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ARTICLE 

Resolving stress tensor components in space from 

polarized Raman spectra: polycrystalline alumina 

Giuseppe Pezzotti
a,*

 and Wenliang Zhu
a
   

A method of Raman spectroscopic analysis has been proposed for evaluating tensorial stress 

fields stored in alumina polycrystals with a corundum structure (α-Al2O3). Raman selection 

rules for all the vibrational modes of the structure were expanded into explicit functions of 

both 3 Euler angles in space and 4 Raman tensor elements (RTE) of corundum. A theoretical 

treatment has then been worked out according to the phonon deformation potential (PDP) 

formalism, which explicitly expressed the changes in force constants under stress in 

matricial form. Close-form solutions could be obtained for the matrix eigenvalues as a 

function of 9 unknown variables, namely 6 independent stress tensor components and 3 

Euler angles in space, the latter parameters being representatives of local crystal orientation. 

Successively, two separate sets of Raman calibration experiments were performed for the 

determination of both RTE and PDP constants of the corundum structure of alumina. 

Calibration experiments provided a quantitative frame to the newly developed Raman 

formalism. Polarized Raman spectra were systematically recorded in both single-crystalline 

and polycrystalline samples, with both A1g and Eg vibrational bands being characterized. 

Regarding polycrystalline samples, a validation of the proposed Raman method could be 

given through a comparison between Raman and fluorescence data collected at the same 

locations across an alumina/metal interface embedded in a steeply graded residual stress 

field. 

 

 

1 Introduction 

Microscopic stress analyses in α-Al2O3 samples have so far 

predominantly been performed by exploiting the stress 

sensitivity of the ruby doublet of fluorescence emitted from 

chromophoric (Cr3+) isovalent impurities (i.e., natively solved 

into the corundum lattice at substitutional sites for Al3+).1-4 

Stress assessments by fluorescence spectroscopy rely on a 

straightforward formalism (often referred to as the 

piezospectroscopic approach) that expresses the spectral shifts 

of the ruby lines as the scalar product of two second-rank 

tensors, namely the stress tensor and the tensor of the so-called 

piezo-spectroscopic constants of the crystal. The structure of 

this latter tensor has been regarded as a crystal property, with 

the tensor being purely diagonal in the reference frame of the 

principal axes of the crystal.5 The diagonal components of the 

piezo-spectroscopic tensor of the chromophoric lines of 

sapphire, as well as the cumulative piezospectroscopic 

coefficient measured in response to an applied hydrostatic 

stress, have long and extensively been characterized in the 

literature.6-8 Attempts have also been made in separating the 

hydrostatic and the deviatoric components of the stress tensor 

according to a (slightly) different response to stress of the two 

chromophoric lines.9,10 However, the approach to stress 

analysis using the chromophoric emission of alumina ceramics, 

despite being based on a simple principle and having proved 

successful in several technological purposes, leaves unsolved 

basic issues related to the resolution of individual stress tensor 

components. 

Sapphire and polycrystalline Al2O3 possess relatively sharp 

Raman bands, which also exhibit a dependence on stress of 

their spectroscopic shifts.11-13 Investigations of the stress 

dependence of the Raman spectrum of α-Al2O3, however, have 

proved less popular through the years than those based on 

fluorescence assessments, both in scientific studies and 

technological applications. Several reasons could have 

contributed to such a lack of experimental accessibility to the 

Raman method. The main reasons, which are also common 

shortcomings in general Raman spectroscopic measurements, 

could be listed as follows: (i) the Raman spectrum of corundum 

Al2O3 is generally weaker than the ruby fluorescence doublet, 

which involves longer acquisition times and, possibly, larger 

errors in the fitting procedure to locate the band maximum; (ii) 

the stress dependence of Raman bands, unlike the case of 

fluorescence bands, is quite sensitive to the local 

crystallographic orientation at the measurement site; and, thus, 

necessarily requires quantitative notions of crystal axes in 3 

local Euler angles. Such dependence should rigorously be 

embedded in the algorithm for a correct stress assessment; and, 

(iii) the phenomenological equations that represent the stress 

dependence of the chromophoric lines, are based on a simple 

formalism whose output is a scalar quantity that represents the 

trace of the stress tensor (namely, the algebraic sum of the 

diagonalized components of the principal stress tensor). On the 

other hand, the set of equations of the PDP formalism, which is 

needed for stress analysis by Raman, is more complex because 

it links the shift of each Raman band observed in the spectrum 

to all the individual stress tensor components stored in the 

crystal structure. Besides such inherent complexity, additional 

complications might arise due to a loss of degeneracy (i.e., in 

degenerate Raman modes) in the presence of stress. In 

substance, Raman-based algorithms potentially lead to detailed 
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information on the stress state of the crystal lattice, but also 

prove comparatively more complex and cumbersome than their 

correspondent ones in fluorescence analyses. 

The convoluted physical circumstances that give rise to the 

above points (ii) and (iii) might indeed have represented 

common issues in discouraging researchers to use the Raman 

method in stress analysis, especially when dealing with non-

cubic crystals. Note that the PDP formalisms, which directly 

link strain (rather than stress) to the spectral shift of vibrational 

bands,14 have already been applied to several types of single-

crystalline structure. Such studies mainly include cubic crystals, 

such as silicon,15 germanium and zinc-blend-type 

semiconductors.16 However, also less symmetric crystal 

structures, although less frequently, have been approached 

through systematic PDP studies; namely, the trigonal structure 

of α-quartz,17 and the wurtzitic structures of gallium nitride18 

and cadmium sulfide19. Our research group has recently 

reported on calibrations of RTE and PDP constants for 

tetragonal single-crystalline and textured polycrystalline barium 

titanate,20,21 for the trigonal structure of lithium niobate single-

crystals,20,22 for the wurtzitic structure of aluminium nitride,23 

and for the corundum structure of sapphire.24,25 However, 

quantitative applications of PDP algorithms to polycrystalline 

samples yet remain conspicuously missing in the available 

literature. 

In this paper, we attempt to extend our previous RTE and 

PDP studies on sapphire to a quantitative stress analysis of 

polycrystalline Al2O3. The proposed procedure and the newly 

developed algorithms enable us to decode, through concurrently 

monitoring the shifts of 6 polarized Raman bands, quantitative 

information of local crystallographic orientation and the full set 

of stress tensor components. The validity of this procedure is 

then checked by comparing the results of stress analyses by 

Raman with those more conventional and better established by 

fluorescence piezo-spectroscopy. Analyses by these two 

different methods are performed at exactly the same locations 

in a highly graded stress field associated to an Al2O3/metal 

bonded interface. As previously mentioned, the main driving 

force for this study has been the quite unique possibility of 

exploiting a tensorial stress deconvolution from the different 

behaviors of selected Raman bands, which otherwise results 

hardly accessible through fluorescence piezo-spectroscopic 

procedures. However, an additional driving force in developing 

PDP algorithms for polycrystalline samples has been the 

possibility to exploit the smaller size of the Raman probe as 

compared to the fluorescence one, thus obtaining a better 

spatial resolution.26-28 High spatial resolution indeed represents 

a desirable characteristic in correctly assessing steeply graded 

residual stress fields as those usually developed in 

polycrystalline samples, especially in non-cubic structures.29 

For the same laser excitation source, a fairly large difference in 

probe size between Raman and fluorescence emissions in Al2O3 

ceramics can be found, which mainly arises from broadening of 

the latter probe. Broadening of the fluorescence probe 

originates from a peculiar phenomenon of absorption and re-

emission of ruby line photons at Cr3+ sites.30 Such phenomenon 

does not occur in the spectral region of Raman emission in 

alumina. 

 

2 Theoretical background 

2.1 Selection rules and Raman tensor elements in corundum 

Al2O3. 

 

 
Fig. 1: Schematic draft of the corundum structure of α-Al2O3 (a), and of 

its main vibrational modes (b). In (c), drafts are shown of the principal 
planes of investigation within the corundum crystal structure and our 

choice of Cartesian and Euler angles in three dimensions. 

 

The crystal structure of aluminium oxide, also referred to as the 

corundum structure, belongs to the ditrigonal-scalenohedral 

class of the trigonal symmetry  ( ) (Fig. 1(a)). The 

crystal lattice of α-Al2O3, consisting of Al3+ and O2- ions, takes 

the form of the closest hexagonal packing. The cations, 

displaced into a crystalline field at the octahedral hollows 

between the closely packed oxygen anions, fill two thirds of the 

hollows. The spatial arrangement of the anions is referred to as 

the “corundum motive”, according to which the interchanging 

octahedron positions of the cations are replicated within the 

structure by every three layers. The arrangement of the 

structural units along the third-order axis is then replicated in 

stacking of six anionic layers and six intermediate cationic 

layers. In the crystal lattice of single-crystal sapphire, two 

structurally elementary cells, namely the hexagonal and the 

rhombohedral, can be located. The irreducible representation 

for the optical modes of the Al2O3 corundum crystal is:31-33 

=2Alg+2A1u+3A2g+3A2u+5Eg+5Eu                                 (1) 

where Alg contains two and Eg five Raman active modes (Fig. 

