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A structure-activity relationship study of the toxicity 

of ionic liquids using an adapted Ferreira-Kiralj 

hydrophobicity parameter 

Eduardo Borges de Melo
a
  

The Ferreira-Kiralj hydrophobicity parameter Wc is a number fraction of hydrophobic carbon 

atoms and can be regarded as a constitutional descriptor since its calculation depends only on 

the number of polar and nonpolar carbons in a compound. Hydrophobicity is important to the 

toxicity of ionic liquids (ILs), which are salts by nature. Herein, a descriptor for this property 

was calculated using a simple adaptation of the type of polar carbon atoms included (WcAdap) 

to explore the possibility of its use in quantitative structure-activity relationship (QSAR) 

studies of ILs. The resulting model was tested using a database of ILs with toxicity against the 

Leukemia rat cell line IPC-81. Two other models were constructed using CrippenLogP and 

MannholdLogP descriptors, which are both available in the free program PaDEL. The use of 

WcAdap led to a better and more indicative model. Thus, WcAdap may be a suitable molecular 

descriptor for the hydrophobicity of ILs in QSAR studies. 

 

Introduction 

Ionic liquids (ILs) are a class of chemicals that has recently 

emerged as alternatives to environmentally damaging volatile 

organic compounds (VOCs). These are comprised of a very 

large number of chemical compounds entirely made up of ions 

(i.e., salts) with melting points below that of water, and thus, 

are liquid at, or close to, room temperature. The 1:1 molar ratio 

mixture of an organic cation and an organic or inorganic anion 

is called a true ionic liquid. The organic cation is generally 

imidazolium, pyridinium, quaternary ammonium, or quaternary 

phosphonium; the anion can be halide, triflate, trifluoroborate, 

or hexafluorophosphate. However, ILs are not simple mixtures 

because they do not retain the “identities” of the cation and 

anion. In addition, if two ILs are mixed together, the ionic 

associations found in each one are lost; i.e., it is not possible to 

differentiate ions according their original ILs or to identify the 

unique interactions of individual ILs.1-4 

 These are considered as “green” alternatives to conventional 

solvents because of their outstanding properties, especially the 

negligible vapor pressure, and these do not contribute to air 

pollution.3-4 Thus, ILs are an attractive medium for various 

types of chemical processes such as organic synthesis, catalysis 

or biocatalysis, protein purification, CO2 capture, preparation of 

liquid crystals, drug synthesis and delivery, in batteries and 

solar panels,5 absorption refrigeration systems,6 membrane 

preparation,3 biodiesel production,7 and hydrogen sulfide and 

thiol scavenging.8 Furthermore, their physicochemical 

properties (such as viscosity and density) can be properly 

adjusted by varying the ionic structure.3 Thus, this class of 

compounds has attracted considerable interest in the chemical 

industry. 

 Although ILs can lessen the risk of air pollution owing to 

their insignificant vapor pressure, they do have significant 

solubility in water, which is the most probable route for the 

flow of ILs into aquatic ecosystems. In addition, their non-

volatility, as well as high chemical and thermal stability (which 

are also of industrial interest) suggest potential problems with 

degradation or persistence in the environment.5,9 Pham et al55 

reviewed several toxicological aspects and environmental fate 

of ILs. The environmental behavior of these compounds would 

be determined by their hydrophobicity: hydrophobic ILs can be 

attenuated by sediments and become persistent contaminants in 

the environment, while hydrophilic ILs are likely to enter 

aquatic ecosystems.10 

 Studies indicate that ILs may cause cellular and subcellular 

alterations in bacteria, human, and mammalian cell lines. 

