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Simulation of X-Ray Absorption Spectra with Orthogonality Con-

strained Density Functional Theory†
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Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem.

A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work

we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states.

Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation

energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and

second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of

the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray

absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

1 Introduction

The advent of synchrotron light sources created a strong resur-

gence of spectroscopy in the X-ray region.1 Near-edge X-ray

absorption spectroscopy (NEXAS) is a useful experimental

technique to probe the local electronic and geometrical struc-

ture in a variety of molecular environments. The most dom-

inant feature of NEXAS spectra, the near edge (see Fig. 1),

is composed of the excitations of core-electrons to unoccu-

pied valence orbitals. Core excitations are atom-specific and

sensitive to the local chemical environment, thus, NEXAS

spectra can provide information about the chemical compo-

sition and the electronic structure of molecules. NEXAS has

been successfully applied to large biological systems,2 small

molecules in the gas phase,3 organic thin-films,4 and semi-

conducting materials.5 This wide range of applications is pos-

sible because synchrotron light sources can span an energy

range that goes from a few electron volt (eV)6 to hundreds of

MeV.7

As NEXAS experiments are becoming more feasible, there

is a growing need to develop accurate theoretical approaches

to aid the interpretation of experimental spectra. Calcula-

tions of NEXAS spectra are challenging, and require com-

putational methods that explicitly account for the excita-

tions of core-level electrons, orbital relaxation effects, and

electron correlation.8 Several theoretical approaches have

been adapted to compute core-valence excitations, including:

scaled-opposite-spin configuration interaction singles with

Department of Chemistry and Cherry L. Emerson Center for Scientific Com-

putation, Emory University, Atlanta, Georgia 30322, USA

† Electronic Supplementary Information (ESI) available: Cartesian geome-

tries for adenine and thymine optimized at the B3LYP/def2-TZVP level

of theory, tables reporting all computed excitation energies of adenine and

thymine. See DOI: 10.1039/b000000x/

perturbative doubles [SOS-CIS(D)],9 a restricted open-shell

DFT/CIS method,10,11 second-order algebraic digrammatic

construction [ADC(2)],12,13 multiple scattering Xα meth-

ods,14 a maximum overlap ∆SCF approach,15 restricted ac-

tive space SCF method (RASSCF),16 transition potential the-

ory,17 coupled-cluster response theory,8 time-dependent den-

sity functional theory (TDDFT),18 and restricted excitation

window TDDFT (REW-TDDFT).19 Among these methods,

TDDFT is perhaps the most attractive option because of its

reduced computational cost and ability to calculate multiple

excited states.

TDDFT is a rigorous extension of the DFT ground-state

formalism,20 and it is regarded as the method of choice

to treat electronic excited states within a density functional
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Fig. 1 Example of a X-ray photoabsorption spectrum (XAS). The

near edge, located in the low energy region, consists of excitations

of core electrons to valence orbitals. These transitions are sensitive

to the chemical environment surrounding the excited atom. The high

energy region of the spectrum results from excitations of core

electrons to the continuum.
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framework. When applied in conjunction with frequency-

independent exchange-correlation potentials, TDDFT yields

accurate excitation energies for low-lying excited states. For

example, the TDDFT benchmark study of Silva-Junior and

co-workers21 on 28 organic molecules, showed that singlet

and triplet excitation energies can be calculated with a mean

average error (MAE) of 0.27 eV and 0.44 eV, respectively.

However, Besley et al.15 showed that TDDFT core excita-

tions computed with conventional exchange-correlation func-

tionals grossly underestimate experimental results, yielding a

MAE of 20.2 eV. It is customary to remedy this deficiency of

TDDFT by shifting the position of computed spectra by an

amount that minimizes the difference between the computa-

tional and experimental peak features. For example, a study

done by DeBeer, Petrenko, and Neese22 showed that it is nec-

essary shift the TDDFT Fe near-edge spectrum of different

iron complexes by 171.3 eV in order to achieve quantitative

agreement with experiment. This shift is dependent on the ba-

sis set and functional used and must be recalibrated for every

basis set/functional combination applied to a given system.

Work by Peach et al.23 provided evidence for a direct cor-

relation between the accuracy of TDDFT and the degree of

spatial overlap (Λ) between the occupied and virtual orbitals.

