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We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy.
Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine
and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in
order to test the proposed approach, i.e, GA coupled with QM calculations. Overall, RMSE comparison with recent published
results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy
function is used to determine the spatial structure of RNA (PDB code 1r4h) that was not taken into account in the parametrization
process. This structure was improved about 82% comparably with previously published results.

1 Introduction

It is well known that molecular dynamics (MD) techniques can provide accurate data for analyzing properties of a specified
system1. However, this analysis is strongly dependent on the level of precision of the force field describing the system. The
precision of the force field is inverse proportional to the size of the system as well as the amount of electrons taken into account2.
Usually one needs to also consider correlation effects, which increase the demand for computational time.

The most effective way of obtaining the energy of a system is based on QM calculations, and several methods with different
levels of precision are available3,4. Accordingly, almost all of them are highly computational time consuming, especially for
larger systems. This computational time demand can be reduced by using empirical potentials (force field). In this case, the
procedure is generally based on the optimization of mathematical functions with several terms that contribute to the total energy,
including physical contributions, such as attractive and repulsive terms (intermolecular forces), and others that determine the
internal energy contribution (intramolecular forces). The development of empirical models to describe the system is an efficient
alternative to provide a way to determine energies and structures by proposing force fields.

Potential energy calculations are common in the literature and, in general, one tries to improve the force field by a reparametriza-
tion process of all or part of the terms that contribute to the total energy. For example, CHARMM (all19, all22, all27) and Amber
(ff94, ff96, ff98, ff99) force fields are commonly reparametrized3,5–9. However, due to the approximation of pairwise additive
empirical potentials taken into account to build up force fields, such a task usually decreases the precision of the results. Among
others, Zgarbová et. al.10 stated that this imprecision is beyond the capabilities of simple force field approximations. Hence,
they have concluded that it is not surprising that different force fields often provide remarkably different descriptions of the same
structure, a phenomenon known as “force field dependent polymorphism”4,11–14.

Among other works3,5–9, Zgarbová et. al.10 recently reported a reparameterization of the glycosidic torsion (χ) as defined by
Cornell et. al.5 force field applied to RNA molecules. Although their work improved the description of the syn region and the syn-
anti balance as well as enhance MD simulations of various RNA structures, the results showed deviations from QM calculations.
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This is quite common on the use of empirical force fields. Therefore, it seems that studies to improve parametrization are
important in order to better compare semiclassical results against experimental or QM calculations. Particularly, Banás et. al.15

recently showed tests using a reparametrized force field, and deviations for A-DNA and B-DNA structures using MD were
observed.

Techniques usually applied to optimize force fields are based on gradient methods such as quasi-Newton approach16 and
Levenberg-Maquardt method16,17. For example, Yildirim et. al.18 used steep descent method and all of the techniques afore-
mentioned showed to be accurate in comparison with quantum results. More recently other heuristic approaches have been
proposed and tested to refine parameters of force fields. For example, Sakae and Okamoto19 applied Monte Carlo and simulated
annealing to calculate the parameters of force field applied to proteins.

Alternative approaches for optimization processes have been recently proposed for parametrizing force fields for nucleic
acids20–22. Similarly, we have recently applied GA coupled with QM calculations to determine structures and energies of the
small systems, with particular attention to clusters of the alloys and compounds23,24. The GA method is commonly used for the
calculation of the geometrical structures and energies of the molecules25,26. The GA applied in this paper is similar of Wang and
Kollman20 applied in hydrocarnos, but in our work it is applied to RNA canonical nucleosides and on their studies it was applied
to hydrocarbons. For this reason the comparison with their results is not appropriated. We refined only the parameters of the
dihedral term and afterwards an improvement was done by adding to the refinement process the electrostatic term which has not
been previously reported in the literature as carried out in the present study.