Aquatic toxicity tests show that these compounds are capable of 

causing acute toxicity to animals and plants,11-14 depending on 

the chemical structure.15 Although ILs are being considered as 

green solvents, their toxicity can be many orders of magnitude 

greater than that of organic solvents.16 Because of this, methods 

to derive quantitative structure-activity relationship (QSAR) 

models have been successfully applied to the prediction of 

various endpoints of ILs, especially physicochemical 

properties.17 
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 However, considering the importance of hydrophobicity, it 

is important to note that many of the algorithms currently 

available are not parameterized for calculating LogP values of 

ionized molecules, salts, and chemical substances consisting of 

disconnected structures. Thus, models built on these conditions 

cannot be truly predictive, which can also be said for other 

types of non-parameterized molecular descriptors. Therefore, 

the objective of this study was to derive a useful molecular 

descriptor for characterizing the hydrophobicity of ionic 

liquids, independent of the experimental values of the partition 

coefficient and group or atom contributions. The results are 

presented as a QSAR study on the toxicity of ILs using simple 

descriptors18 obtained from the PaDEL 2.2 program,19 

combined with the proposed descriptor, which is an adapted 

version of the Ferreira-Kiralj hydrophobicity parameter Wc.20 

This descriptor can be used as an alternative non-LogP-type 

hydrophobic descriptor for the QSAR studies of ILs. 

 

 

Experimental 

Data set 

Recently, Zhao et al.17 carried out QSAR studies using a 

database of 100 highly diverse ILs with toxicity (EC50 in µmol) 

against the Leukemia rat cell line IPC-81. This database, 

available in the UFT/Merck Ionic Liquids Biological Effects 

Database (http://www.il-eco.uft.uni-bremen.de), was selected to 

test the hypothesis of this study. In this work, the Simplified 

Molecular Input Line Entry System (SMILES) strings of each 

IL were also taken from this database, using the corresponding 

Chemical Abstracts Service Registry Number of each 

compound. Thus, the range of toxicity varied from -0.24 (high) 

to 4.58 (low). The database was split into a training set (ILs 1-

80) and a test set (ILs 81-90), as done in the original 

reference.17 A few representatives from this database are 

presented in Fig. 1. The SMILES strings of all compounds and 

dependent variables provided as in the original reference17 

(LogEC50) are available in the Supplementary Information, 

Table S1. 

 
Fig. 1 Examples of ILs from the database in Zhao et al.

14
 

Adapted Ferreira-Kiralj hydrophobicity parameter 

(WcAdap) and other molecular descriptors 

Considering the importance given to ILs in recent years, it is 

highly desirable to understand the basic factors affecting their 

behavior in different biological systems. One of these factors is 

hydrophobicity and its relationship to toxicity. According to 

Segundo Ranke et al.,21 some theoretical methods to calculate 

LogP may work well for certain groups of ILs, but may fail if 

the necessary fragment constants for the structure of ILs under 

study are not available. 

 The Ferreira-Kiralj parameter Wc is a simple descriptor 

related to hydrophobicity. It is constitutional in nature because 

it is based only on the number of specific types of atoms that 

compose a molecule. Thus, Wc can be calculated using the 

equation: 

W
c
=

N
C

hyd

A -N
H

 

where NC

hyd
 is the number of hydrophobic carbon atoms, A is 

the total number of atoms, and NH the number of hydrogen 

atoms. According to the original proposal of Ferreira and 

Kiralj,20 hydrophobic carbon atoms pertain to all carbon atoms 

except those in C=O, C-O-, and C≡N groups. As Wc is a number 

fraction of hydrophobic carbon atoms, the equation makes it 

clear that the greater the number of hydrophobic carbons in the 
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structure, the higher the value of Wc, ranging from 0, if the 

molecule has no hydrophobic carbon (e.g., H2C=O), to 1, if all 

carbons are hydrophobic (e.g., H3C-CH3). This proposal was 

originally used for a set of β-lactam antibiotics, in a situation 

that can be considered similar to this study, where lipophilicity 

parameters do not necessarily contain the same information 

related to relationships between the efflux activities of the 

AcrAB-TolC pump of gram-negative bacteria and resistance to 

lipophilic and amphiphilic drugs, since some of these 

antibiotics have charged and delocalized functional groups.20 

Since ILs are salts, this situation can be considered similar. 