1(b)), and the A2u and Eu modes are either infrared active or 

acoustic modes. Note that the Eu modes may split into a 

longitudinal and a transverse representation because of the 

macroscopic field associated with the longitudinal polar modes. 

Moreover, since the unit cell has a centre of symmetry, in first 

approximation, all vibrations that are Raman allowed should be 

infrared forbidden and vice versa. More specifically, lattice 

vibrations with symmetry Alg and Eg are Raman active and 

infrared inactive, while the A2u and Eu vibrations are inactive in 

both infrared and Raman experiments. The basis functions for 

the representations of the A1g and Eg modes of the D3d point 

group are listed in Table 1.  

 
Table 1 Basis functions appropriate for the representations of the A1g 

and Eg modes of the D3d point group. 

 

D3d E 2C3 3C’
2 i 2S3 3σd Basis functions 

A1g 1 1 1 1 1 1 X2+Y2, Z2 

Eg 2 -1 0 2 -1 0 (XZ, YZ); (X2-Y2, 

XY); (RX, RY) 

D3d

6

R3C

Γ
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Figure 2 shows the Raman spectrum of single-crystal sapphire 

as collected on different crystallographic planes and according 

to different polarization configurations. In inset, labels show the 

assignment of the Raman bands.34,35 In total, we could resolve 7 

different bands. In the recorded spectra, the bands located at 

around 417 and 645 cm-1 belonged to the A1g vibrational mode. 

On the other hand, bands located at around 378, 430, 451, 578, 

and 750 cm-1 were assigned to the Eg mode. Depending on the 

crystallographic plane studied, some vibrational band resulted 

maximized or annihilated in its intensity (e.g., the Eg band 

located at around 750 cm-1, which results maximized on the c-

plane and annihilated on the a-plane of sapphire). This is a 

direct consequence of the Raman selection rules discussed 

hereafter. However, it is important to note here the availability 

of more than six independent bands, which is a fundamental 

prerequisite for tensor-resolved stress analyses, as shown in a 

later section. 

 

 
Fig. 2: Raman spectra of sapphire single-crystal as detected with the 

polarized laser beam focused on the a-plane (parallel probe 

configuration) (a), the m-plane (parallel probe configuration) (b), the c-
plane (cross probe configuration) (c), and the R-plane (cross probe 

configuration) (d). 

 

The scattered Raman intensity, Ii, of the optical mode in the 

case of a back-scattering configuration can generally be 

represented according to the following equation:36 

                                                                            (2) 

where ei and es are the unit polarization vectors of the electric 

field for incident and scattered light, respectively. For the 

Raman setup used in this paper, the polarization vectors can be 

given as: 

 

ei

� x y z( ) = 0 1 0( ); es

�

x

y

z
















=

0

1

0















; es

⊥

x

y

z
















=

1

0

0















;

 

where the superscripts and  locate parallel and cross 

configurations of the Raman probe in the laboratory Cartesian 

frame (x,y,z), respectively; , a second-rank tensor depending 

on crystal structure, is usually referred to as the Raman 

scattering tensor of the vibrational mode under consideration. 

Loudon has computed the Raman tensors for the optical modes 

of the corundum structure, as follows:36 

ℜAg
=

a 0 0

0 a 0

0 0 b

















;
ℜ

Eg X( ) =
c 0 0

0 −c d

0 d 0

















;
ℜ

Eg Y( ) =
0 −c −d

−c 0 0

−d 0 0

















  

where the constants a, b, c, and d represent the RTE of the 

crystal. Considering the Euler matrix, , and its inverse, , 

which can be used to transform the Cartesian coordinates 

(X,Y,Z) of the crystal into those of the laboratory frame (x,y,z), a 

general expression for the Raman tensor of the k-th Raman 

band of the spectrum can be expressed as: 

 

 
ℜk x, y, z( ) = Φ θ,ϕ,ψ( )ℜk X,Y ,Z( ) %Φ θ ,ϕ,ψ( )    
 

where the transformation matrices are defined in terms of three 

Euler angles  in space (defined here as shown in Fig. 

1(c)), as follows: 

 
 

 

with , , and . 

The general expression for the angular dependences on Euler 

angles of the intensities of the Raman active modes (i.e., in this 

case of the A1g and Eg band intensities) can then be retrieved 

upon expanding Eq. (2) with substituting in it for Eqs. (3)-(7). 

By doing so, one might obtain a set of 6 independent equations 

expressing the expected Raman intensities produced by 

different vibrational modes as a function of the Euler angles in 

space, as follows: 

      

                              

    

 

                   

(12)   

                
Note that the two distinct vibrational components of the 

intensity of the Eg mode, namely Eg(X) and Eg(Y), can be linked 

to each other through the following equation: 

 
//, //, //,

( ) ( )g g gE E X E Y
I I I⊥ ⊥ ⊥= +                              

In conclusion, Eqs. (8)-(14) represent the link between the 

irreducible representation of the crystal, given in Eq. (1), and 

the observable Raman intensity for the different vibrational 

2
i i sI e e∝ ℜ

⊥

ℜ

Φxyz
 
%Φxyz

( ), ,θ ϕ ψ

Φxyz =

cosθ cosϕ cosψ − sinϕ sinψ cosθ sinϕ cosψ + cosϕ sinψ −sinθ cosψ

− sinϕ cosψ − cosθ cosϕ sinψ cosϕ cosψ − cosθ sinϕ sinψ sinθ sinψ

sinθ cosϕ sinθ sinϕ cosθ

















(6)

 

%Φxyz =

cosθ cosϕ cosψ − sinϕ sinψ −sinθ cosϕ − cosθ cosϕ sinψ sinθ cosϕ

cosθ sinϕ cosψ + cosϕ sinψ cosϕ cosψ − cosθ sinϕ sinψ sinθ sinϕ

− sinθ cosψ sinθ sinψ cosθ

















(7)

0 ≤θ ≤ π 0 2ϕ π≤ ≤ 0 ≤ψ ≤ 2π

 

IA1g

� ∝ bsin2θ sin2ψ + a −cosψ sinϕ − cosθ cosϕ sinψ( )
2

+a cosϕ cosψ − cosθ sinϕ sinψ( )2 


2

IA1g

⊥ ∝ a − b( )sin2θ sinψ cosψ 
2

 

I
Eg X( )
� ∝ −

c

4
cos2ϕ 3+ cos2θ( )cos2ψ + 2sin2θ 





− d sin2θ sinϕ sin2ψ

+ d cosϕ sinθ + ccosθ sin2ϕ( )sin2ψ 



2

IEg ( X )

⊥ ∝ − cos2ψ d cosϕ sinθ + ccosθ sin2ϕ{{

−
1

4
c 3+ cos2θ( )cos2ϕ − 2d sin 2θ sinϕ sin2ψ 









2

 
I

Eg Y( )
� ∝ 2 cosψ sinϕ + cosθ cosϕ sinψ( ) ccosϕ cosψ + d sinθ − ccosθ sinϕ( )sinψ { }2

I
Eg Y( )
⊥ ∝

1

2





−2cos2ψ[ ccosθ cos2ϕ + d sinθ sinϕ( )

+ cosϕ −d sin2θ sinϕ( )sin2ψ ] 



2

(4) 

(8) 

(9) 

(10) 

(11) 

(13) 

(14) 

(3) 

(5) 
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modes listed in it. This set of equations can be used either to 

calibrate the 4 RTE constants (i.e., through conducting 

polarized Raman experiments on known crystallographic 

planes) or to assess unknown crystallographic orientations, 

provided that the full set of RTE constants are known to a 

degree of precision. 

2.2 The PDP formalism in the corundum structure and related 

calibrations 

An arbitrary stress tensor,  (with k,l=x,y,z), applied to a 

crystal in an arbitrary orthogonal reference frame (e.g., the 

laboratory reference frame) can be always transformed into an 

equivalent stress tensor,  (with i,j=1,2,3 ), in the crystal 

reference frame (where the subscripts 1 and 3 locate the 

crystallographic a- and c-axis of the corundum structure, 

respectively). Such operation is conducted by means of 

tensorial rules of coordinate transformation, as follows: 

  
The tensorial relationship between strain and stress, applied 

along the principal crystallographic axes for the trigonal 

structure of sapphire, can be expressed according to the 

following tensorial equation: 

             
where Sij are the elastic compliance constants of the sapphire 

crystal, with values reported as: S11=2.3×10-12 Pa-1, S12=-

0.7×10-12 Pa-1, S13=-0.4×10-12 Pa-1, S33=2.2×10-12 Pa-1, 

S44=6.8×10-12 Pa-1, and S14=0.5×10-12 Pa-1.37 

Each vibrational mode, j, is associated with a frequency, ωj, and 

an effective force constant, Kj, which is the second derivative of 

the crystal potential energy with respect to mode normal 

coordinates.38 However, stress/strain fields result in an 

alteration of the Raman frequencies of each vibrational mode in 

the crystal, due to the anharmonic nature of atomic interactions. 