Ab initio methods are widely applied to determine electronic structures of molecules. For example, the HF/6-31G(d) level
of QM theory has been applied to determine the electrostatic potentials for studying hydrocarbon molecules, whereas B3LYP
functional is used to investigate the conformational landscapes of the canonical and modified nucleosides27–33 and also the pairs
of the DNA/RNA bases34–37. In the present study we have used PBE functional38,39 combined with 6-311++G (3df, 3pd) basis
set for the comparison of our results with the theoretical data obtained at the same level of QM theory in the work10.

Aiming to improve the precision of force field glycosidic torsion profile, this work proposes a heuristic solution based on
genetic algorithms40–42 to better estimate the reparametrization of force field to dihedral term. A comparison of our refined
results with previous publication as well as with PDB (Protein Data Bank)43 is finally analyzed.

2 Methods

Molecular Mechanics Calculations

The force field used in our calculations is represented by the sum of several energy contributions, namely, the bond stretching
(Ebond), angle bending (Eangle), dihedral (Edih), nonbonded electrostatic (Eelst ) and van der Waals (EvdW ) terms and it is given
by10,44

ET = Ebond +Eangle +Edih +Eelst +EvdW (1)

According to Lankas et. al.45 the glycosidic torsion (χ) is one of the most relevant bond in nucleic acids. Therefore, the proposed
approach based on genetic algorithms focused on the optimization of the dihedral term given by

Edih = ∑
all torsions

nmax

∑
n

Vn

2
[1+ cos(nϕ− γ)], (2)

where n is the periodicity of the torsion, nmax is the maximum periodicity of each torsion5, Vn is the rotational barrier, ϕ is the
dihedral angle, and γ is the phase angle. As in reference [10], the actual analysis has also taken into account the contribution
of the electrostatic term (Eelst ). This term plays an important role for describing force fields46 as also recently pointed out
by Yao et. al.44. Due to this importance we have also considered these charges but taken them from QM calculations at the
optimized torsion energy conditions. Accordingly, in the parametrization process of the torsion energy two types of refinement
were carried out. In one case we have considered only the dihedral term and all others energies (Eq. 1) were kept constant during
the refinement process, namely GAN. In the second analysis, namely GAW, the electrostatic energy was considered to refine the
parameters of dihedral term. The charge electronic density of electrostatic energy was calculated by the software GAMESS47.
For these charges an average was taken due to several rotations of all rotated structures (8 angles) used in our calculations. The
average density charge is then calculated as
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q̄i =
1
N

360

∑
0

qi, (3)

where N defines the degree steps (in the present work are 8 angles) and qi is the individual charge of each atom i. Therefore,
taking the average charge (q̄i) one can provide an adequate estimative for the charge density. In this case the electrostatic energy
term is written according to

Eelst =
N−1

∑
i=1

N

∑
j>i

q̄iq̄ j

εri j
(4)

where q̄i and q̄ j are the charges between two atoms, ri j is the distance between them and ε is the dielectric constant.
In order to carry out the molecular mechanics we used the well established Tinker software48. This software is widely used

in the literature, and examples of studies based on its calculations are described elsewhere49–51.

Model System

The methodology used to optimize the dihedral term of the glycosidic torsion (χ) parameter of the force field, is showed in
Figure 1. We applied two approaches to optimize the parameters used in the electrostatic and dihedral (specifically the glycosidic
torsion) energies of the force field in order to describe RNA canonical nucleosides, as previously explained. The procedure in
both cases are carried out based on a set of QM calculations to obtain a reference data (energy and structure), which are used as
a template for the reparametrization of the force field using other methods, in the actual case, a GA approach.

Fig. 1 Scheme (8 steps) of the proposed methodology (GAW), where A is adenosine, U is uridine, C is cytidine, G is guanosine that are
defined by their coordinates.