The inaccuracy of TDDFT for excitations with low values of

Λ has been attributed to the incorrect asymptotic behavior

of the exchange-correlation potential and self-interaction er-

ror.23 Low orbital overlap is a characteristic feature of both

charge-transfer excitations and core excitations, and as ex-

pected, the same correlation between accuracy and orbital

overlap is observed for core excitations.24 As a consequence,

TDDFT core-valence excitation energies can be improved by

introducing self-interaction corrections (SIC)25 or range sepa-

rated hybrid functionals in which the amount of long and short

range Hartree–Fock exchange is reparametrized.24,26 How-

ever, the optimal value of the range separation parameter and

the amount of Hartree–Fock exchange are strongly system de-

pendent and must be tuned.27–29

A general method that can systematically produce accurate

core-excitation energies with traditional (that is, non range

corrected) hybrid density functionals is highly desirable. The

maximum overlap method (MOM)15 combined with a ∆SCF

treatment of core-valence excitations is able to obtain highly

accurate excitation energies using conventional functionals.

However, this procedure is not guaranteed to avoid the prob-

lem of variational collapse—albeit MOM ameliorates the dif-

ficulties encountered by a straightforward ∆SCF procedure—

and has not been generalized to multiple excited states of the

same symmetry.

The goal of this work is to find cost-effective alternative

theories to TDDFT that can be used to simulate NEXAS

spectra. Orthogonality constrained density functional theory

(OCDFT)30 was rigorously derived from a variational time-

independent formulation of excited state DFT. It builds upon

previous successful efforts to formulate variational excited

state DFT, such as: the ∆SCF procedure,31,32 constrained

DFT,33 stationary state DFT,34 constricted variational density

functional theory (CV-DFT),35–38 perturbative constrained ex-

cited state DFT,39–41 ensemble DFT,42–45 and variational time

independent DFT (TI-DFT).46,47 Formally, OCDFT may be

viewed as bridging constrained and constricted variational

DFT. Its main advantages are: 1) a favorable accuracy/cost

ratio, similar to that of ground state DFT, 2) a numerically ro-

bust optimization procedure that avoids variational collapse,

and 3) the ability to compute spin adapted excitation energies.

Benchmark computations30 show that valence excitation en-

ergies computed with OCDFT have error metrics comparable

to that of TDDFT. In addition, OCDFT has the ability to ac-

curately compute charge-transfer excitation energies regard-

less of the amount of Hartree–Fock exchange present in the

exchange-correlation functional.

This work introduces two new developments of OCDFT

that are necessary for the simulation of near-edge X-ray ab-

sorption spectra. First, we formulate an OCDFT algorithm

that can be used to compute core-valence excitation energies.

This new method is assessed over a test set that includes 13

molecules with 40 unique core-electron excitations. Second,

we discuss one approach to extend OCDFT to multiple ex-

cited states of the same symmetry. We demonstrate the po-

tential of this new method with computations of the gas-phase

near-edge spectrum of adenine and thymine.

2 Theory

In this section we provide a brief summary of orthogonal-

ity constrained density functional theory along with the nec-

essary extension to multiple excited states (for the full de-

tails of the OCDFT derivation we refer the reader to Ref.

30). OCDFT builds upon the time-independent variational

DFT approach developed by Ayers, Levy, and Nagy.48 Within

this framework, each electronic state (Ψ(n),n = 0,1, . . .) of

a N-electron system has a corresponding density functional

(E(n)[ρ]) which is a generalization of the ground-state func-

tional of Levy. E(n)[ρ] minimizes the energy expectation value

〈Ψ| Ĥ |Ψ〉 imposing two constraints on to the trial wave func-

tion Ψ: 1) Ψ must be compatible with the density ρ , and 2)

Ψ must be orthogonal to the first n−1 exact electronic states,

{Ψ(k),k = 1, . . . ,n−1}:

E(n)[ρ] = min
Ψ→ρ

Ψ⊥{Ψ(k)}

〈Ψ| Ĥ |Ψ〉 . (1)

OCDFT provides a practical realization of this time-

independent DFT approach. The first step in the OCDFT

derivation consists in defining a generalized Kohn–Sham
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Fig. 2 Illustration of the projection operators used in OCDFT.

