PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Synthesis and microwave absorption characterization of SiO₂ coated Fe₃O₄/MWCNT composites

Hoda Hekmatara*^a, Majid Seifi^a, Keyvan Forooraghi^b, Sharareh Mirzaee^a

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

This study investigated the microwave absorption properties of core-shell composites containing; iron oxide decorated carbon nanotubes (CNT) and silica (SiO₂@Fe₃O₄/MWCNT) with various thickness of silica shell (7, 20 and 50nm). Transmission electron microscopy (TEM) and X-ray diffraction results confirmed the formation of these core-shell structures. Microwave absorption characterization of the samples at the ranging band under consideration (the X-band) showed increased absorption and shifting of the peaks to lower frequencies

compared to uncoated sample (Fe₃O₄/MWCNT). The minimum reflection loss decreased with increasing SiO₂ thickness. The minimum reflection loss of the composite with an optimized thickness of silica shell (7nm) exceeded -41dB at 8.7-9GHz.

Introduction

- ¹⁵ Worldwide attention has been focused on microwave absorbing materials because microwave absorbing technology is a valuable topic for military purposes and also a rising major issue in the industrial field. In particular, there has been the development of radar absorbing material (RAMs) which can be
- ²⁰ widely used in the stealth technology of aircraft, microwave darkrooms and protection^{1,2}. In recent years, there have been many attempts to design nano- RAMs, which have suitable factors such as: weight, cost, thickness and biocompatibility. There are a wide range of nanomaterials applied as nano-RAMs³⁻⁶.
- ²⁵ The imaginary (ϵ'') part of complex permittivity is an important parameter which represents the electromagnetic energy loss ability of materials.

If an electromagnetic field propagates in a loss dielectric material, two kinds of electrical currents arise: displacement and ³⁰ conduction currents. The real part of permittivity describes the polarization effect due to the interaction with bound charges (i.e., the displacement current), and the imaginary part describes the effects due to free electron's (conduction current) increase to power loss. The real and imaginary part infers to the storage and

- ³⁵ loss part of the energy of a material respectively. Since, the MWCNT has free electrons in its skeleton, loading MWCNT inside an epoxy resin leads to increase the values of both imaginary part and real part of permittivity. Increasing the weight ratio of MWCNT, significantly improves the imaginary part of
- ⁴⁰ the permittivity in the MWCNT based composites. For example, incorporating 10wt% of MWCNTs inside the epoxy resin of EPON, increase the real and imaginary parts of permittivity range from 67–42 and 76–60 in the frequency of 8.2–12.4 GHz. This value for complex permittivity caused 20 decibels (dB) of ⁴⁵ attenuation⁷⁻⁹.

Whereas, CNTs do not show magnetic loss in the microwave absorbing process and their absorption characteristics are limited. The absorption characteristics of carbon nanotubes could be improved by using low decorating ratios of magnetic materials.

⁵⁰ Sometimes, the magnetic modification of nanotubes results in the enhancement of nanotube composite reflection loss of over 20dB^{10-13.}

Excellent electromagnetic wave absorption resulted from the efficient complement between the relative permittivity and ⁵⁵ permeability in materials. Either only the magnetic loss or only the dielectric loss may induce a weak electromagnetic wave absorption property due to the imbalance of the electromagnetic match. In the case of silica-coated iron oxide and MWCNT, a better match of the dielectric loss and magnetic loss may be ⁶⁰ realized by the existence of the protective silica shell^{14,15}.

Furthermore, coating magnetic nanoparticles with an insulating material is realized as an effective way to increase the surface anisotropic energy and reduce the eddy current effect. Multi polarization on ferromagnetic/dielectric interfaces may also be ⁶⁵ conductive to high electromagnetic analysis efficiency^{16,17}.

The uniform coating of metal nanoparticles with silica shells such as Fe₃O₄ and Fe nanocubes has been reported for microwave absorption with a minimum RL of about -5 and -18.2 dB, respectively. However, a minimum reflection loss lower than -20 70 dB is required for practical applications^{18,19}.

In this paper, like the large numbers of work which were reported in the field of producing RAMs, the original proposal is the attenuation of reflected wave to abscond the special surfaces from the radar receivers.

75 Short circuited method is usually applied for measuring the reflection loss to determine the absorption property of a sample. In this method, the transmitted waves were reflected from a perfect conductor which placed at the end of the sample and gets back into the sample. So the transparency of material can't be determined by this method. Only the ability of material in losing the reflected wave from its surface is calculated^{20,21}.