Another advantage of using a parameter such as Wc is that it can 

be applied to ILs with anions having an alkyl chain. Many ILs 

such as 1 (Fig. 1) are formed by cations with long chains and 

simple anions (Cl-, Br-, BF4
-, or PF6

-), and a number of studies, 

as well as other properties, are based only on the cationic 

structure. However, many ILs also have an anionic structure 

with long chains (e.g., 20, Fig. 1), which influences the 

physicochemical properties of ILs. In this context, a descriptor 

based only on the counting of specific types of carbon may 

allow assessment of the overall hydrophobicity of ILs, both 

those with simple and complex anions. However, it is important 

to note that it is generally accepted that anion influence on the 

toxicity of ILs is subordinate to the cation effect.10 

 Thus, to obtain WcAdap, non-hydrophobic carbons 

connected to charged atoms, both in cationic and anionic 

structures, were considered aside from those originally 

proposed.20 Table 1 shows the values of NC

hyd
, N

C

hydAdap , A, 

NH, Wc and WcAdap of all compounds in the dataset. The values 

were obtained by simply counting the atoms in the two-

dimensional structures that are also available in the UFT/Merck 

Ionic Liquids Biological Effects Database and in the molecular 

formulas. 

 Interestingly, the Pearson correlation coefficient r of the 

dependent variable with Wc using the compounds in the training 

set was only -0.01, indicating that the use of the parameter as 

originally proposed do not encode information relevant to the 

relationship between the hydrophobicity and toxicological 

activity of ILs under study. However, using WcAdap 

incremented the calculated r to -0.385. Notably, this difference 

is present even when the r between Wc and WcAdap is 0.835 

(see values in Table 1). 

The other descriptors for the study were generated using 

PaDEL 2.2 (download: 

http://padel.nus.edu.sg/software/padeldescriptor), a free and 

open-source JAVA-based software to calculate molecular 

descriptors and fingerprints.19 Interestingly, given the 

objectives for the development of PaDEL and despite its free 

availability, to our knowledge, only three studies of ILs with 

QSAR descriptors derived from this program are available in 

the literature, all of which are recently published.22-24 SMILES 

strings were used to generate 1D and 2D descriptors in PaDEL, 

which facilitated the derivation of descriptors and data 

reproduction by other researchers. Considering that this study 

was proposed to be carried out using the complete structure of 

each IL, simplest possible descriptors that are mainly based on 

atomic contributions and types of atoms were selected. Owing 

to the chemical nature of the dataset, the option remove salts 

was disabled. Some of the initially selected descriptors were 

missing or incomplete, probably because the algorithms are not 

parameterized for calculations of molecules with charged atoms 

or chemicals with disconnected structures such as ILs. Constant 

or near-constant descriptors were also manually discarded. 

Finally, descriptors having an r with the endpoint lower than 

0.2 were removed. Thus, 25 descriptors were obtained. A list 

with these descriptors is available in the Supplementary 

Information, Table S2. 

 Among the calculated descriptors in PaDEL are four LogP 

parameters: CrippenLogP, MannholdLogP, ALogP and XLogP. 

The latter descriptor is calculated using a group contribution 

method parameterized for neutral organic molecules,18 and thus 

was not selected for this study. CrippenLogP and ALogP have 

atomic contributions, according to the literature, justifying their 

potential use in predictive models for ILs,18,25 while 

MannholdLogP is obtained based only on the number of 

carbons and heteroatoms that form the compound.26 However, 

derivation of ALogP from SMILES strings led to some missing 

data and was therefore removed from the list of descriptors. 

Thus, only CrippenLogP and MannholdLogP were used for the 

derivation of QSAR models for comparison with results 

obtained using WcAdap. The three parameters were observed to 

have similar orders of magnitude for r with the dependent 

variable: -0.417 for WcAdap, -0.358 for CrippenLogP, and -

0.498 for MannholdLogP. 

 For the process of variable selection, four different matrices, 

each with 26 descriptors, were built. The only difference 

between each matrix is the descriptor for hydrophobicity while 

the remaining descriptors were the same. The list is available in 

the Supplementary Information, Table S3. 