Notice, that a consequence of Eqs. (4)–(5) is that the hole [φ
(1)
h ] and

particle [φ
(1)
p ] orbitals are contained in the spaces spanned by P̂(0)

and Q̂(0).

scheme that, for each electronic state Ψ(n), postulates an aux-

iliary system of noninteracting electrons with wave function

Φ(n) and density ρ
(n)
s . The density of state Φ(n) is assumed to

be equal to the density of the exact state Ψ(n), which we indi-

cate with ρ(n). In addition, we assume that the auxiliary wave

functions are orthogonal, that is:

〈

Φ(m)
∣

∣Φ(n)
〉

= δmn. (2)

This condition can be imposed without loss of generality. It

avoids the excited state wave functions from collapsing down

to the ground state solution, and effectively transfers some of

the complexity of the excited state density functionals to the

kinetic energy operator. Nevertheless, this variational Kohn–

Sham scheme involves energy functionals [E
(n)
KS ] that contain

exchange-correlation contributions [E
(n)
xc ] specific for each ex-

cited state. In OCDFT, we invoke an adiabatic approximation

similar to the one used in TDDFT, and replace E
(n)
xc with the

ground state exchange-correlation functional, E
(0)
xc . The re-

sulting functional for excited state n is given by:

E
(n)
OCDFT[{φ

(n)
i }] =−

1

2

occ

∑
i

〈

φ
(n)
i

∣

∣∇2
∣

∣φ
(n)
i

〉

+
∫

drv(r)ρ(n)(r)

+ J[ρ(n)]+E
(0)
xc [ρ(n)].

(3)

Minimization of the E(n)[{φ
(n)
i }] with respect to the occu-

pied orbitals for state n can be performed with a modified

self-consistent-field algorithm.30 In the case of the first ex-

cited (n = 1), it is possible to show that the orthogonality con-

dition [Eq. (2)] implies the existence of two special orbitals.

As illustrated in Fig. 2, these are the hole [φ
(1)
h ] and particle

[φ
(1)
p ] orbitals, which are respectively unoccupied and occu-

pied in the excited state wave function Φ(1). These orbitals

must satisfy the conditions:

Q̂(0)φ
(1)
h = 0, (4)

P̂(0)φ
(1)
p = 0, (5)

where P̂(0) = ∑i

∣

∣φ
(0)
i

〉〈

φ
(0)
i

∣

∣ is a projector onto the occupied

orbitals of Φ(0), and Q̂(0) = 1− P̂(0). Eqs. (4) and (5) can

be enforced via Lagrangian multipliers. Setting the variation

of the Lagrangian with respect to the occupied ({φ
(1)
i }), hole

(φ
(1)
h ), and particle (φ

(1)
p ) orbitals to zero gives the following

eigenvalue equations:

(1− P̂
(1)
h/p

) f̂ (1)(1− P̂
(1)
h/p

)|φ
(1)
i 〉= ε

(1)
i |φ

(1)
i 〉, (6)

P̂(0)(1− Q̂
(1)
s ) f̂ (1)(1− Q̂

(1)
s )P̂(0)|φ

(1)
h 〉= ε

(1)
h |φ

(1)
h 〉, (7)

Q̂(0)(1− P̂
(1)
s ) f̂ (1)(1− P̂

(1)
s )Q̂(0)|φ

(1)
p 〉= ε

(1)
p |φ

(1)
p 〉, (8)

where f̂ (1) is the Kohn–Sham Hamiltonian of the excited state.

Eq. (6) determines the occupied orbitals, while Eqs. (7) and

(8) determine the hole and particle orbitals, respectively. The

projection operators involved in the OCDFT equations are de-

fined as (see Fig. 2):

P̂
(1)
h/p

= P̂
(1)
h + P̂

(1)
p =

∣

∣φ
(1)
h

〉〈

φ
(1)
h

∣

∣+
∣

∣φ
(1)
p

〉〈

φ
(1)
p

∣

∣, (9)

P̂
(1)
s = P̂(1)− P̂

(1)
p , (10)

Q̂
(1)
s = Q̂(1)− P̂

(1)
h , (11)

where the subscript “s” stands for spectator orbitals. In

OCDFT computations of valence excited states, the hole or-

bital is assumed to be the solution of Eq. (7) with the highest

value of ε
(1)
h . Similarly, the particle orbital corresponds to the

lowest eigenvalue of Eq. (8).

