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We argue that a kind of magnetic nanoparticles might exist characterized by the locking of the
constituent spins with the density profile of the macrospin. We represent such nanoparticles by two
interacting rigid rotors one of which has a large spin attached to the body, namely by a Two Rotor
Model with spin. By this model we can describe in a unified way the cases of nanoparticles free
and stuck in an elastic or rigid matrix. We evaluate the magnetic susceptibility for the latter case
and under some realistic assumptions we get results in closed form. A crossover between thermal
and purely quantum hopping occurs at a temperature much larger than that at which tunneling
becomes important. Agreement with some experimental data is remarkable.

PACS numbers: 75.75+a, 75.75.Jn, 61.46.Df

1. Introduction. We consider single domain nanopar-
ticles that can schematically be represented as a uniform
magnetic lattice, the macrospin, rotating in a nonmag-
netic lattice. While it seems natural to associate a rigid
rotor with the nonmagnetic lattice [1], the macrospin is
generally represented as a pure spin. We think how-
ever that in some cases, possibly several cases, also the
macrospin should carry a moment of inertia because the
constituting spins will always to some extent drag the
orbits. One extreme example is given by structures in
which the constituting spins belong to electrons that have
such a strong spin-orbit coupling that they are rigidly
locked to their orbits. Another example occurs when the
macrospin has an electrically charged profile, so that its
magnetic moment gets a contribution from the orbital
motion. Actually the role of the moment of inertia in the
dynamics of a finite system of particles was already con-
sidered long ago for ions in crystals [2], and recently for
the Scissors Modes of electrons in metal clusters [3] and
quantum dots [4] and of ions in crystals [5,6]. Concerning
nanoparticles, an inertial parameter was often explicitly
introduced in the treatment of tunneling, but only re-
cently, as far as we know, it appeared in the theory of
the classical regime [7].

We restrict our attention to nanoparticles that can be
represented as two rigid rotors one of which carries a
large spin. For such nanoparticles we adopt a model ob-
tained by a modification of the Two Rotor Model de-
signed long ago [8] to describe deformed atomic nuclei,
in which case the two rotors are the proton and neutron
bodies as shown in Fig.1. The Two Rotor Model predicts
collective excitations called Scissors Modes characterized
by a strong magnetic dipole moment (generated by the
rotation of the proton electric charge around the bisec-
tor of the proton and neutron axes), whose coupling with
the electromagnetic field provides their signature. Scis-
sors Modes have been observed for the first time [9] in
a rare earth nucleus, 156Gd, and then in all deformed
atomic nuclei. By analogy similar collective excitations
were predicted [10] and observed [11] in Bose-Einstein
condensates and predicted (but not yet experimentally

searched or found) in several other systems, including
metal clusters [12], quantum dots [4], Fermi [13] conden-
sates and crystals [5,6]. In all these cases one of the
scissors blades must be identified with a structure at rest
and the other one with a moving cloud of particles.

FIG. 1: Two Rotor Model: On the left the proton (p) and
neutron (n) rotors precess around the bisector ζ of their axes
ζ1, ζ2. On the right the charge profile of an ion in an octahe-
dral cell is rigidly locked to its spin, indicated by an arrow. In
both cases the lowest excited states are called Scissors Modes.
The right figure represents also a nanoparticle if we identify
the octahedron with the nonmagnetic lattice of easy axis ζ1
and the ion with the macrospin pointing in the direction ζ2.

Before proceeding, we want to stress an analogy be-
tween a nanoparticle stuck in a rigid matrix and a mag-
netic ion in a crystal cell. Such an analogy is closer when
the electrons of the ions that carry the magnetism have
such a strong spin-orbit coupling that their charge den-
sity profile is rigidly locked with the spin, as shown in
Fig.1. In a recent work [6] we adapted the Two Rotor
Model to such a system representing the magnetic ion
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with spin-orbit locking as a rigid rotor with spin. In the
present paper we will exploit this analogy.