- In this work, the Fe_3O_4 decorated MWCNT was prepared using ⁵ the wet chemical method and then coated with different layer of SiO_2 by a sol-gel process. The resulting core–shell composite ($SiO_2@Fe_3O_4/MWCNT$) with a thin layer of SiO_2 (7nm) exhibits an excellent absorption property compared to an uncoated sample ($Fe_3O_4/MWCNT$). Increasing the thickness of the silica coverage
- ¹⁰ leads to a decrement in the microwave absorption and a shifting of the minimum reflection loss to the lower frequencies.

Material and method Preparation of Fe₃O₄/MWCNT

- Is Iron oxide decorated multiwall CNTs (MWCNT/Fe₃O₄) were produced by mixing 96mg O-MWCNT with 81mg FeCl₃.6H₂O and 120mg FeCl₂.4H₂O in deionized water in an argon atmosphere. The mixture was stirred for 30min and then a diluted solution of ammonia was added drop-by-drop until pH = 12. The
- ²⁰ synthesis process was followed by heating the mixture to 60°C for 2 h. The product was then washed and air-dried at 50°C.

Preparation of the core-shell structures (SiO₂@Fe₃O₄/MWCNT)

- ²⁵ SiO₂@Fe₃O₄/MWCNT composites were prepared by a sol-gel method, similar to the previous report²². A quantity of 100 mg asprepared Fe₃O₄/MWCNT powder was mixed with 100 ml ethanol and the mixture was sonicated for 1 h. 10 ml ethanol and 1 ml tetraethyl silicate (TEOS) was added into the solution and the
- ³⁰ mixture was stirred for 10 min. This process was followed by the addition of 28 ml NH₄OH drop-by-drop under stirring (1,000 rpm) for 15 h. The resulting product (SiO₂@Fe₃O₄/MWCNT) was then washed with deionized water and dried in an oven at 60°C overnight. The second and third samples were produced by ³⁵ the same protocol and by using different amounts of TEOS (2 ml
- and 4 ml, respectively).

Reaction process in detail:

⁴⁰ Si(OC₂H₅) +H₂O or C₂H₅OH (ethanol)
$$\xrightarrow{\text{Hydrolysis}}$$
 Si(OH)₄
 $\xrightarrow{\text{Condensation at pH=12 \& room}}$ SiO₂
temperature

⁴⁵ In which, the SiO₂ was attached to the hydroxylic functional group of Fe_3O_4 or hydroxylic & carboxylic functional groups of the MWCNT²².

The morphology of the Fe₃O₄/MWCNT and core-shell ⁵⁰ structures (SiO₂@Fe₃O₄/MWCNT) was characterized by TEM (PHILIPS MC 10). XRD analysis was carried out on an X-Pert Pro-MPD using CuKα radiation. The room temperature magnetization in the applied magnetic field was performed with a vibrating sample magnetometer (VSM JDM-13). The reflection ⁵⁵ loss characteristic of all the specimens (with a thicknesses of 4mm) was measured in the 8-12 GHz frequency range (X-band) using an 8822D two port vector network analyser.

60 Result and discussion X-ray diffraction

Fig.1 shows the X-ray diffraction pattern of the core-shell structures (SiO₂ coated Fe₃O₄/MWCNT) with different ⁶⁵ thicknesses of SiO₂ shells. The diffraction peaks of the CNT commonly appear as $2\theta = 26^{\circ}$ and 32° , while, abroad diffraction peak from $2\theta=22^{\circ}$ to 28° was assigned to the SiO₂ coverage. This peak is usually observed for SiO₂ coated Fe₃O₄ nanoparticles which were produced using the similar method at room ⁷⁰ temperature^{23,24}.

The XRD patterns indicate that by increasing the thickness of the SiO₂ shell, the first peak of the MWCNT and the SiO₂ diffraction peak were combined together gradually. Finally, in Fig. 1c, only one broadened peak could be observed. The other 75 peaks belong to the magnetite (Fe₃O₄) phase which appeared at 36° , 57° and 63° and are attributed to [311], [422] and [511] respectively. Increasing the SiO₂ shell also leads to an increment in the intensity of the SiO₂ peak compared to those of magnetite.