 

QSAR study 

 

The QSAR study was performed in QSAR Modeling, a free 

JAVA-based software developed by the research group of the 

Theoretical and Applied Chemometrics Laboratory (download: 

http://lqta.iqm.unicamp.br).27 The final reduction of variables 

was carried out in this program. Matrices of descriptors were 

subjected to the method of selection of variables called Ordered 

Predictors Selection (OPS),28 an iterative algorithm for building 

QSAR models.29-31 This method uses Partial Least Squares, a 

regression method which reduces the size of the data by 

transforming them into mutually orthogonal latent variables 

(LVs),31 to build models by rearranging the columns of the 

matrix in such a way that the most important descriptors, 

classified according to an informative vector (correlation 

vector, regression vector, and their product), are placed in the 

first column. In this study, the three vectors were used 

simultaneously. The models should be classified in descending 

order of a statistical parameter. In this study, the initial step was 

carried out using the root mean square error of cross-validation 

(RMSECV) to select the descriptors that can lead to smaller 

errors, and the subsequent one according to the coefficient of 
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determination of leave-one-out (LOO) cross-validation (Q2
LOO) 

to maximize the prediction. As the numerical range of each 

selected descriptor may be very different, it is necessary to 

perform the pre-processing scheme known as autoscaling.27,33,34 

The obtained models were refined using Pirouette 4 

(www.infometrix.com) by checking the possibility of removal 

of some of the descriptors to obtain an optimized, simpler, 

statistically significant, and interpretative model. 

 In QSAR, it is necessary to apply validation techniques to 

check the statistical quality of the predicting power of the 

obtained models. Thus, it is possible to provide a measure of 

the capacity of the models to perform reliable predictions of the 

dependent variables under study for compounds not used in the 

modeling step.35 The most frequently used approach involves 

two steps: internal and external validation. 

 In internal validation, the explained variance of models 

were evaluated using the coefficient of determination (R2 > 0.6) 

and the significance of the models was evaluated using the F-

ratio test at 95% confidence interval (α = 0.05). The internal 

prediction was tested by LOO cross-validation through the 

Q2
LOO (> 0.5) and RmSquare metrics (Average rm

2(pred)-scaled 

> 0.5 and Delta rm
2(pred)-scaled < 0.2). The robustness of the 

model was tested by leave-N-out (LNO) cross-validation 

through the systematic removal of a maximum number of 

elements (N = 10) in the training set, in hexaplicate for each N 

value.33,36-38 The chance correlation was verified by the y-

randomization test (20 randomizations) using the approach 

suggested by Eriksson et al.38 The models were recalculated 

after randomization. The R2, Q2
LOO, LNO, and y-randomization 

tests were carried out in QSAR Modeling.27 The F-ratio test 

was calculated in Microsoft Excel, as described by Todeschini 

and Consoni.18 

 External validation of the obtained models was performed 

by predicting pEC50 values for the compounds of the test set. 

Thus, the predictive power was assessed using the coefficient of 

determination of external validation (R2pred > 0.5), RmSquare 

metrics of external prediction (Average rm
2(pred)-scaled > 0.5 

and Delta rm
2(pred)-scaled < 0.2), and Golbraikh-Tropsha 

statistics (the slopes k and k’ of the predicted versus observed 

and observed versus predicted response regression lines, 

respectively, both passing through the origin, where 0.85 < k, k’ 

< 1.15, and the absolute difference between the coefficient of 

determination of the predicted versus observed and observed 

versus predicted responses, both also passing through the 

origin, |R20-R’
2

0| < 0.3).33,37,39 Statistical analyses were done 

using Xternal Validation Metric Calculator 1.0 (download: 

http://dtclab.webs.com/software-tools). 

Table 1 Values of N
C

hyd
, N

C

hyd
Adap , A, NH, and WcAdap. 