In order to put our model into perspective let us ex-
amine the characteristic features of the magnetic suscep-
tibility of single domain nanoparticles. We consider a
system in which such objects are well separated so that
they can be regarded as noninteracting with one another.
Moreover we assume the nonmagnetic lattice to be axi-
ally symmetric and to have the easy axis of magnetiza-
tion along the symmetry axis. We can refer to Fig.1 if
we imagine the octahedron replaced by a lattice with so
many sites to acquire approximately an axial symmetry.
Then we assume that the magnetic lattice is made of a
huge number of spins rigidly locked together in such a
way that its body has also axial symmetry and can be
represented by a rigid rotor with spin as in Fig.1. The
nonmagnetic lattice provides a double well potential for
the macrospin that at room temperature will undergo
thermal fluctuations so that in the absence of an external
magnetic field the neat magnetization of the nanoparti-
cle will vanish. Such behavior is essentially classical, and
can be described as the precession of a magnetic moment
under the effect of different forces by classical thermody-
namics or the Landau-Lifshitz-Gilbert equation [14]. One
should expect, however, that at sufficiently low temper-
ature the macrospin will be blocked along one of the two
orientations of the easy axis giving a neat magnetic mo-
ment to the nanoparticle. Instead it was first observed
by Weil [15] that down to 1K, at least one quarter of the
macrospins remained unblocked in Nickel nanoparticles.
It was then suggested by Bean and Livingstone [16] that
even at such low temperature the macrospin might still
fluctuate not because of thermic motion but because of
quantum tunneling, and a crossover (appearing as an in-
flection in the susceptibility) should occur between classi-
cal and quantum behaviour at some critical temperature
Tc. This interpretation was adopted to explain anoma-
lous relaxation phenomena discovered at low temperature
in other magnetic systems [17] and further investigated
in Refs. [18–21]. Much of the work on this subject is
reviewed in Ref. [22].

As a further example for nanoparticles we quote the
results of Ref.[23], in which a change of curvature can
be seen at a temperature of the order of 1K. There are
examples for several other systems. Below certain tem-
peratures the a.c. susceptibility of one dimensional coor-
dination polymers [24] exhibits signals of a second peak.
This feature, interpreted as a crossover between relax-
ation processes, is common to many other similar sys-
tems with a Single-Molecule Magnet behavior. They are
TM or RE clusters that individually exhibit the prop-
erties of a magnet below a critical temperature called
the blocking temperature (the maximum temperature at
which the magnetization does not flip during the time
of measurement). Because of their size, much smaller or
comparable to the smallest magnetic particles, they ex-
hibit quantum tunneling of magnetization and quantum
phase interference [25].

So the appearance of quantum effects at low tempera-
ture is a rather general phenomenon in several magnetic
systems. Some of the systems investigated do not consist
of magnetic particles with a unique barrier, but rather
of particles having a distribution of energy barriers [22],
others have a single domain structure, but even for this
latter simpler case we are not aware of any simple model
that can reproduce at the same time the classical and the
quantum behavior characterizing the crossover.

Our model predicts a crossover between a classical
and a quantum regime, in which thermal hopping of the
macrospin is replaced by quantum hopping. Quantum
tunneling, instead, appears at a much smaller tempera-
ture.

The application of the Two Rotor Model with spin is
different in the cases in which the non magnetic lattice is
stuck in a rigid matrix, or it is stuck in an elastic matrix
or it is altogether free. In the latter cases one must take
into account effects due to angular momentum conserva-
tion, because rotation of the macrospin entails rotation
of the nonmagnetic lattice [20]. But all these situations
can be described in a unified framework. Having in mind
future applications, we will present this model in its full
generality, even though detailed calculations have been
performed only for nanoparticles stuck in a rigid matrix.

2. The Two Rotor Model with spin. The general form
of the Two Rotor Model Hamiltonian [8] is

H =
1

2I1

~L2
1 +

1
2I2

~L2
2 + V (1)

where ~L1, ~L2, I1, I2 are the angular momenta and mo-
ments of inertia of the nonmagnetic lattice and macrospin
respectively, and V the sum of the potential interaction
between them plus an external potential. We denote by
ζ̂1, ζ̂2 the symmetry axes of the nonmagnetic lattice and
the macrospin, and assume the easy axis of magnetiza-
tion along ζ̂1 and the spin along ζ̂2. We write the wave
functions of the macrospin as functions of the polar an-
gles, ψ = ψ(θ2, φ2), with the understanding that the spin
has the direction of ~ζ2. We can invert the direction of
the spin by performing an inversion of ~ζ2. We can con-
struct even and odd wave functions with respect to spin
inversion Is: Isψσ(θ, ϕ) = σψσ(θ, ϕ) , σ = ±1 . The in-
teraction between the two rotors will depend only on the
angle 2θ between ζ̂1, ζ̂2, cos(2θ) = ζ̂1 · ζ̂2 . The indepen-
dent variables are ζ̂1, ζ̂2. They can be replaced by vari-
ables that describe the system of the rotors as a whole
plus the variable θ. To this end we define a frame of axes