The inputs of QM calculations are the isolated structures of each RNA nucleosides (Figure 2). In the next step these structures
are optimized using QM calculations, performed by the software GAMESS. The outputs are: an optimized structure of nucleo-
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Fig. 2 Nucleosides used as input for the calculations. (A) Adenosine, (B) Cytidine, (C) Guanosine and (D) Uridine. The glycosidic torsion
(χ) is defined by the OS-C1’-N1-C8 for adenosine, by the OS-C1’-N1-C6 for cytidine, by the OS-C1’-N1-C8 for guanosine and by the
OS-C1’-N1-C6 for uridine.

sides (for the GAN and GAW), a set of charges for the involved atoms (only for GAW) and the quantum energy (for the GAN and
GAW). These results are used to refine the parameters of force field (GAN: only dihedral parameters and GAW: electrostatic and
dihedral parameters). The next step uses a standard genetic algorithm to optmize the dihedral energy term. The parametrization
of this term can be defined according to

min
w
‖ EQM

i −EMM
i (w) ‖2, (5)

where EQM and EMM are quantum and molecular mechanics energies, respectively; and w is defined as

wGAN = {Vn,γ}
wGAW = {Vn,γ;qQ

i ;qQ
j }, (6)

where for wGAW the charges qQ
i and qQ

j are obtained from QM calculations at the lowest energy optimization for the torsion
structure and are used in Eq. 4.

Obtaining the Torsion Profiles

In order to obtain the torsion profiles some constraints are also used similar to reference [10]. The first is to hold the sugar
puckering close C3’-endo (C1’-C2’-C3’-C4’), i.e., for rA, rU, rG, and rC at -34.7, -38.9, -39.6, and -39.2 degrees, respectively.
Secondly, the C1’-C2’-O2’-H(O2’) and C3’-C2’-O2’-H(O2’) torsion angles were fixed at -60 and -120 degrees, respectively, to
prevent the intramolecular H-bonding between the O2’ hydroxyl group and the base and also between the O2’ and O3’ hydroxyl
groups52–55.

In order to provide preliminary tests for the proposed GA methodology we have considered small number of calculations
for the dihedral energy parameters due to a large computing demand. In the present case the dihedral angles of the molecule
were rotated in steps of 50 degrees in the glycosidic torsion (χ) for the range of 0 to 360 degrees. If our proposed procedure can
improve the results (structures and energies) then one can expect similar behaviour also for other angles. Previous calculations10

have performed larger number of points using smaller steps (10 degrees). However, the main aim in the present analysis is
concentrated with the efficiency of the proposed approach.
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The GA applied in GAN and GAW receives as reference data seven rotated optimized structures and one without rotation
for each nucleoside. The algorithm considers the same geometry for both, molecular mechanics and QM calculations. This
procedure is similar to previous analysis10 that applied the Monte Carlo method to carried out their refinement. The analysis is
performed using RMSE as given by

RMSE =

√√√√ n

∑
i=1

[(EQM
i−1 −EQM

i )− (EMM
i−1 −EMM

i )]2

n
, (7)

where i is the rotation, n is total number of rotations, EQM and EMM as previously defined.
The force field energy (EMM) is calculated using Amber force field (ff99χOL), which uses the parameters returned by the

GA. Different rotation energies (0 to 360 degrees with 50 degrees steps) are compared with quantum energies (EQM) for each
nucleoside (adenosine, guanosine, cytidine and uridine) calculated from GAMESS.

QM calculations

The relevancy of the comparison of the results obtained by gas-phase quantum-chemical calculations with the experimental data
in the condensed phase characteristic for the biomolecular systems can be explained by the insignificant influence of the stacking,
sugar-phosphate backbone and surrounding environment on the energetic characteristics of the base pairs that can be neglected
in the first approximation56–63. This speculation enables us to provide the QM modeling in vacuum approximation64–67.

The choice of quantum methods is based on works published in the literature. Few parametrizations based on Amber force
field (ff945, ff9868 and ff997) have considered the Hatree-Fock method. In the latter case the electrons interact without con-
sidering electron correlation. This fact generates great consequences in the interpretation of wave functions69. Hence, recent
studies focused on more effective methods. For example, the latest improvement over the CHARMM force field has optimized
molecular geometries based on MP2/6-31+G* and RI-MP2/cc-pVTZ calculations. In turn, the calculations are used to improve
the dihedral potential for the Amber force field10,70,71.