Sample N
C

hyd
 N

C

hyd
Adap  A NH Wc WcAdap 

1 12 9 38 15 0.522 0.391 

2 8 5 26 11 0.533 0.333 
3 20 17 62 23 0.513 0.436 

4 9 6 29 12 0.529 0.353 

5 11 8 35 14 0.524 0.381 
6 13 10 41 16 0.520 0.400 

7 8 5 26 11 0.533 0.333 

8 11 8 35 14 0.524 0.381 
9 8 5 26 11 0.533 0.333 

10 11 8 39 18 0.524 0.381 

11 6 3 24 13 0.545 0.273 
12 12 9 42 19 0.522 0.391 

13 7 4 27 14 0.538 0.308 

14 12 9 39 16 0.522 0.391 
15 12 9 30 15 0.800 0.600 

16 11 8 39 18 0.524 0.381 

17 11 8 31 18 0.846 0.615 
18 7 4 24 11 0.538 0.308 

19 4 1 26 12 0.286 0.071 

20 13 10 48 22 0.500 0.385 
21 7 4 27 16 0.636 0.364 

22 10 7 40 25 0.667 0.467 

23 14 11 52 29 0.609 0.478 
24 7 4 26 15 0.636 0.364 

25 7 4 27 13 0.500 0.286 

26 9 6 29 15 0.643 0.429 
27 10 7 28 12 0.625 0.438 

28 11 7 37 13 0.458 0.292 
29 13 9 43 15 0.464 0.321 

30 13 9 51 27 0.542 0.375 

31 10 7 33 16 0.588 0.412 
32 9 6 25 11 0.643 0.429 

33 10 7 32 16 0.625 0.438 

34 10 7 32 18 0.714 0.500 
35 12 9 38 20 0.667 0.500 

36 9 6 25 11 0.643 0.429 

37 12 9 34 14 0.600 0.450 
38 12 9 34 14 0.600 0.450 

39 12 9 38 18 0.600 0.450 

40 7 4 20 10 0.700 0.400 
41 8 5 23 11 0.667 0.417 

42 10 7 32 16 0.625 0.438 

43 14 11 44 20 0.583 0.458 
44 11 8 35 17 0.611 0.444 

45 12 9 42 26 0.750 0.563 

46 10 7 36 24 0.833 0.583 
47 10 7 28 12 0.625 0.438 

48 10 7 28 12 0.625 0.438 

49 9 4 31 13 0.500 0.222 
50 11 6 45 27 0.611 0.333 

51 11 8 40 26 0.786 0.571 

52 11 7 46 26 0.550 0.350 
53 10 6 35 14 0.476 0.286 

54 11 8 40 26 0.786 0.571 

55 23 19 67 25 0.548 0.452 
56 13 10 35 19 0.813 0.625 

57 13 10 31 15 0.813 0.625 

58 14 10 43 20 0.609 0.435 
59 10 6 44 26 0.556 0.333 

60 10 6 44 26 0.556 0.333 

61 11 7 47 27 0.550 0.350 
62 10 6 44 26 0.556 0.333 

63 11 7 47 27 0.550 0.350 

64 11 7 46 26 0.550 0.350 
65 11 7 45 25 0.550 0.350 

66 12 8 49 27 0.545 0.364 

67 11 7 46 26 0.550 0.350 
68 12 8 48 26 0.545 0.364 

69 11 7 46 26 0.550 0.350 
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70 11 7 46 26 0.550 0.350 

71 12 8 49 27 0.545 0.364 

72 10 6 43 25 0.556 0.333 
73 10 5 40 25 0.667 0.333 

74 9 5 32 12 0.450 0.250 

75 10 6 35 13 0.455 0.273 
76 8 4 29 11 0.444 0.222 

77 11 8 31 13 0.611 0.444 

78 9 5 31 24 1.286 0.714 
79 7 3 17 10 1.000 0.429 

80 10 6 34 12 0.455 0.273 

81 14 11 44 17 0.519 0.407 
82 10 7 32 13 0.526 0.368 

83 6 3 20 9 0.545 0.273 

84 13 10 45 20 0.520 0.400 
85 9 6 33 16 0.529 0.353 

86 9 6 33 16 0.529 0.353 

87 9 6 33 18 0.600 0.400 
88 12 9 46 27 0.632 0.474 

89 10 7 34 19 0.667 0.467 

90 7 4 28 14 0.500 0.286 
91 14 11 40 16 0.583 0.458 

92 7 4 19 9 0.700 0.400 

93 8 3 26 11 0.533 0.200 
94 19 15 55 21 0.559 0.441 

95 15 12 41 21 0.750 0.600 

96 9 4 38 25 0.692 0.308 
97 10 7 41 26 0.667 0.467 

98 9 4 37 24 0.692 0.308 

99 11 7 37 13 0.458 0.292 
100 8 5 30 15 0.533 0.333 

 

 

Results and discussion 

The statistically superior model (highest values of RMSECV in 

the first cycle and Q2
LOO in the subsequent one) among those 

that present the hydrophobicity descriptor of the corresponding 

matrix was always selected in each step of variable selection by 

OPS. The whole process was carried out in an iterative manner. 