ξ̂ =
ζ̂2 × ζ̂1
2 sin θ

, η̂ =
ζ̂2 − ζ̂1
2 sin θ

, ζ̂ =
ζ̂2 + ζ̂1
2 cos θ

(2)

and denote by α, β, γ its Euler angles. The correspon-
dence {ζ̂1, ζ̂2} = {α, β, γ, θ} is one-to-one and regular for
0 < θ < π

2 . The variables {ζ̂1, ζ̂2} = {α, β, γ, θ} are not
sufficient to describe the configurations of the classical
system, but they describe uniquely the quantized system
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3

owing to the constraints ~L1 · ζ̂1 = 0, ~L2 · ζ̂2 = 0 necessary
for rigid bodies with axial symmetry. These constraints
are automatically satisfied if we take the wave functions
to depend on ζ̂1, ζ̂2 only. Because of these constraints
the component of the total angular momentum of the
macrospin along ~ζ2 is constant and equal to the spin.

We can now transform the Hamiltonian in the new
variables. We define the operators

~L = ~L1 + ~L2, ~L = ~L1 − ~L2 . (3)

~L is the total orbital angular momentum acting on the
Euler angles α, β, γ, while ~L is not an angular momen-
tum, and has the representation [8]

Lξ = i
∂

∂θ
, Lη = − cot θLζ , Lζ = − tan θLη . (4)

The transformed Hamiltonian is the sum of the rotational
kinetic energy of the two rotors system as a whole plus
an intrinsic energy

H =
~L2

2I
+HI (5)

where I = I1I2/(I1 + I2) . The intrinsic energy reads

HI =
1

2I

[
cot2 θL2

ζ + tan θ2L2
η −

∂2

∂θ2
− 2 cot(2θ)

∂

∂θ

]
+
I1 − I2

4I1I2

[
− tan θLζLη − cot θLηLζ + iLζ

∂

∂θ

]
+ V .(6)

This Hamiltonian was studied in detail [8] for I1 ∼ I2

and small θ, as appropriate to atomic nuclei.
In such a general formulation of the Two Rotor Model

the motion of the two rotors is decomposed into their
relative motion in the intrinsic frame and the motion of
the system as a whole. Because it is customary and con-
venient to denote by θ the angle between a moving axis
and the third axis of the frame of reference, that in this
case is the bisector of the angle between ζ̂1, ζ̂2, the latter
angle was denoted by 2θ, see Fig.1.

In the present paper we study the magnetic suscepti-
bility of a nanoparticle stuck in a rigid matrix. In such
a case the macrospin moves in the frame of the nonmag-
netic lattice, whose third axis is ζ̂1, and then we denote
the angle between ζ̂1 and ζ̂2 by θ, see Fig.1(b). Therefore

H =
h̄2

2I

(
− ∂2

∂θ2
− cot θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2

)
+ V (7)

where I the moment of inertia of the macrospin with
respect to the ξ- and η-axes. In the presence of an ac
magnetic field ~Hac of angular frequency ω we assume the
potential

V =
1
2
C sin2 θ − ~µ · ~Hac cos(ωt) , (8)

where C is a restoring force constant due to the electric
and magnetic interactions of the macrospin with the non-
magnetic lattice and ~µ is the intrinsic magnetic moment
of the macrospin. Here this magnetic moment is a phe-
nomenological parameter, that in microscopic models is
assumed to come mostly from the spins of a huge number
∼ 103 − 105 of electrons locked together, with a possible
orbital contribution. But since in our model this mag-
netic moment is oriented along the macrospin symmetry
axis, it comes from the constituting spins only, the orbital
contribution vanishing because of the quantum condition
~L2 · ~ζ2 = 0. The components of the magnetic moment of
the macrospin along the axes ξ2, η2 are instead nonvan-
ishing in general, and contribute to the magnetic suscep-
tibility, but we assume for simplicity that the macrospin
does not have an electrically charged profile, so that there
is no orbital contribution at all to the magnetic moment.

In the present preliminary investigation we consider
one noninteracting nanoparticle in an ac magnetic field.