The change in force constants under stress/strain can be 

represented by a matrix, [∆K], whose size is in turn determined 

by the degeneracy of the Raman mode. The eigenvalues of the 

[∆K] matrix, λ, are related to Raman frequency shifts, as 

follows: 

 

λ =ω 2 −ω
0

2 = (ω +ω
0
)(ω −ω

0
) = (ω

0
+ω −ω

0
+ω

0
)(ω −ω

0
)

= 2ω
0
(ω −ω

0
)+ (ω −ω

0
)2 ≈ 2ω

0
ω −ω

0( )
   

where  and  are the spectral positions under the stress field 

and that in the stress-free conditions, respectively, for the 

studied Raman band. Note that the band shift of any Raman 

mode caused by a stress perturbation is generally quite small 

(i.e., ω is close to the unperturbed one, ω0), as compared to the 

wavenumber of the Raman band (i.e., 
 
ω −ω 0( ) � ω 0

). 

Therefore, the higher-order terms in Eq. (17) can be neglected 

in first approximation. The value of λ can be obtained by 

solving the characteristic equation: 

                   

where [I] is a unit diagonal matrix. The symmetry of the crystal 

under strain can be assessed with considering the symmetry 

elements common to the unstrained crystal and to the strain 

ellipsoid.39 We mentioned above that, among the vibrational 

modes of sapphire, only two A1g modes and five Eg modes are 

Raman active. Raman scatter thus allows a direct observation of 

both transverse and longitudinal optical phonons. Splitting and 

shift of a given energy level for an arbitrarily applied stress can 

be obtained by solving the eigenvalue problem for the crystal in 

the presence of a perturbing potential, V. Assuming the validity 

of the linear deformation potential theory,40 the perturbing 

potential, V, is only proportional to terms linear in strain and, 

accordingly, is given by: 

             
where Vij is a symmetric second-rank tensor, whose terms are 

usually referred to as the deformation potentials. The 

representation generated by Vij is: ; and, the 

components of the tensor operator, Vij, can be grouped as 

follows: 

       

In Eq. (20),  and  belong to A1g,  and  

belong to Eg(X), and  and  belong to Eg(Y), as can be seen 

from the basis functions appropriate for the representations of 

the A1g and Eg modes of the D3d point group (i.e., as listed in 

Table 1). 

Under stress, the energy of a vibrational state belonging to A1g 

will shift by an amount: 

                 
with the remaining terms vanishing according to the 

orthogonality theorem. Consequently, for the non-degenerated 

A1g mode, Eq. (18) can be expressed as: 

       
According to Eqs. (17) and (22), the spectral shift of the A1g 

mode is, therefore: 

            

where  and  are 

referred to as the PDP constants. Equations (16) and (23) can 

then be re-arranged to give: 

       
According to Eqs. (6), (7), (15), and (24), the spectral shift of 

the Raman mode in response to stress in the laboratory 

reference frame can be explicitly expressed as: 
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In order to express in close form the elements of the matrix Vij 

for the doubly degenerate states X and Y of the Eg mode, a 

decomposition of the products of the basis functions of the class 

D3d should preliminary be performed. Decomposition of the 

basis functions is given in Table 2.  

 
Table 2: Decomposition of the products of the basis functions of the 

class D3d  needed to express in close form the elements of the matrix Vij 

for the doubly degenerate states X and Y of the Eg mode. Here we 

assume: 

2 2

1( )
2

g

X Y
Aψ

+
=

,

2 2

( )
2

X g

X Y
Eψ

−
=

,
( )Y gE XYψ = −

. 

 

D3d X Y 

X 
1( ) ( )g X gA Eψ ψ+

 
( )Y gEψ−

 
Y ( )Y gEψ−

 
1( ) ( )g X gA Eψ ψ−

 
 

Accordingly, the secular equation for the Eg mode can be 

expressed in terms of PDP constants,  and , as 

follows:  

 

 
 

where: 

                                                     

,     

                                    
 

According to Eqs. (17) and (26), the spectral shift can be 

expressed as: 

 

 
 

By considering the relationship between strain and stress in Eq. 

(16), Eq. (30) can be rewritten, as follows: 

 

    
The overall peak shift of the combined signal can be set as the 

average of individual peak-shifts weighted by their relative 

intensities: 

                                                             
For the cases of cross and parallel polarization, Eq. (32) can be 

rewritten as: 

                         
which can in turn be expanded into: 

 
or, in the laboratory reference frame: 
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As described in the previous section, local information of 

crystal orientation in the sample (i.e., the local values of the 

Euler angles, ) can be retrieved from the angular 

dependences of experimentally obtained polarized Raman 

intensities. Such crystallographic assessments requires the 

knowledge of the full set of RTE and the collection of a set of 

polarized Raman spectra as a function of in-plane rotation angle 

in backscattered configuration. Based on this knowledge, a 

tensorial algorithm built on Eqs. (25) and (35) and applied to 

different bands could be obtained, with the related Euler angles 

determined from best fitting the measured intensity variations 

as a function of in-plane rotation angle (i.e., according to Eqs. 

(8)-(14)). The structure of this algorithm is explained in the 

following section. 

2.3 Algorithm for vibrational stress analysis in polycrystalline 

samples. 

In introducing the vibrational spectrum of sapphire in Fig. 2, we 

have pointed out at the outset the availability of more than six 

independent bands, which is a fundamental prerequisite for the 

viability of our method of tensor-resolved stress analyses. 

Three-dimensional stress analyses indeed involve the 

determination of six independent stress tensor components from 

each Raman spectral measurement. In practice, the knowledge 

of the PDP constants for the different vibrational modes 

belonging to the irreducible representation enables one to set a 

system of six independent equations, which relates the observed 

spectral shifts to the six independent components of the stress 

tensor through Eqs. (25) and (35). The analytical expansion of 

this procedure is somewhat cumbersome and it is not explicitly 

shown here. In this context, we shall limit our treatment to 

explicitly discuss the method for setting the system of working 

equations, while leaving the overall algorithm to be solved 

case-by-case through a numerical computational routine. Each 

individual Raman band of the corundum structure obeys a 

different set of PDP constants depending on its belonging to the 

A1g or Eg families of vibrational modes, and experiences a 

different spectral shift in response to a given stress tensor: 

 (cf. Eqs. (25) and (35), for A1g 

and Eg modes, respectively). As a result, a system of at least six 

independent linear equations can be obtained. Each equation 

can be either Eq. (25) or Eq. (35), depending on the band 

examined, and relates the stress tensor components to the 

observed Raman shifts, as follows: 

              
 

The system of Eq. (36) can in turn be reversed to give the full 

set of components of the stress tensor as a function of the 6 

independent spectral shifts, , experimentally observed (i.e., 

a string of known parameters) and 3 Euler angles in space. The 

reversed system of equations can thus be set, as follows: 

       
Note that reversing the system of Eq. (36) into Eq. (37) does 

not alter the linearity of the equations, for which, therefore, a 

unique solution should exist. The solution to Eq. (37) can 

become available with the aid of a computing program set with 

commercially available computational software. From a 

conceptual viewpoint, for making it possible the determination 

of individual stress tensor components according to the above 

approach, two sets of parameters, one of extrinsic nature (i.e., 

the local values of three Euler angles at each location of 

recorded Raman spectrum) and the other intrinsic to the crystal 

structure (the full set of PDP for each selected Raman band), 

must become available. The former set of parameters is needed 

to correlate the Cartesian reference frame of the crystal axes to 

that of the laboratory axes. The local sets of Euler angular 

values should then be retrieved through Eqs. (8)-(14) from 

polarized Raman intensity values of selected bands whose shifts 

are then used for stress analysis. So far, the suggested 

procedure appears to be exactly the same for both single-

crystalline and polycrystalline samples. However, in the case of 

polycrystalline samples, the set of Euler angles in space is 

obviously different at each measurement location and, 

therefore, the algorithm requires in-plane rotational 

experiments at each measurement point for determining the 

local set of , , and values. Accordingly, the formalism 

requires the introduction of a set of local Cartesian variables, as 

follows: 

         
where the indices i,j=x,y,z; and k,l=1,2,…,6. Note that the 

proposed extension to polycrystalline samples through Eq. (38), 

except for the increased cumbersomeness of the computational 

routine, does not involve any conceptual difference as 

compared to the case of single-crystalline samples. However,  a 

conceptually important difference arises when the effect of the 

finite size of the Raman probe is considered, which has to be 

incorporated into the computational algorithm. These additional 

aspects of the stress computational problem are discussed in the 

next section. 
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∆ω 6 = f6 θ,ϕ,ψ ,σ xx ,σ xy ,σ xz ,σ yy ,σ yz,σ zz( )


















∆ω i

σ xx = g1 θ ,ϕ,ψ ,∆ω1,∆ω2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω 6( )
σ xy = g2 θ ,ϕ,ψ ,∆ω1,∆ω2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω 6( )
σ xz = g3 θ ,ϕ,ψ ,∆ω1,∆ω 2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω 6( )
σ yy = g4 θ ,ϕ,ψ ,∆ω1,∆ω2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω 6( )
σ yz = g5 θ ,ϕ,ψ ,∆ω1,∆ω2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω 6( )
σ zz = g6 θ ,ϕ,ψ ,∆ω1,∆ω 2 ,∆ω 3,∆ω 4 ,∆ω 5 ,∆ω6( )


















θ ϕ ψ

σ ij x, y, z( ) = gk θ x, y, z( ),ϕ x, y,z( ),ψ x, y, z( ),∆ω l 
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(36) 
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2.4 Probe response functions for Raman and fluorescence bands. 