⁶⁷ Fig. 1 XRD patterns of SiO₂@Fe₃O₄/MWCNT with different SiO₂ thicknesses of: (a)7nm, (b)20nm and (c)50nm.

Transmission electron microscopy

⁸⁵ The TEM images of the Fe₃O₄/MWCNTs and the samples coated with different shell thicknesses of SiO₂ are illustrated in Fig 2. In this work, MWCNTs with an average diameter of 10-20nm and length of 10-30µm were used. The TEM image from the Fe₃O₄ decorated MWCNT sample (Fig. 2a) shows that the Fe₃O₄
⁹⁰ nanoparticles were captured in the form of clusters on the CNT's side walls. Each cluster contains a large amount of nanoparticles were found in the grid.

95

 $_5$ Fig.2 TEM images of: (a) Fe₃O₄/MWCNT and SiO₂@Fe₃O₄/MWCNT with different SiO₂ thicknesses of: (b)7nm, (c)20nm and (d)50nm. (e) an individual Fe₃O₄/MWCNTs which coated with SiO₂ thickness of 50nm and (f) EDS of SiO₂@Fe₃O₄/MWCNT.

- ¹⁰ The TEM images from the Fe₃O₄/MWCNTs which were coated with different thicknesses of SiO₂ layers show that (except for the sample prepared with the lowest amount of TEOS), the entirety of the CNT's and Fe₃O₄ nanoparticle's surfaces were covered with a homogenous layer of SiO₂ and were composed of
- ¹⁵ a core-shell structure (Figs. 2c and 2d). In the sample with the lowest thickness of SiO₂ (Fig. 2b), only the Fe₃O₄ surface was covered with a silica layer with a thickness of 7nm while the CNT's side walls remained without any coverage. This observation related to the higher reactivity of the Fe₃O₄ are surface than the CNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface that the cNT's walls, as a result of the surface
- high number of hydroxyl groups. Increasing the silicate reagent (2ml) leads to covering the surface of the CNTs with a 20nm thickness of SiO₂ (Fig. 2c). With further increments of TEOS (4ml), as shown in Fig. 2d, the thickness of the SiO₂ layer was
- ²⁵ raised to 50nm. Fig. 2e shows an individual CNT, it can be observed that the anisotropic Fe₃O₄ cluster (Fig. 2a) changes to a smooth and homogenous surface as a result of the SiO₂ coverage.

TGA analysis

³⁰ Thermal stability of produced composite was investigated using TGA analysis.

³⁵ Fig 3. weight loss versus decomposition temperature for SiO₂@Fe₃O₄/MWCNT with SiO₂ thicknesses of 7nm.

The decomposition temperature for all kinds of CNTs is in the temperature range of 400 to $600^{\circ}C^{25}$. From TGA curve can be ⁴⁰ observed that by loading Fe₃O₄ and Silica (SiO₂) on acid-functionalized MWCNT the initial decomposing temperature for SiO₂@Fe₃O₄/MWCNT sample with the lowest thickness of SiO₂ is over 600°C. So the thermal stability of this composite wasn't changed obviously compared to that of the bare MWCNT.

⁴⁵ The actual percentage of component in each composite was determined using atomic absorption spectroscopy.

The result shows that the loading of Fe_3O_4 on MWCNTs is 22.5wt% and the weight percentage of SiO_2 in composites with the SiO_2 shell thicknesses of 7, 20 and 50nm is 18%, 34% and 50 52wt%, respectively.

Vibrating sample magnetometer

The magnetic properties of the Fe₃O₄ decorated MWCNT and SiO₂ coated Fe₃O₄/MWCNT with different thicknesses of SiO₂ ⁵⁵ shells were investigated with a vibrating sample magnetometer (VSM). Typical magnetization curves as a function of the applied magnetic field at room temperature are shown in Fig. 4.

Fig. 4 magnetization curves of: (a) Fe₃O₄/MWCNT and 60 SiO₂@Fe₃O₄/MWCNT with different SiO₂ thicknesses of: (b)7nm, (c)20nm and (d)50nm.