3. Reactive susceptibility and spectrum of the Two Ro-
tors Model. We report only the study of the reactive sus-
ceptibility whose general expression for one nanoparticle
is

χ′ =
1
Z

∑
αα′

< α| cos θ|α′ >< α′|~µ · ~Hac|α > Φα,α′ (9)

where

Φα,α′ = (να − να′)
Eα′ − Eα − h̄ω

(Eα′ − Eα − h̄ω)2 + Γ2
. (10)

In the last equation Eα are the eigenvalues of the two ro-
tor Hamiltonian in the absence of the ac magnetic field,
να = exp (−Eα/kBT ) , Z =

∑
α να, kB being the Boltz-

man constant. Γ is the amplitude of spontaneous transi-
tions between the levels α, α′ assumed to be level inde-
pendent. We neglected the elastic term that contributes
only for ω = 0.

The representation of nanoparticles by rigid rotors,
however, cannot be valid at all temperatures. There
will be a maximum temperature TM , beyond which the
nanoparticle will change shape or will be altogether de-
magnetized. This will provide an effective cut off to the
spectrum, that we divide into three regions.

Region I, Eα � C, harmonic oscillator modes. We
assume that

θ2
0 = h̄/

√
IC � 1. (11)

The wave functions of the lowest lying states are then
localized at small values of θ so that for such states the
potential can be approximated by a double well. For
0 < θ < π/2 the Hamiltonian (7) becomes

H = H0 − ~µ · ~Hac cos(ωt) (12)

where

H0 =
h̄2

2I

(
− ∂2

∂ θ2
− 1
θ

∂

∂ θ
− 1
θ2

∂2

∂φ2

)
+

1
2
C θ2 . (13)
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The latter is the Hamiltonian of a two dimensional har-
monic oscillator if we identify θ with the polar radius.
We denote by ψnm(θ, φ) the eigenfunctions of the har-
monic oscillator normalized in 0 < θ < ∞, for which we
adopt the notation of Ref. [5]. We obtain the Hamil-
tonian and the eigenfunctions for π/2 < θ < π by the
change θ → π − θ. The (non-normalized) eigenfunctions
of definite symmetry with respect to spin inversion in the
entire range 0 < θ < π are

ψnmσ(θ, φ) =
1√
2

[ψnm(θ, φ) + σ ψnm(π − θ, π + φ)]

+ δψnmσ(θ, φ) , σ = ±1 (14)

where δψnmσ(θ, φ) is the distortion due to tunneling.
They have eigenvalues

Enmσ = h̄Ω ( 2n+ |m|+ 1 )− 1
2
σδEnm (15)

where Ω =
√
C/I = Cθ2

0/h̄ and δEnm is the energy
splitting due to tunneling. We quote the values of θ0 in
other systems: θ2

0 ≤ 0.5 in LaMnO3 [5,6] while in the
atomic nuclei of the rare earths [8] θ2

0 ≈ 10−2.
The energy splitting of the ground state is very small,

δE ∼ h̄Ω exp
(
−2/θ2

0

)
. Nevertheless for sufficiently low

temperatures tunneling transitions will become impor-
tant. This will happen when the tunneling temperature

Tt ≈
h̄Ω
kB

exp
(
−2/θ2

0

)
(16)

is reached.
Region II, Eα >> C, free rotor modes. At energies

much higher than the potential barrier, but below the
maximum energy kBTM , the nanoparticle will have the
spectrum of a free rotor

El =
h̄2

2I
l(l + 1) ≤ kBTM . (17)

Here the wave functions are the spherical functions whose
spin-parity is Isψlm(θ, φ) = (−)lψlm(θ, φ) .

Region III, Eα ∼ C. In this region for Eα < C the
states are characterized by tunneling, whose amplitude
is no longer negligible, while the energy splitting can be-
come comparable to the energy h̄ω. As a consequence the
strongest dependence on the ac frequency should come
from this part of the spectrum. Notice that we expect
in our model two types of tunneling effects: those arising
from region III of the spectrum at a temperature close to
the blocking temperature, and those appearing at a tem-
perature much smaller than the crossover temperature.
Both types of effects give rise to a considerable complex-
ity in the calculations. We avoid the tunneling effects
at low temperature restricting ourselves to T > Tt, and
those at higher temperature eliminating region III of the
spectrum by extending the region I up to, and region II
from, a separation energy kBT∗ such that

E =
{

Enm , Enm < kBT∗
El , kBT∗ < El < kBTM .