In practical Raman and fluorescence measurements, substantial 

penetration of the incident monochromatic light may occur as a 

conserquence of the transparency of the investigated material 

(i.e., as in the case of both sapphire and polycrystalline Al2O3). 

Accordingly, the Raman spectrum collected at a (nominal) 

geometrical location (x0,y0,z0) is also contributed by spectral 

components originating from neighboring regions of the sample 

belonging to a finite volume around such nominal location. 

There are two practical consequences in having a finite 

dimension of the probe: (i) in polycrystalline samples structured 

as grains assembly, the crystallographic orientation read by the 

probe is an averaged one among the population of grains 

present in the probe; and, (ii) in highly graded stress fields, the 

obtained stress information is averaged over the finite probe 

volume, and thus the stress magnitude read by the probe could 

be underestimated as compared to the real one (i.e., the larger 

the probe, the larger the underestimation). Note that the above 

item (i) only applies to Raman spectroscopic assessments, 

while fluorescence spectra are conspicuously unaffected by 

crystal orientation. The stress averaging effect described in (ii) 

occurs in both types of measurement. The contributions to the 

local spectrum from different locations within the probe can be 

represented by a probe response function (PRF), which 

describes the intensity of light scattered from a given point 

(x,y,z) when the incident beam is focused at the geometrical 

center (x0,y0,z0). A mathematical form for the PRF in space, 

common to Raman and fluorescence probes, can be given, as 

follows:41-43 

  
where B is the diameter of the laser beam at its waist in the 

focal plane, p is the so-called in-depth probe response 

parameter, which for an unfocused beam tends to infinity, and 

αeff is the effective absorption coefficient of the material at the 

incident wavelength. This latter parameter might differ from the 

commonly defined absorption coefficient, α, because of the 

influence of grain boundaries, which leads to a dependence on 

grain size in polycrystalline samples.28 In order to obtain a 

complete description of the observed Raman or fluorescence 

spectrum, a convolution of infinitesimal spectral contributions, 

, originating from each location in the sample within the 

probe volume, must be considered.  Accordingly, the intensity 

of the emitted signal can be described according to the 

following equation: 

         

where  is the local Raman fluorescence line shape, which, 

for a polycrystalline sample containing an inhomogeneous 

stress distribution inside the probe volume, is in turn a function 

of both local crystal orientation and stress field. If the spectral 

shift of the selected Raman band in presence of stress, 

, (i.e., with  and  being the frequencies at band 

maximum in presence and in absence of stress, respectively) 

can be found negligible with respect to the overall 

spectroscopic band width,  (i.e., ), then the 

observed band shift can be expressed to a degree of precision 

through an average of spectral shift values weighted by the 

effective scattered intensity at the irradiated point. In other 

words, the observed band shift, , can be 

calculated by using the PRF as a weighting function in adding 

the local band shifts, , collected within the probe, as 

follows: 

     
Equation (41) can easily be solved through numerical routines 

and with the aid of commercially available computing 

software,44 provided that the local spectral shift at any given 

location (x, y, z) in presence of stress is known. Note, however, 

that the inverse procedure, namely a deconvolution routine 

using Eq. (41) involves the solution of an inverse integral 

equation whose unknown function, , lies in the 

argument of a triple integral. The solution for such equation is 

not unique unless the “character” of the unknown function can 

be guessed a priori or the morphology of the convoluted 

function (experimentally retrieved) can be assumed to yet retain 

the “character” of the native function and used as a trial 

function. 

A further complication, although only peculiar to Raman 

assessments, resides in the fact that the crystallographic 

orientation probed in a polycrystalline sample will depend on 

the relative volume ratio between probe and grains. In other 

words, the statistical number of grains of the polycrystalline 

structure contained in the probe will determine the experimental 

output in terms of Eqs. (8)-(14) at a given location. The Raman 

probe in the polycrystal will thus display a spectrum affected 

not only by the orientation of each grain comprised in its 

volume, but also by the statistical fraction of grains with the 

same orientation. A schematic draft showing the interaction 

between the Raman probe and the microstructural arrangement 

in a polycrystalline sample is shown in Fig. 3. One limit case 

would be that the probe volume is appreciably smaller than the 

average grain size (Fig. 3(a)). In this case, an application of the 

selection rules Eqs. (8)-(14) will simply lead to the 

determination of the crystallographic orientation of the single 

grain probed. The other limit case is that the probe contains a 

number of grains large enough to justify, in the absence of 

textures in the polycrystal, the assumption that all the possible 

orientations are equally represented in the probe and the 

average orientation can be considered fully random (Fig. 3(c)). 

In this latter case, no angular dependence should be found for 

any Raman band upon in-plane rotation. In engineering 

applications, the grain size of the Al2O3 polycrystals is typically 

in the order of 1 µm. Considering the relatively high 

transparency of the Al2O3 lattice to visible light, one should 

expect that at least several grains fall in the volume of a 

confocal Raman microprobe (a more precise estimation will be 

given in a forthcoming section). Therefore, the general case of 

interest in engineering applications typically lies in an 

intermediate geometry between the two above-mentioned limit 

cases (Fig. 3(b)). When only few grains are comprised in the 

probe, the selection rules still apply locally. But, in-plane 

rotation experiments and the application of Eqs. (8)-(14) only 

lead to an (PRF-weighted) average set of orientation angles. In 

textured polycrystals, algorithms based on orientation 

distribution functions have been applied to retrieve the 

population of axial orientation diverging from the average 

orientation axis of the textured structure.20,45 However, in the 

presence of a limited number of randomly oriented grains, a 
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deconvolution of the individual grain contributions cannot 

easily be achieved. From a computational point of view, there 

can be many different combinations of Euler angles that give 

the same angular dependences, and the solution is not unique. 

One possibility to bypass this difficulty and proceed forward 

with the computational algorithm is to consider the unitary 

volume of the Raman probe as a “crystal” (or a single “grain”) 

with orientation corresponding to the measured average 

orientation. This means that the probed sample becomes 

composed of an ensemble of single-crystalline entities that can 

be referred to as “mesocrystals”. Obviously, this approach 

represents an approximation, but the error involved with it 

decreases with decreasing the probe volume, ultimately 

reaching an exact solution when the probe size is smaller than 

the grain size of the polycrystalline sample. 

  

 
Fig. 3: Draft showing the interaction between Raman probe and the 
microstructural arrangement in a polycrystalline sample: (a) probe 

volume appreciably smaller than the grain size; (b) probe volume 

comprising only few grains that determine an average orientation; and, 
(c) probe volume containing a large number of randomly oriented 

grains. 

3. Experimental procedures  

All the Raman spectroscopic experiments described in this 

paper were carried out in a backscattering configuration with 

using a triple monochromator (T-64000, Horiba/Jobin-Yvon, 

Kyoto – Japan) equipped with liquid nitrogen-cooled charge 

coupled device (CCD), a confocal pinhole and polarization 

filters. The excitation source in the present experiments used 

the 488 nm line of an Ar-ion laser (Stabilite 2017, Spectra-

Physics, Mountain View – CA). An objective lens with a 

numerical aperture of 0.5 was used both to focus the laser beam 

on the sample surface and to collect the scattered Raman 

spectra. All the confocal experiments described in this paper 

were conducted with a pinhole aperture of 100 µm and with 

employing an objective lens of magnification 100x. The laser 

power was 200 mW and the exposure time was 60 s for 

collecting one Raman spectrum. Influence of thermal heating 

caused by laser irradiation for long-time accumulation on the 

Raman spectrum has been found negligible by using standard 

silicon. With the aid of a rotating goniometer jig, spectral 

positions and intensities of Raman bands were monitored upon 

rotating the sample under polarized light in parallel and cross 

configurations. Spectral Raman lines were analyzed using a 

commercially available software package (Labspec 4.02, 

Horiba/Jobin-Yvon, Kyoto - Japan). Fitting was performed 

according to Gaussian-Lorentzian functions after subtracting a 

linear baseline. All mathematical procedures were carried out 

with the aid of commercially available computational 

software.44  

Bending bars obtained from four different sapphire single-

crystalline samples with different orientations were loaded in a 

four-point flexure jig (upper and lower span equal to 15 and 30 

mm, respectively), with outer fiber tensile face corresponding 

to their 
1102( ) , 1120( ) , 0001( ), and 1010( ) planes (i.e., the R, a, c, 

and m crystallographic planes, respectively). All samples were 

cleaved and machined commercially available crystals 

(manufactured by Kyocera, Co., Tokyo, Japan). Prior to 

spectroscopic characterizations, the samples were polished with 

fine diamond paste (0.1 µm) and then annealed, in order to 

minimize the effect of residual stresses due to crystal growth, 

cleavage, and subsequent surface machining. A fine-grained 

polycrystalline alumina sample (99.9 wt% pure; SSA-999W 

grade, Nikkato Corp., Osaka, Japan) was also used for Raman 

calibrations. 