There are several functionals better than PBE/6-311++G (3df, 3pd) that is used in our work. For example, Walker et. al.
applied M06-2x functionals and compared the results against several other functionals at the DFT level72. However, in order
to be able to compare correctly our results with those data obtained by Zgarbová and co-workers10, we have performed our
calculations using the same level of QM theory (PBE).

In the present study the same level of theory (DFT) is used, i.e, the PBE functional and the 6-31++G (3df, 3pd) basis set as
recently also considered in recent publications2,10. The latter work showed good agreement compared against quantum data.

Dihedral Term - GA Optimization

GAs are methods based on Darwin’s principles of evolution and survival of the fittest. They are well-known for performing a
global search while analyzing multiple solutions of the search space at each iteration. These algorithms work with individuals,
where each individual represents a solution to the problem to be solved. In our case, an individual is a vector of 8 positions, as
illustrated in Figure 3, representing the terms Vn and γ , previously defined in Eq. 2.

Fig. 3 Representation of individual in the GA.

The standard GA search procedure is shown in Figure 4. First, an initial population of individuals is randomly generated,
following a normal distribution with average 0 and standard deviation defined as 1. Next, individuals are evaluated according to
how well they solve the problem at hand. As our individuals are dihedral parameters, they are evaluated according to how far the
molecular mechanics energy EMM (obtained by Tinker with the GA optimized parameters) approaches to the quantum energy
EQM (obtained by GAMESS). The RMSE (as previously defined in Eq. 7) is taken as the fitness function defined by the GA
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approach. The lower the RMSE, better the force field approximation is performed. Therefore, the GA optimizies the parameters
(one step GAN and the other GAW) in order to minimize the RMSE.

Fig. 4 Flowchart of a standard GA, where pc and pm are crossover and mutation probabilities, respectively.

Following the GA structure shown in Figure 4, after evaluation, individuals are selected to undergo crossover and mutation
operations according to the probabilities namely, pc (crossover probability) and pm (mutation probability). The tournament
selection method is used in the present GA41. In this procedure, k individuals are randomly selected from the population,
and compete with each other for a chance to undergo genetic operations. The individual with the best fitness (in our case,
lowest RMSE), is selected. Note that, in this case, individuals with higher fitness have greater probability of surviving, and this
probability varies according to the size of tournament (k) selected.

Individuals selected through consecutive tournaments can be modified using crossover or mutation before being inserted into
the new population. Crossover takes two individuals, and its main objective is to exchange material between them, creating
two children. Here we used uniform crossover, that generates a mask to determine the positions of the two individuals that are
exchanged, as shown in Figure 5.

Mutation, in turn, is performed over a single individual, and its objective is to cause a small random modification into the
individual, in order to leave a local stagnation in the search region (local optimum). The mutation used here changes the parameter
at a randomly selected position by +(-) 0.02.

All individuals generated by the above operators are inserted into a new population, together with the best of all individuals,
which is preserved from one generation to the next (procedure known as elitism). This process goes on until a stopping criteria
is met, which is usually a minimum error or maximum number of generations.

Note that the algorithm uses a set of parameters, including number of individuals, number of generations, crossover and
mutation probabilities and tournament size. An appropriate choice of these parameters is crucial for a good coverage of the search
space. Number of individuals and generations are parameters highly dependent on the size of the search space, determined by
the problem understudied. Here we tested population sizes of 50, 100, 150, 200 and 250, and generations of 200, 500, 800 and
1200. It was revealed that among all tested by us combinations, the best results, i.e. the minimum value of RMSE, were obtained
at 200 individuals and 800 generations with sufficient convergence.

Crossover and mutation probabilities have more standard values, with high crossover and low mutation rates. We tested
crossover probabilities of 0.9, 0.95 and 0.99, and mutation rates of 0.01, 0.1, 0.2, 0.25, 0.3 and 0.5. All possible combinations
were tested, and the best results obtained are 0.95 and 0.3 for crossover and mutation, respectively. For tournament size, values
of 6, 8, 10, 20 and 30 were tested, and 8 produced the best results. All parameter tested were run five times, and the best results
selected.
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Fig. 5 Representation of uniform crossover operation.