For the Fe_3O_4 decorated MWCNT and all the core-shell structures, there is no pronounced hysteresis loop, which

indicates that both the retentiveness and coerciveness of the composites are zero. This observation is consistent with the superparamagnetic behaviour of the samples. Doping CNTs with a limited size (<20nm) of Fe₃O₄ nanoparticles as ⁵ superparamagnetic particles caused a high saturation magnetization exceeding 26emu/g. SiO₂ coverage with an almost zero saturation magnetization on the Fe₃O₄ decorated CNTs led to a decrease in the magnetization property²⁶. For the core-shell structure, in which only the Fe₃O₄ nanoparticle's surfaces are ¹⁰ covered with the SiO₂ shell (Fig. 2b), the saturation

- magnetization is rapidly increased to 17emu/g. By further increasing the SiO₂ shell thickness (20nm) which coats the entire surface of the nanotubes, the saturation magnetization decreased to 12emu/g. Finally, the weakest magnetization was observed for
- ¹⁵ the sample with the thickest SiO_2 shell (50nm), whereby the saturation magnetization reached up to 2emu/g.

Microwave absorption

²⁰ The microwave absorption properties of Fe₃O₄/MWCNT and SiO₂@Fe₃O₄/MWCNT core-shell structures with different thicknesses of SiO₂ shells are investigated. The microwave absorption ability of samples with a weight ratio of 0.5, 1 and 2wt% to epoxy resin (EPON 828) was evaluated by measuring ²⁵ their reflection loss.

Our composites have low density, so a large volume of these composites are used as filler to achieve a low weight ratio of them to epoxy resin. For the filler which compressed within the epoxy resin to make the sample with 4mm thickness, it couldn't

³⁰ be possible to enhance the amount of filler. The samples with the filler concentration above 2wt%, was very fragile.

Then, every sample with a thickness of 4mm was poured into a standard X-band waveguide. The electromagnetic fields were generated and recorded by an 8822D two port vector network ³⁵ analyser.

For a single microwave absorbing layer backed by a perfect conductor, the reflection loss of electromagnetic radiation is given by Equation1.

$$R(dB) = 20 \log \left| \frac{Z_{in} - 1}{Z_{in} + 1} \right| \tag{1}$$

 $_{40}$ Where Z_{in} is the normalized input impedance:

$$Z_{in} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh\left[j\frac{2\pi}{c}\sqrt{\mu_r\varepsilon_r fd}\right]$$
(2)

 μ_r and ε_r are the complex relative permeability and permittivity of the composite medium, ε is the velocity of light in free space, f is the frequency and d is the thickness of the 45 absorber²⁷.

Figs. 5-7 show the reflection loss curves of the SiO₂@Fe₃O₄/MWCNT composites with different thicknesses of SiO₂ layers (7, 20 and 50nm, respectively). Each figure contains 0.5, 1 and 2wt% of filler concentration to epoxy resin (EPON ⁵⁰ 828) within the frequency range of 8-12GHz.

Fig. 5 Reflection Loss curves of: $Fe_3O_4/MWCNT$ (a) and SiO_2 coated $Fe_3O_4/MWCNT$ in thickness of 7nm, with different weight ratio of: 55 0.5(a), 1(b) and 2(c) to epoxy resin.

Fig. 6 Reflection Loss curves of: $Fe_3O_4/MWCNT$ (a) and SiO_2 coated $Fe_3O_4/MWCNT$ in thickness of 20nm, with different weight ratio of: 60 0.5(a), 1(b) and 2(c) to epoxy resin.

Fig. 7 Reflection Loss curves of: $Fe_3O_4/MWCNT$ (a) and SiO_2 coated $Fe_3O_4/MWCNT$ in thickness of 50nm, with different weight ratio of: 65 0.5(a), 1(b) and 2(c) to epoxy resin.

It can be observed that, the absorbing curves of all the coreshell structures have two remarkable absorbing peaks. These peaks shifted to a lower frequency range compared to the ⁷⁰ uncoated sample (Fe₃O₄/MWCNT); this is in agreement with a previous report²⁸. It is clear that, the microwave absorption property of the core-shell composites is improved compared to uncoated sample. Moreover, the absorption property of the SiO₂ coated composites is highly dependent on the thickness of the ⁷⁵ SiO₂ shell. For the composite in which a silica shell covered only the surface of the Fe₃O₄ nanoparticles, an extraordinary improvement in the minimum reflection loss and bandwidth occurred. In contrast, covering the whole nanotube surface with a thick layer of SiO₂ (50nm) led to a weak absorbing property. An increase in SiO₂ shell thickness also causes a greater peak shifting 5 towards a lower frequency.