(18)

In this way we renounce to derive the dependence of the
susceptibility on the ac frequency, and we are forced to
assume that h̄ω << |Eα − E′α| in the entire spectrum.
We note that under such condition the function Φα,α′

appearing in the expression of the susceptibility becomes
symmetric.

We assume the separation temperature T∗ as a phe-
nomenological parameter.

Summarizing we have introduced the tunneling tem-
perature Tt, the maximum temperature TM and the sep-
aration temperature T∗. The crossover temperature in
our model will be defined approximately in Eq.(30).

4. Evaluation of the reactive susceptibilitiy. We eval-
uate the longitudinal susceptibility, namely the response
of the component of the magnetic moment along the ac
magnetic field. Its average over the directions of the easy
axis of the nanoparticle, namely over the directions of ζ̂1
gives

χ′ =
4
3
χ′T +

2
3
χ′L (19)

where χ′T , χ
′
L are the contributions arising when ζ̂1 is

respectively tranverse, parallel to the ac magnetic field

χ′T =
1
Z

∑
αα′

< α| sin θ cosφ |α′ >2 Φα,α′

χ′L =
1
Z

∑
αα′

< α| cos θ |α′ >2 Φα,α′ . (20)

The contribution of the free rotor modes turns out to be
very small for reasonable values of the parameters, and
therefore we neglect it in this preliminary report assum-
ing T∗ = TM . Therefore the quantum number α repre-
sents only the oscillator quantum numbers (n,m) whose
sums extend to Enm ≤ kBT∗ = kBTM . It is convenient
to introduce the parameters

ρC =
C

kBT∗
, ρΩ =

h̄Ω
kBT∗

= ρCθ
2
0 , (21)

the reduced temperature

x =
T

T∗
(22)

and the constant

χ0 = µ
µHac

kBT∗

1
2ρ2
C

. (23)

After evaluation of the matrix elements to lowest order
in θ0 we get for the longitudinal part

χ′L(x) =
1
Z

1
2
ρΩχ0

[
1− exp

(
−2ρΩ

x

)] 1/(2ρΩ)∑
n=0

(n+ 1)

×
1/ρΩ−2n∑

m=−(1/ρΩ−2n)

(n+ |m|+ 1) exp
(
−ρΩ

x
(2n+ |m|)

)
(24)
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with a similar but longer expression for χ′T that will be re-
ported somewherelse. Performing the sums we get rather
lengthy formulae, that will also be reported separately,
but for numerical computations it is probably more con-
venient to use the above equation. The expression of the
susceptibility, however, considerably simplifies for

ρΩ/x� 1 . (25)

Under such condition we can approximate the sums by
integrals, getting

χ′T (x) = χ0
8
3
ρCfT (x) , χ′L(x) = χ0fL (x) (26)

where

fT (x) = g(x)−1

[
1−

(
1 +

1
x

+
1

2x2

)
exp

(
− 1
x

)]
(27)

fL(x) = g(x)−1x

[
1−

(
1 +

1
x

+
1

2x2
+

1
6x3

)
× exp

(
− 1
x

)]
(28)

with

g(x) = 1−
(

1 +
1
x

)
exp

(
− 1
x

)
. (29)

The exact expression of the susceptibility depends on 3
parameters: T∗, ρC , ρΩ. In the continuous approximation
ρΩ disappears and we get a classical scaling because the
susceptibility depends only on the classical parameters
T∗ and ρC . The functions χL(x)′/χ0, χ(x)′/χ0, χ(x)′T /χ0

are plotted in Fig.2 for ρC = 0.015, chosen to have a
typical shape of the nanoparticle susceptibility. Because
ρΩ must be of the order of ρC or smaller, such a value
justifies the approximation of sums by integrals. This is
confirmed by the comparison, in Fig. 3, of the exact and
continuous approximation of χL(x)/χ0.

According to the condition (25), however, such approx-
imation will only be valid for reduced temperatures

x� xc =
Tc
T∗
≈ ρΩ . (30)

Because above xc the energy can be approximated by a
continuous variable, while below the quantum spectrum
must be used, xc is the reduced temperature of crossover
from classical to quantum behavior. The above equation,
however, provides only an estimate of xc because its exact
value should be found by determining the inflection of χ′.