3 Results and Discussion

The Optimization

The dihedral energy parameter optimization is done by a GA, which uses as reference the nucleoside structure and its energy
provided by QM calculations. The GA optimizes the dihedral parameters (see Eq. 2) and the refined process is evaluated
according to Eq. 7 for each nucleoside (adenosine, guanosine, cytidine and uridine).

The dihedral parameters obtained via GAN and GAW for the glycosidic torsions (defined in Figure 2) are compared in Table 1
with those reported in reference [10].

As GA is a heuristics method, it was executed 5 times in order to demostrate that the algorithm did not find an appropriate
solution by chance. As the variance of the results is small, we report the parameters that produced the smallest RMSE (Eq. 7)
calculated using different nucleoside rotations. The computational time of each GA generation for both tests is, on average,
60 seconds. Each generation evaluated a set of 200 different parameters, and 800 generations are executed. Hence, only one
complete “GA experiment” runs for about 13 hours in a computer with 2GB of RAM memory and one i7 processor. In the actual
work a set of 140 “GA experiments” were carried out. This corresponds to 76 days of computing. The QM calculation runs for
about 5 days in CENAPAD (Regional Center of the National System for High Computing Performance) using one node with two
quadcore processors and 32GB of RAM. For this study a set of 32 calculations were performed, corresponding for about 60 days
using 12 nodes.

Figure 6 presents the evolution of the individuals along the generations in terms of RMSE that is calculated by the differences
of EQM and EMM for different nucleosides rotations. The RMSE is the measure of evaluation adopted in our GA analysis and it
is used to ranking individuals evaluated by the GA. This RMSE is also used to select the individuals for crossover. From now on,
we refer to this measure simply as RMSE. These results represent the best individual and the evolution of the RMSE improved
along the generations. Note that, for guanosine, the data stabilize faster, while for cytidine the improvements happen until the
end of the search process. The average RMSE is an indicative of search convergence, as at this point all individuals (the set of
optimized parameters) produce very similar values of fitness. In the present analysis convergence starts around 300 generations.

Comparison with Literature

The previous10 RMSE reported and the results calculated by the GAN and GAW approaches used in the present work are
compared in Figure 7. Our results using the GAN procedure (without the electrostatic term) show that the RMSE values produced
a small improvement compared to the results reported in reference [10]. On the other hand, the GAW procedure was able to greatly
improve the RMSE and hence, reduced the relative global energy in 37% for adenosine, 67% for guanosine, 21% for cytidine
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Table 1 Parameters found by the genetic algorithm for the dihedral term

Nucleoside Torsion χ na GAN GAW d Reference [10]
V n/2b γc V n/2b γc V n/2b γc

Adenosine OS-C1’-N1-C8* 1 0.9310 88.44 0.9660 69.00 0.6956 68.79
(OS-CT-N9-C2)** 2 1.0650 6.00 0.9465 15.89 1.0740 15.64

3 2.9778 301.18 0.0597 24.95 0.4575 171.68
4 1.7601 147.11 4.0000 308.85 0.3092 19.09

Guanosine OS-C1’-N1-C8* 1 0.9660 69.00 0.5327 50.60 0.7051 74.76
(OS-CT-N9-CK)** 2 1.0037 95.35 0.0002 0.80 1.0655 6.23

3 3.1155 301.80 0.0001 1.96 0.4427 168.65
4 3.6411 308.70 0.3919 3.91 0.2560 3.97

Cytidine OS-C1’-N1-C6* 1 1.6639 158.00 0.0092 0.87 1.2251 146.99
(OS-CT-N9-C1)** 2 3.1230 301.24 2.9787 277.70 1.6346 16.48

3 3.5517 308.40 3.5213 278.05 0.9375 185.88
4 0.1332 12.90 0.1253 10.03 0.3103 32.16

Uridine OS-C1’-N1-C6* 1 1.3911 132.10 1.9634 186.52 1.0251 149.88
(OS-CT-N9-CM)** 2 1.5847 150.50 1.4182 137.21 1.7488 16.76