Fig. 5 shows that coating the Fe_3O_4 nanoparticles with a SiO₂ layer results in an increment in the microwave absorption property of this composite compared to uncoated sample (Fig. 5a). In this series of samples, both reflection loss and bandwidth

- ¹⁰ increased compared to the uncoated sample. For the concentration of 2wt% of SiO₂@Fe₃O₄/MWCNT to epoxy resin, two minimum reflection losses of -32.7dB and -41dB were observed within the frequency ranges of 8.2-8.4GHz and 8.7-9GHz respectively. Therefore, in comparison with the uncoated
- ¹⁵ sample (Fe₃O₄/MWCNT) in that only one minimum reflection loss is observable, an increment of about 26dB occurred in the reflection loss. The other important point is shown in Fig 6, whereby the absorbing peaks shifted to the lower frequencies and narrower bandwidths by increasing in terms of filler ²⁰ concentrations.

From the curves as shown in Fig. 6, it can be seen that the minimum reflection loss of every sample, increased compared to previous samples with the same concentration (Fig. 5). In the composite with a SiO_2 shell of 20nm in thickness, the reflection

²⁵ loss showed an improvement both in the intensity and the bandwidth compared to the uncoated sample. For instance, the reflection loss of this composite with 2wt% to epoxy resin had two minimums of -20.1dB and -19.6dB with bandwidths of 0.5GHz and 0.4GHz. Meanwhile, at the same concentration, the ³⁰ uncoated sample had one minimum reflection loss of -15.2dB

with a bandwidth of 0.4GHz.

Finally, the reflection loss versus frequency for the core-shell composite with the thickest shell (50nm) is illustrated in Fig. 7. At this thickness of SiO_2 , the minimum reflection loss shifted to a

³⁵ lower frequency more than before. It may be that, the first minimum reflection loss is placed at lower frequencies below the X band (<8GHz).

Although the stronger absorbing peak was commonly placed at lower frequencies, it is almost impossible to determine

⁴⁰ definitely how much improvement occurred in the reflection loss. However, in this core-shell composite like the two former samples, the reflection loss is obviously improved compared to similar concentrations of the uncoated sample.

45 Shielding effectiveness (SE)

EMI shielding effectiveness consists of two mechanisms: reflection and absorption. For reflection of the radiation by the shield, the shield must have mobile charge carriers (electrons or 50 holes) which interact with the electromagnetic fields in the radiation. As a result, the shield tends to be electrically conducting. So metals are by far the most common materials for EMI shielding. They function mainly by reflection due to the free electrons in them. A secondary mechanism of EMI shielding is

ss usually absorption. Loading insulator Fe₃O₄ nanoparticles on MWCNT leads to reduce the electrical conductivity of

MWCNT ($\sigma \approx 10^{-8} ohm^{-1} cm^{-1}$). So the Fe₃O₄ decorated MWCNT showed insulator behaviour. Therefore, our composite expected to have only the shielding effectiveness due to absorption. For 60 significant absorption of the radiation by the shield, the shield should have electric and/or magnetic dipoles which interact with the electromagnetic fields in the radiation. The electric dipoles may be provided by SiO₂ or other materials having a high value

of the dielectric constant. The magnetic dipoles may be provided ⁶⁵ by Fe₃O₄ or other materials having a high value of the magnetic permeability²⁹⁻³². The third shielding mechanism is multiplereflection; it represents the internal reflections within the shielding material. Typically, multiple-reflection decreases the overall shielding if the shield is thinner than the skin depth and ⁷⁰ can be ignored if the shield is thicker than the skin depth. The strength of EM wave decreases exponentially as it travels through a conductive material. At a certain distance known as the skin depth the electric field drops to (1/e) of the incident strength, where *f* is the frequency, $(\mu = \mu_0 \mu_r)$ is the shield's magnetic

⁷⁵ permeability, μ_0 is equals to $4\pi \times 10^{-7} H/m$, μ_r is the shield's relative magnetic permeability and σ is the shield's electrical conductivity.

The relationship between frequency, electrical conductivity, magnetic permeability and skin-depth is:

$$\delta = 50.33 \times 10^6 (1/f\mu_r \sigma)^{1/2}$$
(3)

For our composite: σ is in the order of 10^{-10} , f is in the order of 10^9 (GHz) and μ_r is in the order of 1. So the skin depth (δ) would

⁸⁵ be in the order of 10³ m. Therefore, the thickness of shield (4mm) is much thicker than the skin depth of our composites. So, the multiple-reflection mechanism can be ignored in these materials^{33,34}.