The best models obtained were refined using Pirouette 4. To 

retain the most relevant ones, the hydrophobicity parameter was 

always kept to assess its importance to each set and ability to 

generate statistically appropriate models. Performing this 

process, three models (A to C given below) were obtained and 

in each one, two LVs were built. Models A and B have four 

molecular descriptors while model C has five. 

 

Model A: 

LogEC50 = -5.754 - 0.038*(nBondS) + 0.095*(nO) - 

0.150*(nAtomLac) - 2.313*(WcAdap)                        

R2 = 0.813; RMSEC = 0.378; F = 167.754; Q2
LOO = 0.792; 

RMSEV = 0.400; Average r2m(LOO)-scaled = 0.703; Delta 

r2m(LOO)-scaled = 0.163; Cumulated information: 63.253% 

(LV1: 39.767%; LV2: 23.486%) 

 

Model B: 

LogEC50 = +4.800 - 0.033*(nBondsS) + 0.118*(nO) -

0.160*(nAtomLAC) - 0.064*(CrippenLogP)             

R2 = 0.762; RMSEC = 0.440; F = 142.013; Q2
LOO = 0.767; 

RMSEV = 0.423; Average r2m(LOO)-scaled = 0.688; Delta 

r2m(LOO)-scaled = 0.193; Cumulated information: 80.169% 

(LV1: 41.165%; LV2: 39.004%) 

 

Model C: 

LogEC50 = +7.661 - 0.178*(nRotB) - 0.097*(nAromBond) - 

0.303*(VAdjMat) - 0.017*(fragC)                     - 

0.765(MannholdLogP)                                                                                                                   

R2 = 0.770; RMSEC = 0.420; F = 128.715; Q2
LOO = 0.731; 

RMSEV = 0.454; Average r2m(LOO)-scaled = 0.623; Delta 

r2m(LOO)-scaled = 0.182; Cumulated information: 82.521% 

(LV1: 22.154%; LV2: 60.367%) 

 

 The maximum variation of the accumulated information 

among the three models was 19.324%. Models B and C exhibit 

similar amount of information, although they are probably not 

related since any selected descriptor is common to both. It is 

different in the case of models A and B, which are formed by 

the same descriptors except the hydrophobicity one. The three 

models obtained can be considered reasonably similar in some 

of their statistics. The maximum variations between R2 and 

Q2
LOO were 5.1% and 6.1% for the explained and predicted 

variance, respectively. It can be seen that, based on R2, model A 

had the highest amount of explained information (81.3%) while 

model B had the lowest (76.2%). Model A also had the highest 

amount of predicted information (79.2%); however, model B 

was better than model C in this parameter (76.7%). The data for 

the Average and Delta rm
2(LOO)-scaled metrics show the same 

trend. However, comparing the difference between R2 and 

Q2
LOO,40 model B had the lowest probability of overfitting 

(0.005), while model C had the highest (0.039); nevertheless, 

all models presented low probabilities of data overfitting. 

 The most significant difference between the models was 

observed when the results of the F test (95% confidence 

interval, α = 0.05) were analyzed. Since all models are formed 

by the same number of compounds (n = 80) and LVs (p = 2), 

the tabulated reference value is the same (Fp,n-p-1 = 3.115, p = 2 

and n - p - 1 = 77); thus, it is possible to compare the 

significance of the models. Although all models were 

considerably higher than the reference value, model A was 

observed to be the most statistically significant, being 25.741 

units higher than model B and 39.039 units higher than model 

C. Interestingly, this model accumulated the least amount of 

information from its two LVs. 