Below the crossover down to the tunneling reduced
temperature we must use the exact expression of the sus-
ceptibility (24). We can check analytically that the func-
tions χ′L and χ′T are approximately constant for small
x. Now xt ≈ xc exp(−2/θ2

0), and since θ2
0 must be not

greater than 1 for the macrospin to be polarized, xt � xc

and we can approximate the susceptibilities at x = 0 with
their values at xt

χ′L(xt) ≈ χ′L(0) =
1
2
ρΩχ0 , χ

′
T (xt) ≈ χ′T (0) =

8
3
ρCχ0

(31)
where χ′L(0), χ′T (0) are the exact values neglecting tun-
neling. By comparison with Eqs.(26)-(29) we see that
the continuous approximation is valid for χ′T up to small
temperatures, but instead the exact expression of χ′L,
at variance with (26), does depend on ρΩ, a quantum
parameter, and does not go to zero. In Fig. 3 we see
that for ρΩ = 0.007 the exact expression of χ′L/χ0 and
its continuous approximation to deviate from each other
for x ≤ 0.01, namely Tc ≈ 0.01T∗. Such a value of the
reduced temperature decreases with decreasing ρΩ.

One observation is in order here. The continuous ap-
proximation should become more accurate with increas-
ing x, which apparently is not the case in the plot of Fig.3
in which the difference with respect to exact expression
remains approximately constant. In order to understand
this fact let us consider as an example the partition func-
tion Z(x). Its limit for x→∞ at fixed ρΩ, which is what
we can see in the plot, is

Zexact(∞) =
1

2ρ2
Ω

+
1

2ρΩ
+ 1 , (32)

while the limit of the continuous approximation is

Zcontinuous(∞) =
1

2ρ2
Ω

, (33)

because in such an approximation only the leading term
in ρ−1

Ω survives. Therefore increasing x, Zexact(x) →
Zcontinuous(x) only for ρΩ → 0. The reason is that the
functions appearing in the expression of the susceptibility
are not functions of ρΩ/x, because the range of the sums
depends only on ρΩ.

We checked that for ρΩ → 0 the continuous approxi-
mation exactly reproduces all the exact functions. We re-
mark that the coincidence of the plots for 0.01 < x < 0.2
is only accidental.

5. How to compare with experiment. The susceptibil-
ity depends on the volume of the nanoparticles. In our
model such dependence is contained in the moment of in-
ertia I, the restoring force constant C and the separation
temperature T∗. The theoretical determination of these
parameters is beyond the scope of the present paper.

Concerning the dependence of the susceptibility on the
nanoparticle volume it is important to remember that
in the scaling region, namely for T > Tc, χ′ depends
only on ρC and T∗. Now it is reasonable to assume that
C is proportional to the volume. Moreover, since T∗ is
approximately the temperature at which the macrospin
becomes a free rotor, it should be proportional to the
potential barrier C, and therefore also proportional to
the nanoparticle volume v, so that ρC should not depend
on it. Under this assumption, in the scaling region the
susceptibility depends on the volume only through T∗,
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FIG. 2: The continuous approximations of the functions
χ′L(x)/χ0 (red, upper line), χ′(x)/χ0 (green, middle line) and
χ′T (x)/χ0 (blue, lower line) versus the reduced temperature x
for ρC = 0.015.
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χ
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FIG. 3: The continuous approximation of the function
χ′L(x)/χ0 (blue, lower line) compared with the exact expres-
sion (red, upper line) for ρΩ = 0.007. The inset shows that
they depart from each other for x ≤ 0.01.

that appears in the denominator of the constant χ0 and
implicitly in the reduced temperature x. We therefore
define the function

η(v) =
T∗(v)
T∗(v)

(34)

where v is the average volume of nanoparticles in a sam-
ple. The function

Φ = ηfL(η x) (35)

is proportional to the susceptibility (neglecting for sim-
plicity the small transverse contribution) of nanoparticles
of volume v. In practice therefore one should parametrize
T∗ in terms of the volume, average the susceptibility over
the volume distribution of a given sample and fit the pa-
rameters. In Fig.4 we show the function Φ for different
values of η.