90 SE measurement for a typical sample

In order to determine the origin of shielding effectiveness, we measured the shielding effectiveness due to reflection and shielding effectiveness due to absorption for a typical sample which has the lowest minimum reflection loss among the other ⁹⁵ samples (-41dB at 8.9GHz).

When measurements are made with a network analyser, the shielding effectiveness can be conveniently express in terms of the s-parameters as^{29} :

$$SE = 20 * \log|S_{12}| \tag{4}$$

100

The total shielding effectiveness and shielding effectiveness due to absorption versus frequency for this sample is shown in Figs.8 and 9, respectively.

Fig. 8 Total shielding effectiveness (SE) versus frequency, for the sample with minimum reflection loss of -41dB.

Fig.9 Shielding effectiveness due to absorption (SE_A) versus frequency, for the sample with minimum reflection loss of -41dB.

By ignoring the shielding effectiveness due to multiplereflection, total shielding effectiveness would be the combination of shielding effectiveness due to absorption and shielding effectiveness due to reflection³⁰.

(5)

$$SE = SE_A + SE_R$$

As shown in Fig.9, at the frequency of 8.9GHz, in which the lowest minimum reflection loss was observed, the shielding ²⁰ effectiveness due to absorption is 40.2dB and the total shielding effectiveness is 42dB (Fig.8). So shielding effectiveness due to reflection is 1.8dB ($42 = SE_R + 40.2$).

From Figs.8 and 9, it can be seen that the shielding effectiveness due to reflection in some frequencies exceeded less ²⁵ than 1dB.

This result was expected, because our composite have simultaneously electric and magnetic dipoles and majority percentage of shielding effectiveness in these materials is due to absorption³¹⁻³⁴.

30

Conclusion

 SiO_2 coated $Fe_3O_4/MWCNT$ composites with different thicknesses of SiO_2 shells were prepared by a sol-gel method. The microwave absorption properties of these composites were ³⁵ investigated within the frequency range of 8-12GHz. We

observed that, the reflection loss of these samples is also highly dependent on the thickness of the SiO_2 coverage.

The best improvement in microwave absorption was observed for the composite in which the SiO₂ shell covered only the surface of ⁴⁰ the Fe₃O₄ nanoparticles. In this case, free charge polarization can occur between the Fe₃O₄ and the SiO₂ because of the conductivity disparity between the interfaces. Furthermore, covering the Fe₃O₄/MWCNT with a silica shell greatly reduces the eddy current loss and increases the anisotropic energy, which is proven

⁴⁵ to be crucially important to improving microwave absorption. Enhancing the thickness of the SiO₂ layer on the Fe₃O₄/MWCNT surface leads to a decrement in the absorption property of the composites produced. This result might be related to a reduction of the magnetic loss in these samples as a result of the weaker ⁵⁰ magnetization property.

Notes and references

^a Department of physics, faculty of science Guilan University, Rasht, Iran . Fax: +981313220066; Tel: +981313223132; E-mail:

hd_hekmat@yahoo.com 55 m_seifi2000@yahoo.com

60

65

70

85

90

95

<u>sharareh_mirzaee@yahoo.com</u> b_r....

^b Faculty of electrical and computer engineering, tarbiat modares university, Tehran, Iran, Tel: +98912159282; E-mail: kforooraghi@yahoo.com