Raman and fluorescence spectroscopic tests were also applied 

to a sample made of two Al2O3 polycrystalline blocks, which 

were joined to a Ni/Mo/Nb/Mo/Ni interlayer (125-µm-thick Nb 

core, 2-µm-thick Mo coating, and 2 µm-thick Ni cladding). The 

joint was obtained by loading into a graphite-element hot-

pressing furnace and processed under high vacuum (6 h at 

1400oC under a constant pressure of 2.4 MPa). The 

polycrystalline alumina block consisted of the same 

commercially available high-purity Al2O3 material mentioned 

above in the morphology of a 20 x 20 x 20 mm parallelepiped. 

Before joining with the metal, the face of the Al2O3 block was 

first ground and subsequently polished using fine grit diamond 

suspensions down to 1 µm. A final polishing procedure was 

made with a colloidal-silica suspension. 

4. Results and discussion 

4.1 Determination of RTE constants by rotation measurements. 

Equations (8)-(14) were applied to in-plane rotation 

experiments conducted on different crystallographic planes of 

sapphire single-crystal. Our choice of Euler angles and 

Cartesian coordinates with respect to the corundum structure is 

schematically shown in Fig. 1(c). The scattered Raman 

intensity was recorded as a function of the in-plane rotation 

angle on the c-plane ( ), the a-plane ( ), the 

m-plane ( ), and the R-plane ( ). 

Specification of the Euler angles, as shown in brackets, for each 

crystallographic plane under investigation leads to a set of 

predictive equations giving the dependence of the Raman 

intensity on the in-plane rotation angle, . Such equations can 

be used as trial functions to determine, through a best-fitting 

routine on the experimental data, the full set of 4 RTE constants 

for sapphire.  

In the present study, the Raman tensor elements a, b, c, and d 

were determined from the measured intensity variations of the 

378 and 418 cm-1 bands (belonging to Eg and A1g modes, 

respectively; cf. Figs. 1(b) and 2) as a function of rotation angle, 

. Figures 4(a)-(h) represent selected angular dependencies 

and the respective best-fitting curves for the modes , , 

, and  in the a- and in the R-plane. According to Eqs. (8)-

(14), the full set of RTE constants could be obtained from 

(polarized) angular rotation experiments conducted on all 

crystallographic planes, except for the c-plane (from which the 

tensor elements a~d are not accessible). Confirmation of RTE 

θ = 0; ϕ = 0
θ =

π
2
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θ =
π
2
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π
2
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58π
180

; ϕ =
π
2

ψ

ψ

 
IA1g

�

IA1g

⊥

 
IEg

� IEg

⊥

Page 8 of 17Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

 

results could be obtained by comparing fitting data collected as 

a function of rotation angle, , on different crystallographic 

planes in parallel or cross configurations. Least square method 

was applied here to best fit the experimental data shown in Fig. 

(4) by using Eqs. (8)-(14). A minimum value of the deviation 

(i.e., mean square error) could be retrieved accordingly. As a 

general output, the experimental data fitted the theoretical 

predictions to a good degree of precision in both cases of 

parallel and cross modes, although a higher data scatter could 

be found on same specific plane. 

 

 
Fig. 4: Experimentally retrieved in-plane angular dependences of 

Raman intensity for different vibrational modes in both parallel and 
cross polarization configurations: (a)-(d) a-plane, (e)-(h) R-plane. 

Table 3 compares the RTE values obtained from different 

crystallographic planes of sapphire, and shows their average values 

and statistical scatter. The quantitative knowledge of the full set of 

RTE constants represents the basis for the spectroscopic evaluation 

of local crystallographic orientation in polycrystalline alumina 

materials. 

Table 3 RTE values obtained from different crystallographic planes of 

sapphire (average values and statistical scatter). 

 

Tensor 

elements 

Mean square 

error 

Polarization 

configuration 

Polarization 

configuration 

a = -0.8 

b = 0.2 

±0.001 Cross a-plane c-

axis ±0.01 Parallel 

a = -0.8 

b = 0.2 

±0.014 Cross m-plane c-

axis ±0.001 Parallel 

a = -0.8 

b = 0.2 

±0.014 Cross R-plane a-

axis ±0.006 Parallel 

c = 0.015 

d = -0.49 

±0.07 Cross a-plane c-

axis ±0.008 Parallel 

c = 0.015 

d = -0.49 

±0.03 Cross m-plane c-

axis ±0.011 Parallel 

c = 0.015 

d = -0.49 

±0.02 Cross R-plane a-

axis ±0.01 Parallel 

 

4.2. Determination of PDP constants from 4-point uniaxial 

bending measurements. 

The simplest approach to the calibration of PDP constants for a 

selected vibrational band consists in generating a known 

uniaxial stress field along a known direction of the investigated 

crystal. One way of doing so consists in loading a rectangular 

crystal bar in a four-point flexure jig. The jig, equipped with a 

load-cell, is then placed under the Raman microprobe, and 

Raman line scans are performed along its thickness to reveal 

the spectral shifts of selected bands as a function of the location 

along the bar thickness. Figure 5 shows a schematic draft of the 

bending calibration setup adopted in this study, including the 

uniaxial stress field, our choice of Euler angles, and the selected 

laboratory Cartesian system. The x-axis was set along the stress 

direction, while the y-axis was taken along the specimen 

thickness (i.e., along the loading direction) at the center of the 

bending bar. According to these choices, the uniaxial stress 

field can easily be expressed by a scalar quantity, , with 

all the other tensor components being equal to zero. The 

calibration method using the four-point flexure configuration 

involves both compressive and tensile uniaxial stresses, whose 

maxima, , are of the same magnitude. The uniaxial stress 

field varies linearly along the bar thickness, as a function of the 

abscissa, y, as follows: 

                            
where P is the (known) applied load, w and h are the width and 

the thickness of the bending bar, respectively, and L and l are 

the large and the small span of the bending jig, respectively (cf. 

Fig. 5). 

 
Fig. 5: Schematic draft of the bending calibration setup, including the 

uniaxial stress field, our choice of Euler angles, and the selected 

laboratory Cartesian system in 4 calibration configurations (Case 1~4) 
only differing in crystal orientation. 

 

After having applied a given bending load, P, a series of Raman 

spectra can be collected at locations along the specimen 

ψ

σ ij =σ xx

± σmax

σ xx y( ) = 2y

h
σ max =

2y

h
×

3P L − l( )
2wh2

(42) 
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thickness, as a function of the abscissa, y. Since the uniaxial 

stress, , is linked to the abscissa, y, through Eq. (42), the 

experimentally collected dependence, , can be promptly 

converted into the dependence, . In the simple case of 

uniaxial stress, Eqs. (25) and (35), for A1g and Eg modes, 

respectively, can be greatly simplified and become:  

]

, 2
1 11 2 12 3 13

0,

2
2 11 1 12 3 13

2 2
1 13 2 13 3 33

1
( )(cos cos cos sin sin )

2

( )(cos sin cos cos sin )

( )sin cos

A A A
A A
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A A A

A A A
xx

K S K S K S

K S K S K S
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θ ϕ σ

⊥ ∆ = ∆ = + + −

+ + + +

+ + +

�

   

and 

 

 

 
Under the assumption of a linearly elastic deformation of the 

bending bar, the plot of spectral shifts, , in the interval,

, should be linear. The slope of such a plot 

depends on the vibrational mode analyzed and is related to a 

specific combination of PDP constants, as governed by Eqs. 

(43) and (44). It should be noted that, as far as the corundum 

structure is concerned, the full set of PDP constants includes 7 

independent values, namely 3 and 4 constants for the A1g and 

the Eg mode, respectively. In other words, one needs to carry 

out at least four uniaxial bending experiments along different 

crystallographic directions. According to the sample 

availability of both single-crystalline and polycrystalline nature 

in this study, we carried out five different bending calibration 

tests. In testing single-crystalline samples, the uniaxial stress 

field was applied in 4 different configurations, as follows: 

(Case 1) loading direction, m-axis; stress direction, a-axis (

); (Case 2) loading direction, a-axis; stress 

direction, m-axis ( ); (Case 3) loading direction, 

m-axis; stress direction, c-axis ( ); and, (Case 

4) loading along direction, ; stress direction,  (

). The four cases mentioned above are 

schematically depicted in Fig. 5 with reference to the 

orientation of the corundum structure. The equations derived 

from Eqs. (44) and (45), which are pertinent to the above 4 

cases and give the predicted slopes of the plots , can be 

listed, as follows: 

Case 1: 

                           

  
Case 2: 

                        

    
Case 3: 

                    (49) 

                                        (50) 

Case 4: 

    

 
An additional bending experiment, henceforth referred to as 

Case 5, was carried out on a fine grained polycrystalline 

alumina sample with a random orientation of the grains. With 

the interaction between Raman probe and grain structure lying 

in the configuration depicted in Fig. 3(c), the expected slopes 

for the uniaxial calibration in a polycrystalline sample can be 

set as: 

             

         
where the subscript p refers to the polycrystalline nature of the 

sample. From solving the above set of Eqs. (45)-(54) at any 

location along the thickness of the sample loaded in bending 

geometry, values of the PDP constants for the available Raman 

bands can be retrieved. 