3 1.9126 175.30 1.0670 69.31 0.5815 179.35
4 1.1374 85.60 1.4675 96.34 0.3515 16.00

a The periodicity of the torsion χ .
b Magnitude of the rotational barrier in kcal/mol.
c Phase off set in deg.
d New electrostatic charge parameters are in the supporting information.
∗ See Figure 2 for details.
∗∗ atoms type in ff99χOL.
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Fig. 6 RMSE (Eq. 7) for different nucleosides rotations of the individuals evolved by the GA, by comparing the best individual and the
average population for: (A) Adenosine; (B) Guanosine; (C) Cytidine and (D) Uridine.

and 72% for uridine when compared against data from reference [10]. These results show that the method of parametrization
performed by GAW may be more effective, especially for uridine.

Fig. 7 RMSE analyzes of nucliosides of RNA between the reference [10] and methodologies proposed (GAN and GAW).

Figure 8 shows that the total potential energy that represents the classical energy for all nucleosides using GAW is closer to
the quantum results if compared to the reference [10] or the GAN method. The actual study shows an improvement in the energy
calculation based on GAW optimization. A re-scale procedure previous applied73 for this type of analysis was also adopted in
order to compare published results and our calculations against quantum results taken as reference data.
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Fig. 8 Comparison of EQM with the EMM previously reported in reference [10] and the EMM obtained in the present study (GAN and GAW)
for (a) Adenosine, (b) Guanosine, (c) Cytidine and (d) Uridine.

As already pointed out, the best results were obtained for uridine. Observing the curves in Figure 8 (D), the shape of the
EMM data using GAW (Eq. 1) is closer to the EQM result. The parametrization shown in reference [10] has a high level of
precision. However, our new approach shows an improvement of such parametrization. The consequence of small deviations
usually observed in force field is pointed out by Banás et. al.15 as a justification for the underestimation of base pairing energies.
As shown in this figure, the proposed methodology reduced this problem, providing the RNA structure closer to the data assumed
as reference (QM calculations).

RNA Crystal Simulation using New Parameters

In order to better validate the proposed procedure, we selected the RNA molecule from PDB to demonstrate that the refined
parameters can be applied to optimize the representation of RNA structure. Spatial structure of this molecule was obtained using
NMR spectroscopy and it contains ten nucleotides. It was used in the structural analysis of the IIIc domain of GB human virus74.
Due to its relatively small size, this structure provides a reasonable computer simulation with no difficulties for testing analyzes.
In addition, if our proposed method of using GA to refine the dihedral and electrostatic parameters is effective (for instance, a
different molecule that was not considered in the refine process), then we believe that the application of this method to other
terms (Eq. 1) can even better improve the force field, at least for nucleic acids of RNA.

We compare the structure obtained using the parameters reported in reference [10] and the results calculated here against
the experimental data (PDB structure). Tinker48 was used to perform the molecular mechanics calculations for both sets of
parameters. In order to simulate similar conditions to those applied in the experiment 1r4h, a water box was used to solvate
the molecule (dimensions 41 x 41 x 41 Å with 333 molecules of water for one 1r4h). The simulation was performed using the
software DICE75, and the total charges was neutralized with Na2+ ions76.

A fundamental point to perform the analysis above described is to select and calculate an appropriate measure of similarity
between different structures77. Here we choose Root Mean Square Deviation (RMSD), a measure widely used in the literature
to represent the root mean square deviation of the atoms77 and it is calculated as

1–16 | 10

Page 10 of 16Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



RMSD =

√
i=1

∑
n

(xi− x′i)2 +(yi− y′i)2 +(zi− z′i)2

n
, (8)

where x, y and z are the experimental data coordinates, x′, y′ and z′ are the coordinates found by Tinker and n defines the number
of atoms in the molecule. As pointed out in reference [78], RSMD is a good indicator of the precision of the atomic coordinates.
The lower its value, the better is the precision.