 Table 2 shows the results of robustness and chance 

correlation tests. The results demonstrate that the models show 

excellent robustness, with variations in the average Q2
LNO and 

Q2
LOO being only 0.002 units for the three models. Thus, the 

models are stable and resistant to small variations. The results 

of the y-randomization test indicate the absence of chance 

correlation in all models (i.e., intercepts for the R2 test are lower 

than 0.3 and those for the Q2
LOO test are lower than 0.05). The 

plots for these tests are available in the Supplementary 

Information, Fig. S1. 
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Table 2 Results of LNO cross-validation and chance correlation test. 

Models Robustness Intercept in chance correlation 

Average Q2
LNO R2 vs. r(y0,yr) Q2

LOO vs. r(y0,yr) 

A 0.790 -0.025 -0.146 
B 0.765 -0.010 -0.140 

C 0.729 -0.022 -0.145 

 

 Despite the slightly high statistical quality of model A 

relative to models B and C (except for the significance of the 

regression), the three models show good internal qualities. 

However, as the ultimate goal of a QSAR model is the 

prediction of the endpoint of compounds not originally used for 

its derivation, such as in the development of new related 

molecules41 or for regulatory purposes,42 it is recommended 

that externally validated models be considered more realistic 

and applicable for prediction.43 

 Table 3 presents the results of external validation for the 

three models (observed and predicted values are available in the 

Supplementary Information, Table S4). Considering the results 

of all tests, model C was completely rejected because it has no 

external predictability. Initially, it was believed that the 

algorithm could lead to a good model since it was calculated 

using a simple equation with the number of carbons and 

heteroatoms taken from a large dataset of 95809 compounds,26 

which could be the reason the values of model C led to better 

individual r with LogEC50. However, Dearden et al.34 noted 

that in QSAR models, it is not uncommon for individual 

descriptors that show good individual correlation to lead to bad 

models when combined with other descriptors and vice versa. 

Table 3 Results from external validation step. 

Statistical parameter Model A Model B Model C 

R2pred 0.809 0.802 -0.554 

RMSEP 0.498 0.505 1.417 
Average rm

2(pred)-scaled 0.657 0.623 -0.036 

Delta rm
2(pred)-scaled 0.169 0.190 0.108 

k 0.943 0.974 0.889 
k' 1.035 0.999 0.892 

|R20-R'
2

0| 0.081 0.108 3.336 

 

 On the other hand, both models A and B had good values in 

their external quality statistics. Their respective R2pred, besides 

being well above the minimum, are different by only 0.007 

units. Model A presented the higher R2pred and showed slightly 

better values for the other parameters. To eliminate any doubt 

regarding the most appropriate model for the purpose of 

prediction, the rm
2(overall)-scaled metrics was analyzed. 

According to Roy et al.,44 this metrics is based on the 

prediction of a comparably large number of compounds since 

both training and test sets were used, and is recommended for 

the selection of the best predictive model among a set of 

comparable models. The values of both Average rm
2(overall)-

scaled and Delta rm
2(overall)-scaled were slightly better for 

model A (0.694 and 0.178, respectively, compared to 0.659 and 

0.196 for model B), and thus, this model can be considered to 

have the best overall predictive ability. Considering the criteria 

evaluated, is possible to propose that model A, obtained using 

WcAdap, presents sufficient information related to the endpoint 

of compounds used in the study, and can be used for the 

prediction of LogEC50 for ILs not considered in this study. 

 The quality of a QSAR model is enhanced if mechanistic 

interpretation of selected descriptors (Table 4) is possible.42 For 

model A, WcAdap and nAtomLAC show that the increase in 

cell toxicity of ILs is associated with an increase in the size and 

hydrophobicity of the aliphatic chains. The derivation of a 

model with these two descriptors may not be regarded as 

surprising: it is well documented that the toxicity of an IL can 

be modulated over several orders of magnitude by altering the 

hydrophobicity of the alkyl sidechain, especially that of the 

cation.10,22,45 The descriptor nBonds is in accordance with this 

interpretation since the hydrophobicity of ILs under study 

increased with increasing size of alkyl sidechains, which 

consequently increases the number of bonds in the compounds. 