- I K.J. Vinoy, R.M. Jha, Radar Absorbing Materials from Theory to Design and Characterization, Kluwer Academic Publishers, Boston, 1996.
- 2 R.A. Stonier, SAMPE J, 1991, 27, 9.
- 3 M.S. Kim, H.K. Kim, S.W. Byun, S.H. Jeong, Y.K. Hong, J.S. Joo, K.T. Song, J.K. Kim, C.J. Lee, J.Y. Lee, *Synth. Met*, 2002, **126**, 233.
- 4 R.F. Zhou, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, P.X. Yan, *J. Phys. Chem. C*, 2008, **112**, 11767.
- 5 G.X. Tong, W.H. Wu, J.G. Guan, H.S. Qian, J.H. Yuan, J. *Alloys Compd*, 2011, **509**, 4320.
- 6 G.X. Tong, J.G. Guan, Z.D. Xiao, X. Huang, Y. Guan, J. Nanopart. Res. 2010, 12, 3025.
- 7 P. Bhattacharya, S. Sahoo, C. K. Das, *eXPRESS Polymer* Letters, 2013, 7, 212–223.
- 8 M. Giorcell, P. Savi, M. Miscuglio, M.Yahya and A. Tagliaferro, *Nanoscale Research Letters*, 2014, **9**,168.
- 9 E. Decrossas, M. A. El-Sabbagh, V. F. Hanna, and S. M. El-Ghazaly, *electrical engineering and computer science*, 2012, 1, 1.
- 10 T. Sameshima, H. Hayasaka and T. Haba, JJA, 2009, 48, 1.
- L. Chen, Y. Duan, L. Liu, J. Guo, S. Liu, material and Design. 2011, **32**, 570.
- 12 T.J. Imholt, C.A. Dyke, B. Hasslarcher, J.M. Perez, D.W. Price, J.A. Roberts, J.B. Scott, A.Wadhawan, Z. Ye, J.M. Tour, Chem. Mater, 2003, 15, 3969.
- 13 A. Anand, J.A. Roberts, F. Naab, J.N. Dahiya, O.W. Holland, F.D. McDaniel, Nucl. Instrum. Meth. B, 2005, 241 511.
- 14 H. Zhou, J. Zhuang, Q. Yan, Q. Liu, *Materials Letters*, 2012, **85**, 117.
- 15 M. H. Al-Saleh, U. Sundararaj, CARBON, 2009, 47, 1738.
- 16 J. Zhu, S. Wei, N. Haldolarachige, D.P. Young and Z. Guo, J. Phys. Chem. C, 2011, 115, 15304.
- 17 X.J. Wei, J.T. Jiang, L. Zhen, Y.X. Gong, W.Z. Shao, C.Y. Xu, *Materials Letters*. 2010, 64, 57-60.

5

10

15

20

25

30

- 18 X. Guo, Y. Deng, D. Gu, R. Che, D. Zhao, J. Mater. Chem. 2009, 19, 6706.
- 19 X. Ni, Z. Zheng, X. Hu, X. Xiao, J. Colloid Interface Sci. 2010, 341, 18.
- 20 C. Hou, T. Li, T. Zhao, T. Cheng, W. Zhang, G. Li, *Materials Letters*, 2012, 67, 84–87.
 - 21 H. Hekmatara, M. Seifi, K. Forooraghi, J. Magn. Magn. Mater, 2013, 346, 186–191.
- 22 X. Ni, Z. Zheng, X. Xiao, L. Huang, L. He, Materials Chemistry and Physics, 2010, 120, 206–212.
 - 23 L. Zhang, H. Zhu, Y. Song, Y. Zhang, Y. Huang, *Materials Science and Engineering B*, 2008, 153, 78.
 - 24 Y. Mingliang, T. Jiahua, Y. Guanjie, T. Meiyi, Q. Guanzhou,
 - Trans. Nonferrous Met. Soc. China. 2010, 20, 632.
 D. K. Singh, P. K. Iyer and P. K. Giri, JOURNAL OF APPLIED PHYSICS, 2010, 108, 084313.
 - 26 Y. Sun, L. Duan, Z. Guo, Y. D. Mu, M. Ma, L. Xu, Y. Zhang, N. Gu, J. Magn. Magn. Mater. 2005, 285, 65.
 - 27 M. Guohong, N. Chen, X. Pan, H. Shen, M. Gu, *Mater.Lett.* 2008, 62, 840
 - 28 R. Han, X. Hua-Han, Li. Qiao, T. Wang, F. Li, Advanced Materials Research. 2011, 160, 957.
 - 29 V. Sadchikov, Z. Prudnikova, Stal. 1997, 4, 66-9.
 - 30 D.D.L. Chung, *Carbon*, 2001, **39**, 279–285.
 - J. Dřínovský, Z. Kejík, MEASUREMENT SCIENCE REVIEW, 2009, 9, 4.
 - 32 C. Morari, I. Balan, J. Pintea, E. Chitanu and I. Iordache, Progress In Electromagnetics Research M, 2011, **21**, 93104.
- 33 M. Baykal, M. Senel, B. Unal, E. Karaog`lu, H. So`zeri, M. S. Toprakm, *J Inorg Organomet Polym*, 2013, 23, 726–735.
 - 34 Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, *Carbon*, 2007, 45, 821.