According to the theoretical treatment given above, the PDP 

constants of the detected vibrational bands were extracted from 

five independent sets of calibration data in bending 

configuration, four sets collected on single-crystalline samples 

uniaxially loaded along different crystallographic directions, 

and one data set obtained from an untextured (fine-grained) 

Al2O3 polycrystal. Figures 6(a)-(e) show bending calibration 
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plots of spectral shifts for the 417 cm-1 A1g vibrational mode as 

a function of uniaxial stress magnitude for the five different 

samples (Cases 1~5), in parallel polarization configuration. 

Linear fitting according to the least square method enabled us 

to retrieve the values of the slopes, as explicitly given in inset 

to Fig. 6.  

 
Fig. 6: Bending calibration plots of spectral shifts for the 417 cm-1 A1g 

vibrational mode as a function of uniaxial stress magnitude for five 
different samples (Cases 1~5). Data were collected in a parallel 

polarization configuration of the Raman probe. Linear fitting is shown 

for each plot according to the least square method. 

 

Accordingly, a system of working equations could be obtained 

from Eqs. (45), (47), (49), and (51), as follows: 

 
All the obtained experimental plots were linear in the stress 

interval investigated, but exhibited different slopes. Similarly, 

for the 378 cm-1 Eg mode, calibration plots obtained on the 

sapphire single-crystals and polycrystal are depicted in Figs. 

7(a)-(e) (Cases 1~5). A system of independent equations could 

then be obtained, according to Eqs. (46), (48), (50), (52) and 

(54), as follows: 

  
 

 
Fig. 7: Bending calibration plots of spectral shifts for the 378 cm-1 Eg 

vibrational mode as a function of uniaxial stress magnitude for five 
different samples (Cases 1~5). Linear fitting is shown for each plot 

according to the least square method. 

 

Upon solving the two independent systems of Eqs. (55) and 

(56), the two sets of PDP values,  (i=1,2,3) and  

(j=1,2,3,4) could be determined, which corresponds to the 417 

cm-1 band of the A1g mode and to the 378 cm-1 band of the Eg 

mode, respectively. Similar procedures were also performed on 

the shifts recorded for the band located at around 645 cm-1 

(belonging to the A1g vibrational mode), and for the three bands 

detected at around 430, 578, and 750 cm-1 (all belonging to the 

Eg vibrational mode). The values of PDP constants obtained for 

all the above-mentioned Raman bands are listed in Table 4. 

Note that one of the advantages of a uniaxial calibration in 

bending is that it is not affected by probe broadening along the 

sample depth. This characteristic is a direct consequence of the 

linear character of the stress distribution along the thickness of 

the bending bar, which is independent of sample depth.46 In 

Table 4, the statistical scatter of the retrieved PDP constants is 

also shown, which helps to identify the degree of precision to 

which stress measurements can be made through exploiting the 
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sensitivity of each individual Raman band to a unitary stress 

state. 

 
Table 4 PDP constants obtained for all the observed Raman bands of 

the corundum structure of sapphire (average values and statistical 
scatter).  
 

Band 

(cm-1) 

 K1 (×103 

cm-2) 

K2 (×103 

cm-2) 

K3 (×103 

cm-2) 

K4 (×103 

cm-2) 

378 Eg -293±22 -227±24 -3.2±0.5 -8.5±1 

417 A1g -396±19 -406±6 -777±18 -- 

430 Eg -664±67 -613±74 -112±15 -30±5 

576 Eg -976±89 -721±76 -259±38 -16±3 

645 A1g  -610±69 -380±50 -764±73 -- 

750 Eg -2117±319 -1193±166 -165±28 -35±4 

 

4.3 Raman probe and local crystallographic assessments. 

The key for understanding the angular dependence of the 

Raman intensities for the vibrational modes of sapphire resides 

in analyzing the change in the in-plane periodicity of the 

mode when the crystal plane varies from the a- to the c-plane. 

In terms of Euler angles, such a variation corresponds to an out-

of-plane rotation by the angle,  (cf. Fig. 1(c)). Moving from 

the c-plane ( ) toward the a-plane ( ), the R-plane (

) corresponds to an intermediate configuration (cf. Fig. 

1(c)). Figures 8(a) and (b) show the geometrical rotation of the 

crystal planes and the associated change in periodicity, 

respectively, with reporting the behavior of the Raman 

intensity, , upon rotation by the angle, , in a single-crystal 

with crystallographic planes oriented at different angles, . The 

algorithm reported in this study for the identification of the full 

set of three Euler angles for any arbitrary crystal orientation, 

based on the Raman selection rules, provides a set of 

independent Eqs. (8)-(14), which gives the general angular 

dependences of the Raman intensities of the A1g and Eg phonon 

modes. 

 

Fig. 8: (a) Schematic of the geometrical rotation of a crystal plane in 

the corundum structure by the Euler angle, ; and, (b) the associated 

change in periodicity of the Raman intensity, , upon a rotation by the 

Euler angle, , as a function of the angle, . 

 

With the knowledge of the 4 RTE elements for the sapphire 

structure (cf. Table 3), four independent working equations 

have become available for describing the polarized Raman 

intensities as a function of three unknown Euler angles. Any 

three of these four equations can be used to assess the three 

Euler angle needed for determining in space any unknown grain 

orientation. A viable experimental approach could consist in 

recording, at a fixed location on the surface of a polycrystalline 

sample, two series of parallel- and cross-polarized Raman 

spectra as a function of the in-plane rotation angle, . Then, 

three angular dependencies can be selected among the four 

available ones (i.e.,  
IA1g

� ψ( )
, 

IA1g

⊥ ψ( )
,  

IEg

� ψ( )
, and ) and 

a best fitting routine run to determine the full set of Euler’s 

angles. A computational algorithm was built up to 

automatically assess grain orientation from the collected 

spectra, and this procedure was applied to a polycrystalline 

alumina sample under different probe/microstructure 

interactions, as described in Figs. 3(a)-(c). Figures 9(a)-(f) 

summarizes the results of such crystallographic assessments 

under different conditions on the surface of polycrystalline 

Al2O3. In Figs. 9(a) and (b), rotation experiments and the fitting 

algorithm resolve the three Euler angles (given in the caption) 

for a single grain larger than the confocal Raman probe (cf. 

probe/microstructure interaction as shown in Fig. 3(a)), namely 

an abnormally grown grain found in the microstructural 

network. As the counterpart limit-case, Figs. 9(e) and (f) show 

a conspicuous absence of relative intensity dependence for both 

A1g and Eg modes in the case of a large population of randomly 

oriented grains comprised in the Raman probe, as schematically 

shown in Fig. 3(c). In this latter case, the Raman measurement 

was conducted with a full aperture of the confocal pinhole, 

namely in a typically non-confocal configuration. Figures 9(c) 

and (d) show that it is still possible to detect in-plane angular 

dependences and, thus, to retrieve a set of (average) Euler 

angles in the case of only few grains comprised in the Raman 

probe, as in the case depicted in Fig. 3(b). When the Raman 

probe is applied in a confocal configuration (irradiation in the 

visible range and pinhole aperture of ~100 µm), the case 

represented by Figs. 3(b) and 9(c)/(d) is actually the most 

commonly found one for polycrystalline Al2O3 brands used in 

engineering applications (i.e., with an average grain size 

typically in the order of 1 µm). This point will be given a more 

detailed discussion in the next section. However, the important 

finding here is that the confocal Raman probe is still capable to 

provide us with an average crystal orientation (i.e., the one of 

the “probe mesocrystal”) in polycrystalline Al2O3, through 

which we can run our tensor-resolved stress algorithm. 

 

 
IEg

�

θ

θ = 0
θ =

π
2

θ =
58π
180

 
IEg

� ψ

θ

θ

 
IEg

�

ψ θ

ψ

IEg

⊥ ψ( )
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Fig. 9: (a)(b) Results of in-plane rotation experiments to resolve three 

Euler angles θ = π 4; ϕ = 9π 25; ψ = π 7( )  for grain size larger than the 
confocal probe volume (cf. probe/microstructure interaction in Fig. 