In the following we assume that the dispersion in vol-
ume is so small that the weighted average has a negligible

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.2  0.4  0.6  0.8  1  1.2  1.4

Φ
(x

)

x (=T/T*)

η=0.85

η=1.00

η=1.15

FIG. 4: The function Φ(x) for ρC = 0.007 and η =
0.85, 1.00, 1.15 (upper, blue; middle, green; lower, red, lines
resp.)

effect. In such a case
1) the temperature T∗ = T/x can be evaluated for

x = xB , the reduced temperature at which χ′ has a max-
imum, determined theoretically, and the corresponding
experimental value TB

2) ρC can be determined by fitting the experimental
susceptibility above the crossover temperature

3) ρΩ can be determined by fitting the experimental
susceptibility on a range of temperatures extending below
the crossover. From ρC and ρΩ we can derive the value
of θ2

0 = ρΩ/ρC and then of the moment of inertia
4) the crossover temperature Tc = ρΩT∗ is then deter-

mined and can be compared with the value xc at which
χ′ has an inflection

5) the tunneling temperature Tt =
ρΩT∗ exp(−2ρC/ρΩ).

We quote a number of examples [23],[26],[27], without
attempt to completeness, in which the susceptibility has
a form that appears to us compatible with our model. In
these experiments the blocking temperature is at most
of the order of one hundred degrees, so that T∗ is a few
hundreds degrees or smaller. For typical values of ρΩ ∼
0.005 according to Eq.(30) Tc is of the order of 1 K or
smaller, as we can infer also from the comparison of Fig.
3. We notice that our typical values of ρΩ ≈ ρC imply
θ2

0 ≈ 1. By comparison we quote the value of θ2
0 = 0.5

we estimated [5,6] for LaMnO3.
Finally we wanted to make a comparison with some

experimental results. We looked for the case of a sam-
ple in which the nanoparticles could be considered to a
reasonable approximation noninteracting. We choosed
the data of Ref.[27], that refer to γ-Fe2O3 nanoparti-
cles of spherical shapes with a mean diameter of 7 nm
and a volume concentration of 0.3%. Their clusterization
was prevented by coating them with a surfactant layer.
Moreover, since the nanoparticles were suspended in a
hydrocarbon oil, at low temperatures the oil froze and
the nanoparticles were randomly distributed in the sam-
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ples. In Fig. 5 we compare our theoretical susceptibility
with the experimental one. Because the data do not ex-
tend such low temperatures that a crossover is visible, we
adopt for simplicity the continuous approximation with
ρC = 0.007. We deem the agreement is remarkable, even
if we must remember that the theoretical susceptibility is
not averaged over the nanoparticle size distribution. We
emphasize that the theoretical expression depends on 2
parameters only, ρC and T∗.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

χ
’(

x
)/

χ
’(

x
B

)

x (=T/T*)

FIG. 5: The experimental susceptibility (lower, blue line)
and the theoretical one in the continuous approximation (up-
per, red line) for ρC = 0.007 normalized to their maximal
values. The experimental data are from Ref.[27], assuming
T∗ ≈ 100K.

Our model cannot certainly have a universal validity.
There are of course results that cannot be reproduced by
it. We quote 2 examples. In the nanoparticles studied
in Ref. [28] there are 2 magnetic atoms, namely TM and
RE, in the ones of Ref. [29] there are different phases.
No wonder that our model, in which the macrospin is
assumed to have a uniform structure, cannot reproduce
these data.

6. Conclusions. We have constructed a model of mag-
netic nanoparticles in which the moment of inertia of the

macrospin appears naturally. The model is designed for
nanoparticles in which the constituent spins are locked to
the density profile of the macrospin, but because of the
apparently general agreement with typical experimental
data it might have a wider validity as an effective model.
It seems therefore important to us to perform a detailed
accurate screening of experimental data, taking into ac-
count the dispersion in size in any sample, to establish
whether there exists a specific kind of nanoparticles char-
acterized by spin-orbit locking. For such nanoparticles
the orbital contribution to the susceptibility, that we ne-
glected but can easily be included, might be significant.

In our model tunneling is obviously important at very
low temperatures, T < Tt, and possibly important at
temperatures of the order of the separation temperature
T∗, namely the temperature at which the modes of the
macrospin change from harmonic oscillator to free rotor.
We deem tunneling is essential for a proper description of
the dependence of the susceptibility on the ac frequency
of the applied magnetic field. We neglected for simplic-
ity this contribution, and this is the only approximation,
although an important one, in the evaluation of the sus-
ceptibility for T > Tt.

We find for several kind of nanoparticles a crossover
temperature Tc of the order of 1K, below which quantum
hopping is important and above which thermal hopping
dominates. Above Tc to a very good approximation the
dependence on the moment of inertia disappears and the
susceptibility exhibits a classical scaling.
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