This result is in agreement with the previous proposal of Zhao 

et al.,17 according to which ILs, because of their structural 

similarity with surfactants, can damage the cell membrane, 

leading to an increase in permeability, through a mechanism 

similar to that of the surfactants. Thus, the increase in 

hydrophobicity due to increase in the sidechain length of ILs 

facilitates the occurrence of this damage, and may lead to 

narcosis, a physicochemical process wherein membrane-bound 

proteins are disrupted by a chemical.17 

 On the other hand, the descriptor nO indicates that an 

increase in the number of oxygen atoms in the structure of ILs 

increases the value of LogEC50, and hence decreases the 

toxicity. This result is also consistent with literature since the 

presence of oxygen and other heteroatoms increases the number 

of hydrogen bonds that the molecule can form, which 

consequently increases its solubility in aqueous medium (i.e., 

reduces hydrophobicity), and hence causes reduced toxicity 

profile owing to the reduction in the penetrability of molecules 

across the biological membrane.22,23 The values of each 

descriptor for each compound are also available in the 

Supplementary Information, Table S2. 
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Table 4 Selected descriptors and autoscaled coefficients for each model. 

Symbol Definition 
Model  

A B C 

fragC 
Complexity of the 

system 
  -0.114 

nAromBond 
Number of 
aromatic bonds 

  -0.342 

nAtomLAC 

Number of atoms 

in the longest 
aliphatic chain 

-0.498 -0.531  

nBonds 

Number of bonds 

(excluding bonds 
with hydrogen) 

-0.368 -0.317  

nO 
Number of 

oxygen atoms 
0.245 0.304  

nRotB 

Number of 

rotatable bonds 

(excluding 
terminal bonds) 

  -0.573 

VAdjMat 

Vertex adjacency 

information 
(magnitude) 

  -0.165 

WcAdap  -0.271   

CrippenLogP   -0.185  
MannholdLogP    -0.554 

 

 An important observation to be made is that models A and 

B are very similar in a number of aspects. The OPS approach 

combined with refinement led to the same descriptors for the 

two models, except for the hydrophobicity one. In both models, 

the most important descriptors are nAtomLAC and nBond, as 

can be observed from the absolute values of the autoscaled 

coefficients (Table 4). The third and fourth most important 

descriptors are WcAdap and nO for model A and nO and 

CrippenLogP for model B. This degree of similarity prompted a 

comparison of the three hydrophobicity descriptors using 

Hierarchical Cluster Analysis (HCA), a classification 

multivariate method of data analysis that primarily aims to 

display data in such a way as to emphasize its natural clusters 

and patterns.46 This analysis was carried out in Pirouette 4. 

Although the range of values for WcAdap is very different from 

the other hydrophobicity descriptors, the values were also 

autoscaled.34 It can be seen in Fig. 2 that MannholdLogP shows 

no degree of similarity to the other descriptors. On the other 

hand, WcAdap and CrippenLogP have sufficient similarity to 

form a cluster. This may be the reason for the similar results 

obtained for both models and, more importantly, might imply 

that WcAdap, despite being essentially a constitutional 

descriptor, actually encodes information related to the 

hydrophobicity of ILs. The lower amount of information that 

model A accumulated in comparison with model B may suggest 

that the latter has some “noise,” which probably led to the 

better overall prediction capability of the former. This 

combination may indicate that information from model A is of 

better quality. As the only difference between the models is the 

hydrophobicity descriptor, this is where information would 

accumulate, at least when considering this database. 

 

 
Fig. 2 Dendogram of the analysis based on hydrophobicity variables. 

Conclusions 

The models presented here, validated according to statistical 

criteria that are stricter than those typically used in QSAR 

studies, demonstrate that the adapted version of the Ferreira-

Kiralj hydrophobicity parameter WcAdap may be a suitable 

alternative for modeling the endpoints of ILs. This is 

particularly true given the salt nature of these compounds, 

which often cannot be adequately described by traditional 

algorithms for calculating LogP. Although constitutional in 

essence, information related to hydrophobicity can actually be 

encoded using this descriptor as shown by comparative analysis 

using HCA, thus validating the proposal of Ferreira and Kiralj. 

Moreover, model A, in addition to presenting the best overall 

predictive ability, also features descriptors that encode 

information related to modeling the endpoints of ILs to some 

extent.  
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