3(a)); (c)(d) in-plane angular dependences to resolve three (average) 

Euler angles θ = π 15; ϕ = 13π 45; ψ = π 9( )  when only few grains are 

comprised in the Raman probe (cf. probe/microstructure interaction in 

Fig. 3(b)); and, (e)(f) in-plane angular rotation experiments show no 
periodical dependences for probe/microstructure interaction as depicted 

in Fig. 3(c). 

4.4 Data acquisition and computational protocols at the 

ceramic/metal interface. 

As an application of the computational algorithms presented in 

the previous sections, we attempt hereafter the quantitative 

measurement of the complete set of tensor components for the 

case of a highly graded residual stress field stored into a 

polycrystalline alumina sample in the neighborhood of a metal 

joint. Figures 10(a) and (b) schematically show the overall 

geometry of the tested sample and the Raman measurement 

protocol, respectively. As discussed in previous sections of this 

paper, three different types of algorithm need to be merged 

together in order to achieve the desired outputs of stress 

analysis, namely the crystallographic algorithm based on Eqs. 

(8)-(14), the stress tensor computational algorithm based on 

Eqs. (25), (35) and (38), and the probe response algorithm 

based on Eqs. (39)-(41). The concurrent application of such 

algorithms requires the precise acquisition of various sets of 

Raman data in terms of both emission intensity and band shifts. 

As far as the analyses of crystallographic orientation and 

residual stress were concerned, a polarized Raman line-map 

was collected (in confocal configuration; pinhole aperture of 

100 µm) with the laser focused on the sample surface. The total 

length of the line scan was 30 µm, starting from the 

ceramic/metal interface (cf. abscissa, x, perpendicular to the 

ceramic/metal interface in Fig. 10(b)). A lateral step of 0.5 µm 

was maintained for the first 12 µm (i.e., where the stress 

gradient was expected to be steeper), while along the remaining 

length of the laser scan the lateral step was reduced to 2 µm. 

The local triplet of Euler angles at any given location could be 

retrieved from an in-plane rotation of   performed at the 

same location. However, due to an experimental difficulty in 

controlling the lateral sample displacement, rotation 

measurements were performed at locations every 3 µm away 

from the interface, within which same Euler angles were 

assumed. Raman peak shifts were recorded with respect to a 

reference peak position recorded under exactly the same 

measurement conditions on an annealed (i.e., nominally  stress-

free) sapphire single-crystal sample. 

 
Fig. 10: (a) Geometry of the tested ceramic/metal joint sample, and (b) 
the Raman measurement protocol adopted for spatial and tensor 

resolved assessments of residual stress in the neighborhood of the 

interface. 

 

Moreover, for investigating the stress gradient in the depth 

direction, by shifting the confocal probe at different depths, z, 

line-scan Raman measurements could be applied, with always 

keeping the lateral displacements set exactly along the same 

line of the surface scan. For comparison, band-shift profiles 

were also recorded (on the surface and at the same locations 

along the x-axis as those recorded for the Raman bands) for the 

fluorescence emission of the ruby lines of alumina. Regarding 

the assessment of PRF functions, both in-depth and in-plane 

Raman intensity scans were recorded and, based on those data, 

we determined the characteristic parameters p, B, and αeff in Eq. 

(39). In-depth PRF measurements along the z-axis (cf. Fig. 

10(b)) were performed with a step of 2 µm and repeated at each 

location of the line scan. For comparison, the PRF was also 

recorded at the same locations for the fluorescence emission of 

the ruby lines of alumina. From both Raman and fluorescence 

PRF data, an arbitrarily defined “probe depth”, zd, was 

computed as the sample depth at which 90% of the overall 

band-intensity emission was contributed to the detected spactra. 

Figure 11 shows the recorded variations of Euler angles as a 

function of the abscissa, x, perpendicular to the ceramic/metal 

interface. The shown Euler angles refer to data collected at the 

surface of the sample and were obtained from Raman (relative) 

intensity data as a function of in-plane rotation angle, , 

according to the same computational procedure shown in Sect. 

4.3 and depicted in Fig. 10(b).  

 

ψ = 2π

ψ
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Fig. 11: Recorded variations of Euler angles at the sample surface as a 

function of an abscissa, x, perpendicular to the ceramic/metal interface 

(x=0 corresponds to the location of the ceramic/metal interface). The 
microstructural arrangement at the measurement locations, as given in 

inset, was obtained from a filtered and sharpened cathodoluminescence 

image, which enabled us to visualize the grain boundaries on an 
otherwise featureless scanning electron micrograph of the polished 

surface. 

 

 
Fig. 12: Spectral band positions recorded on the free surface of the 

alumina polycrystal along a line scan across the interface; (a), (b), (c), 

(d), and (f) represent the variation in spectral position of Raman bands 
located at around 378, 429, 645, 418, 578, and 750 cm-1, respectively. 

The broken lines represent the results of the best-fitting routine applied 

according to Eq. (38) for resolving the stress tensor components as 
shown in the forthcoming Fig. 14. 

 

Spectral band positions, as recorded on the free surface of the 

alumina polycrystal along the entire line scan, are shown in Fig. 

12 for Raman bands located at around 417 and 645 cm-1 (i.e., 

belonging to the A1g vibrational mode), and 378, 430, 578, and 

750 cm-1 (i.e., belonging to the Eg mode). 

In-depth PRF plots comparing Raman and fluorescence bands 

are shown in Figs. 13(a)-(d), as detected at increasing distances 

from the ceramic/metal interface. All the results retrieved for 

the characteristic parameters p, B, αeff, and zd are listed in Table 

5. Two striking features appears in the experimentally 

determined PRF functions, as displayed in Figs. 13(a)-(d) and 

Table 3: (i) the parameters p, αeff, and zd are functions of the 

distance from the metal interface; and, (ii) the Raman probe is 

found always conspicuously smaller than the fluorescence 

probe at each measurement location. The above circumstance 

(i) likely arises from a chemical gradient of metal ions diffused 

along the Al2O3 grain boundaries during joining of the sample 

to the metallic component; the higher the concentration of 

metallic ions, the lower the penetration depth of the laser. From 

a computational point of view, the only consequence of this 

diffusional process is that the characteristic parameters p, αeff, 

and zd are functions of the abscissa, x, instead of being 

constants throughout the material. The latter circumstance (ii) is 

mainly a direct consequence of the absorption-re-emission of 

ruby line photons at Cr3+ sites, as already stated in the 

introductive section of this paper. 

 
Fig. 13: In-depth PRF plots comparing the behavior of Raman and 

fluorescence bands as detected at increasing distances from the 
ceramic/metal interface; (a), (b), (c), and (d) for x=0, 5, 10, and 30 µm, 

respectively. 

 

Table 5: Characteristic parameters p, B, αeff, and zd for the PRF 

of Raman and fluorescence emissions as a function of distance 

from the metal/ceramic interface. 

 

 x0 (µm) B 

(µm) 

p 

(µm) 

αeff 

(µm-1) 

zd 

(µm) 

 

 

Fluorescence 

Interface  

 

~3.5 

10 0.030 16.1 

5 10 0.023 18. 3 

10 13 0.020 22.4 

30 12 0.012 26.9 

 

 

Raman 

Interface  

 

~2.0 

3.6 0.030 9.1 

5 3.2 0.037 7.8 

10 4.2 0.014 13.1 

30 5.1 0.010 16.7 

 

With local Euler angles known from Eqs. (8)-(14), and the 

output of a computational routine based on Eq. (38) (i.e., as 

discussed in Sec. 2.3), we could obtain the profiles across the 

ceramic/metal interface for each individual stress component, 

as shown in Figs. 14(a)-(f) for the line scan performed with the 

confocal probe focused on the sample surface. A comparison 

between the experimental Raman band positions, as retrieved 

for each Raman band, and the convoluted curves representing 

the best-fitting solutions, which the algorithm of Eq. (38) has 

retrieved for stress-tensor deconvolution, are shown in Fig. 12. 

Discrepancies at any location are always <10% and confirm the 

internal consistency of the adopted computational procedure.  
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Fig. 14: Profiles across the ceramic/metal interface as retrieved for each 

individual stress tensor component on the line scan performed with the 
confocal probe focused on the sample free surface (i.e., the band-shift 

data in Fig. 12); tensor components 
σ xx ,σ yy ,σ zz ,σ xy ,σ xz , and 

σ yz  in (a), (b), 

(c), and (d), respectively. 