The results of RMSD considering the structure generated with GAW and GAN parameters and reference [10] are compared
in Table 2. One observes that the RMSD (for GAW) is reduced in one order of magnitude with respect to previous publication10.
Although, Zgarbová et. al.10 have a good value of RMSD, we were able to improve this value in 13% with GAN and 78% with
GAW.

Table 2 Comparison of RMSD data for the RNA molecule (PDB code 1r4h)

RMSDa

Reference [10] 1.50
GAN 1.30
GAW 0.33

a Values set in Å.

As observed in Figure 9, when the electrostatic term is taken into account (GAW) in the parametrization process one obtains
a better theoretical structure for RNA molecule (PDB code 1r4h) that is much closer to the experimental PDB data. This is
mainly due to the hydrogen bonds and hydrophobic effects that are fundamental for the stability of the helix15. As expected, the
structures are greatly affected by base-pairing interaction.

The structures were aligned using the software Pymol79. In order to provide easier visualization, the water molecules making
solvation are removed. The results show an improvement of the structure using our new parametrization when compared against
experimental data.

Fig. 9 Comparison of the structures obtained by the two methodologies proposed in this work (GAN and GAW) against the experimental
data. (A) Optimization generated with parameters found in GAN (blue) and experimental data (green). (B) Optimization generated with
parameters found by the GAW (red) and experimental data (green).
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A Final Refinement in GAW

As can be observed in Figure 10, almost the whole structure is well predicted when compared against RNA structure (PDB
code 1r4h). However, for the sugar pucker of the guanine (marked with a square box) one observes deviations. Particularly, the
greatest errors (RMSD) compared against the PDB data arise due to the oxygen atom of this sugar pucker. The bond length of
carbon (C1’) and oxygen of this part of the structure was not well optimized. In the actual case it is 0.33 Å. One can therefore
address the following question: why only in this sugar pucker the superposition was not good enough?

Fig. 10 Comparison of the RNA structure obtained by the proposed methodology using GAW (red) and the experimental data (PDB code
1r4h) (green).

In order to answer the above question we have isolated this part of the structure (see Figure 11A). As can be seen the oxygen
bond is not well predicted and this is part of the reason of a higher RMSD error for the whole structure. When one verifies the
hydrogen bonds (Figure 11B) in the whole structure, one realizes that the isolated sugar (square box) does not have this type of
interaction. Therefore, by analyzing the same type of interaction for cytosine (both are at the extremity of RNA and does not have
the hydrogen bond) this error is not observed and its average dihedral energy is higher to that from reference [10]. Our average
value of Vn found using GA methodology is 1.6586 kcal/mol against 1.0269 kcal/mol obtained in reference [10]. Accordingly,
one needs to analyze the balance between RMSE and the torsion barrier (Vn). Actually, one can verify in Table 1 that for the
GAW procedure the average optimization dihedral parameter is 0.2312 kcal/mol while from reference [10] it is 0.6173 kcal/mol.
The greatest discrepancy arises from the two small optimized results in our calculations (V2 and V3). This may be the reason of
our worse results for the guanine shown in Figure 10. In order to improve the guanine structure in the methodology GAW, we
carried out the analysis based on the balance between RMSE and the average values of Vn. The advantage of our multiple GA
solutions was used in order to rank all possible solutions. Based on the latter quality of our GA results we used the third optimum
optimized data (see Table 3) from our ranking GAW output. As can be seen in Table 3, with this new data (all Vn were modified)
the new average dihedral parameter (0.5042 kcal/mol) is now closer to that obtained in reference [10] (0.6173 kcal/mol).

The new higher precise alignment is reflected in the RMSD values shown in Table 4. Note that the values are further improved
(0.27 Å against 0.33 Å in the first GAW parametrization). This final result shows a better agreement of about 82% (over 1Å)
using GAW-New in comparison with the results obtained in reference [10].

