nanjo, 

Chem. Commun., 2006, 1828-1830. 

 

 

Page 14 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