 

Repeating the same procedure for line-scans with the laser 

focus gradually shifted at several locations along the sub-

surface could also give one the possibility to perform a spatial 

deconvolution of the stress tensor profiles, according to the 

PRF algorithm expressed by the Eqs. (39)-(41). This approach 

takes advantage of the relatively high transparency of the 

material, and may contain more stress information than the 

method previously reported for surface stress analysis by using 

different probes, despite an equivalent trace of the principal 

stress tensor.47 Figure 15 shows the deconvoluted profiles of the 

trace of the principal stress tensor, , as a function of depth, z, 

at different locations along the abscissa, x. This stress 

magnitude should play a fundamental role in the resistance of 

the joint to external loading. The retrieved stress profiles could 

always be fitted to an equation of the type:48-50 

                                          
with the values of the constants n1, n2, n3, and n4 depending on 

the location of the measurement and thus function of the 

Cartesian coordinate, x (cf. values listed in Table 6). The 

residual stress magnitude on the sample surface was always 

strongly compressive with higher values in the very 

neighborhood of the interface, as dictated by the lower thermal 

expansion coefficient of Al2O3 as compared to the metal 

phases. However, upon proceeding along the sample depth, a 

steep stress gradient could be found with a maximum of (weak) 

tensile stress along the subsurface until reaching a stress free 

state (cf. Fig. 15). It should also be noted that the dependence 

of the function, , on probe location was not only a 

consequence of the stress gradient along the x-axis (i.e., as it 

should be expected due to the presence of the ceramic/metal 

interface), but also of the local stresses associated with the size 

and local orientation of the Al2O3 grains. In this context, 

therefore, the confocal Raman probe proved capable to capture 

such second-order effect in the local three-dimensional stress 

distribution. 

 
Fig. 15: Deconvoluted profiles of the trace of the principal stress tensor, 

, as a function of depth, z, at different locations along the abscissa, 

x. All plots were found to obey Eq. (57) with the values of the constants 

n1, n2, n3, and n4 listed in Table 6.  
 
Table 6: Values of the constants n1, n2, n3, and n4 as displayed in Eq. 

(57), which describes the in-depth stress profiles as a function of the 
location of the measurement across the metal/ceramic interface. 

 

 x=0 

µm 

x=5 

µm 

x=10 

µm 

x=15 

µm 

x=20 

µm 

x=25 

µm 

n1 72869 61750 14839 14878 16403 11146 

n2 -10.5 -10.2 -5.0 -5.2 -5.5 -3.3 

n3 25 15 18 23 20 19 

n4 7 10 7 8 8.5 6 
 

4.5 Validation of the stress algorithm in comparison with 

fluorescence spectroscopy. 

In the context of this paper, a comparison between fluorescence 

and Raman data in terms of residual stress profiles is 

considered a central task for validating the newly proposed 

algorithm for tensorial and spatial deconvolutions of stress 

fields in polycrystalline alumina. However, a direct comparison 

between the spectroscopic outputs of the two probes is 

definitely not a straightforward task. There are mainly two 

fundamental differences, inherent to the different physical 

nature of the two probes, which have to be taken into 

consideration: (i) the fluorescence probe experiences a spectral 

shift that is proportional to the trace of the principal stress 

σ ii

∗

σ ii

∗ z( ) = n1

n2 + n3 z − n4( )
n2

2 + z − n4( )2





2

σ ii z( )

σ ii

∗

(57) 
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tensor, , namely, to the algebric sum of the three 

hydrostatic components of the stress tensor when represented in 

a selected Cartesian frame that diagonalizes it (i.e.,  for 

);51 and, (ii) the parameters of the PRF are substantially 

different for the two probes (cf. Table 5), and thus there exist a 

conspicuous difference in spatial resolution between Raman 

and fluorescence measurements. This latter circumstance plays 

a role when highly graded stress fields, as in the case of 

metal/ceramic interfaces, are probed. In order to match these 

differences in spectroscopic characteristics, we first 

diagonalized the stress tensor components in Fig. 12 (i.e., those 

obtained from Raman data) at each location along the line-scan 

profile and then computed the related tensor trace, , from 

the diagonalized tensors as a function of the abscissa, x. As an 

additional procedure to make comparable the depth resolution 

of the two probes, we exploited the knowledge of the function, 

, at each location (cf. Eq. (57) and Fig. 15) to normalize 

the two probes to the same depth, , through their respective 

PRF parameters. Figure 16 shows a comparison between the 

outputs of the two probes in terms of trace of the stress tensor, 

. The shift of the fluorescence R1 line was converted into 

the stress magnitude, , by means of the piezo-

spectroscopic tensor given by He and Clarke.7 The reasonable 

agreement observed between the two sets of data proves the 

consistency between the responses of the two different probes. 

It also becomes clear that, unlike fluorescence, the Raman 

spectrum possesses inherent information of the stress tensor 

components, while being also capable to resolve local 

fluctuations of stresses related to the polycrystalline nature of 

the sample.  

 
Fig. 16: Comparison between the outputs of the Raman and 
fluorescence probes for data collected at exactly the same locations in 

terms of trace of the stress tensor, . The comparison proves the 

consistency between the responses of the two different probes, thus 
validating our newly proposed Raman protocol for stress tensor 

assessments. Related error bars were also provided in the figure. 

 

4.6 Importance of the present findings in the applicative 

world 

While Raman spectroscopy is nowadays an established and 

powerful tool in non-invasive real-time analysis and diagnostics 

for a wide range of samples, its translation into practical 

applications is yet, in the majority of the cases, impeded by an 

intrinsic lack of robustness of the related spectroscopic 

algorithms and calibration models. This paper indeed proves 

that Raman algorithms might become quite complicated and 

cumbersome when applied to polycrystalline matter, and this 

has been the main reason for their applicative delay. However, 

with advanced applications progressing day by day towards 

new frontiers of science, systematic approaches are yet missing 

that could fully expand the Raman method to the real industrial 

world. Such approaches can only start from basic concepts of 

group theory, but they have to reach a more practical state, in 

which expanded and workable algorithms of selection rules and 

secular equations could actually be employed in industrial 

research and development. This paper has solved for the first 

time the experimental problem of tensorial deconvolution of 

three-dimensional microscopic stress states in polycrystalline 

matter for trigonal crystals. The general user through computer 

routines can easily automatize the equations, now established 

and validated, in order to become user friendly at their final 

stage. In this development, our main driving force has been the 

strong request from the industrial world for a fully non-

destructive approach (yet missing) to quantitatively extract, at a 

microscopic scale, shear stress components from the Raman 

spectrum, and to apply this practice to non-destructive stress 

analyses and quality control. We had in mind not only 

ceramic/metal joints, as explicitly shown in this paper, but also 

the bearing surfaces of artificial hip and knee joints in the field 

of joint arthroplasty (in which alumina is largely employed)52 

and alumina coating applications used in various structural and 

electronic fields.53 Our findings here thus solve a long-standing 

problem in material physics through a physical chemistry 

approach, and pave the way to systematic (and non-destructive) 

reliability assessments of component quality from the 

micromechanical viewpoint. An arguable criticism to our 

expanded approach could be that the solution presented in this 

paper actually fills the gap between the formalism and the true 

materials only in a pragmatic way. The devil is in the scale (or 

gradients) of the local stress fields built up at grain boundaries. 

The concept of “mesocrystalline” Raman probe can actually be 

equated to that of the “mesh unit” in finite element analyses, the 

finer the mesh the more accurate the computation. From this 

point of view, our Raman approach has translated a problem of 

solid-state physics into an engineering problem, although any 

further improvement in spatial resolution of the stress analysis 

must await a technological breakthrough in efficiency of the 

Raman hardware. 

5 Conclusions 

A spectroscopic method has been proposed to extract the full 

set of stress tensor components from polarized Raman 

measurements. Theoretical formulations were first worked out 

to establish the dependences on both crystallographic 

orientation and stress state of the A1g and Eg Raman modes of 

sapphire with corundum structure. Then, RTE and PDP 

constants for both A1g and Eg modes were experimentally 

determined by means of a series of controlled experiments on 

differently oriented single-crystalline sapphire samples and a 

polycrystalline Al2O3 sample. With the quantitative knowledge 

of these two sets of physical constants, the tensorial 

determination of unknown stress fields has become a generally 

feasible task. Accordingly, a reliable analytical tool has become 

available, which builds upon the already known versatility of 

Raman spectroscopy in materials analyses. A computer-aided 

procedure has also been suggested for removing averaging 

σ ii

∗

σ ij ≠ 0

i = j

σ ii

∗

σ ii

∗ z( )

z0

σ ii

∗

σ ii

∗
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effects that arise from the finite size of the optical probe and 

restoring spatial resolution. An experimental confirmation of 

the overall working algorithm (i.e., including crystallographic, 

stress-tensorial and spatial probe deconvolutions) could be 

obtained by measuring the highly graded residual stress field 

stored at a bonded interface between polycrystalline alumina 

and a layer of Nb/Mo/Ni metal. Measurements at exactly the 

same locations across the interface were performed with 

collecting both Raman and fluorescence emissions, namely two 

physically independent spectroscopic tools. After taking into 

account the different nature of the two probes, the stress results 

showed good agreement, thus validating the newly developed 

Raman algorithm by means of the more conventional 

fluorescence method. Although both experimental and 

computational procedures for tensor-resolved stress analyses in 

polycrystalline samples are lengthy when manually applied, 

they could be easily implemented into an automatic computer 

routine and eventually become adopted in routine industrial 

practices. The procedure shown in this paper could be extended 

to other polycrystalline samples with non-cubic structure and, 

thus, opens the way to fully tensor-resolved analyses of stress 

fields in polycrystalline ceramics, a long missing item in the 

otherwise flourishing panorama of Raman spectroscopy. 
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