The new plot of the RNA molecule compared against the experimental data (green) is shown in Figure 12. It is compared to
the structure from reference [10] (Figure 12A) against the PDB structure and our improved structure against the PDB experimental
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Fig. 11 The problem with Guanine. (A) Alignment of the guanine marked with a square in RNA 1r4h (Figure 10) against the experimental
data and (B) Hydrogen bonds in 1r4h shown in dotted lines.

Table 3 New parameters selected from the GAW for guanine

Nucleoside Torsion χ na GAW-New GAW
V n/2b γc V n/2b γc

Guanosine OS-C1’-N1-C8* 1 1.1954 113.57 0.5327 50.60
(OS-CT-N9-CK)** 2 0.0996 5.76 0.0002 0.80

3 0.0004 13.11 0.0001 1.96
4 0.7215 4.27 0.3919 3.91

a The periodicity of the torsion χ .
b Magnitude of the rotational barrier in kcal/mol.
c Phase off set in deg.
∗ See Figure 2 for details.
∗∗ atoms type in ff99χOL.

Table 4 Root Mean Square Deviation analyzes for the RNA molecule (PDB code 1r4h) with the new parameters of guanosine.

RMSDa

Reference [10] 1.50
GAW 0.33

GAW - New 0.27
a Values set in Å.

data (Figure 12B). As observed, the GAW-New alignment is closer to the experimental data than the results obtained in reference
[10]. This new result is based on a much better optimization of the force field based on GA.

In addition, one observes that the problem with the guanine (shown in Figure 12) was solved. One can also observe that the
rings of the nucleotides bases are better represented than the structure skeleton considering the final refinement. This happens
because the algorithm focused its optimization in the glycosidic torsions (χ), improving the RMSD value with respect to the
experimental data with computer-generated structures and reducing the parameter value from 1.5 to 0.27 Å.
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Fig. 12 Comparison of the structures obtained by the two optimization and experimental data. (A) Optimization generated with parameters
found in reference [10] (orange) and experimental data (green). (B) Optimization generated with parameters found by the GAW-New (red) and
experimental data (green).

4 Conclusions

In summary, the present study has proposed the use QM calculations as references for a genetic algorithm to optimize the dihedral
term parameters of the glycosidic torsion (χ) for better accuracy in representation of RNA spatial structure. As previously stated
in reference [45] this is the most relevant conformational parameter in nucleic acids studies. In the present study the parameters
of the Amber force field (ff99) were better determined when compared against those published by Zgarbová et. al.10.

The optimization using GAW method (refinement of electrostatic and dihedral parameters) produced better results demon-
strating the importance of base pairing interaction. This effect is fundamental for the stability of the RNA double helix15.
Accordingly, a good parametrization of the electrostatic and dihedral term is important to get quantitative representation of the
molecules (closer to experimental data).

The objective of the methodology was to further reduce the error of the computational calculations involved in the parametriza-
tion of the force field with particular attention to nucleosides dihedral energies. The new parametrization reduced, on average,
the RMSE calculated with the differences of QM and MM energies in 50%. As demonstrated in the present work, the param-
eters found led to a better structural representation of the RNA molecule (PDB code 1r4h) when compared to parametrizations
previously reported10. It is important to emphasize that the present approach was able to go further and predict with a reasonable
level of accuracy an structure observed experimentally by NMR spectroscopy that was not taken into account in the refinement
process.

Finally, the proposed approach of using GA coupled with QM calculations demonstrated an improvement in the refinement
process to the electrostatic and dihedral parameters. The method can be also applied to refine parameters of other terms of the
force field. In addition, it is demonstrated that the actual methodology can provide an efficient manner to represent via computer
simulation a molecule structure closer to the experimental data. The representation can provide many advantages for others
studies, for example, we can predict several functions of RNA that are not well understood. For example, by using homology
(the same structure has the same functions) approaches.

Acknowledgement

We thank CENAPADs (UFRS and UFMG) for help us in the QM calculations and Dr. Lucas Bleicher for discussions in the final
refinement section. We also acknowledge the financial support the Brazilian National Council of Research (CNPq), Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) and Fundação de Amparo à Pesquisa do estado de Minas Gerais
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