Our OCDFT approach for core-excited states introduces

two new aspects. First, in order to compute core-excited states

with OCDFT, we select hole orbitals with the smallest val-

ues of ε
(1)
h . However, this simple extension allows us only to

compute one core-excited state for each irreducible represen-

tation. In principle, OCDFT can be generalized to compute an

arbitrary number of excited states. For each additional excited

state, it is necessary to minimize the OCDFT energy impos-

ing orthogonality with respect to the lower energy solutions.

While this appears to be a viable solution, it would undoubt-

edly lead to a more elaborate minimization procedure. In this

work we propose simplified orthogonality conditions that are

based on the orthogonality of the hole and/or particle orbitals.

For example, if we choose the hole orbital for the second ex-

cited state [φ
(2)
h ] to be orthogonal to the first hole [φ

(1)
h ] and to
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which scales as dN4. TDDFT certainly provides a more direct

approach to the computation of multiple excited states, but in

our experience we observe that the OCDFT/CMHP algorithm

has a cost comparable to that of TDDFT and in most cases can

be applied in a black-box way.

3 Computational Details

Our OCDFT for core-excited states was implemented as a plu-

gin for the PSI4 ab initio quantum chemistry package.49 The

OCDFT excitation energies for a set of 13 small molecules

reported in this study were computed using the B3LYP,50–53

PBE054, and BLYP53,55 functionals, using the correlation-

consistent polarized core-valence basis sets (cc-pCVXZ, X =

T,Q)56 and the Karlsruhe valence polarized basis sets (def2-

XZVP, X = T,Q).57,58 All geometries were optimized at the

same level of theory as the given excitation energy. The opti-

mized geometries and the NEXAS spectrum of adenine and

thymine were computed at the def2-TZVP/B3LYP level of

theory (cartesian geometries are provided in the supplemen-

tary material). Benchmark TDDFT excitation energies were

computed at the B3LYP/def2-QZVP level of theory using the

ORCA software package.59 All excitation energies reported in

this work, including TDDFT, are for singlet states. In the case

of OCDFT, the singlet excitation energies were computed via

the spin-raising approach described in Ref. 30.

It is mandatory to consider relativistic effects when study-

ing excitations of core electrons.60–63 For excitations involv-

ing 1s orbitals, we approximate the relativistic excitation en-

ergy (ωR) as the sum of the nonrelativistic excitation energy

(ωNR) minus a correction ∆ε1s:

ωR = ωNR−∆ε1s, (21)

where ∆ε1s is the energy difference between the ground-state

nonrelativistic (NR) and relativistic (R) Kohn–Sham energies

of the 1s orbital:

∆ε1s = εR
1s− εNR

1s . (22)

In this work, the excitation energies computed in OCDFT

and TDDFT utilize relativistic orbital energies calculated with

first-order Douglass–Kroll–Hess (DKH) Hamiltonian.64–66

Relativistic corrections for the 1s orbitals of the second row

nuclei range from 3.8 eV (Si) to 10.1 eV (Cl). In the case of

first row 1s core orbitals, ∆ε1s is negligible (C, N, and O 1s

corrections are about 0.1, 0.2, and 0.3 eV, respectively). Sim-

ilarly, excitations from 2p orbitals of second row elements are

negligible (max 0.05 eV) and were not applied to the final re-

sults.

The treatment of core-excited states in molecules with sym-

metry equivalent atoms becomes problematic for both pure

and hybrid functionals due to the approximate treatment of

exchange and correlation which introduces a self-interaction

error.67,68 In this case, the symmetry restricted solution pro-

duces core holes distributed evenly amongst the symmetry

equivalent atoms. Instead, the symmetry unrestricted solu-

tion may consists of core holes localized on each individual

atom. For all molecules with symmetry equivalent atoms (N2,

C2H2, and Cl2) we studied both the symmetry restricted and

unrestricted solutions. To obtain a state where the core hole is

localized, we utilize a wave function with broken spatial and

spin symmetry mixing the coefficients of the alpha and beta

orbitals.

Peak intensities for the transition Ψ(n)←Ψ(0) are based on

the oscillator strength ( fosc):

fosc =
2

3
|µn0|

2ωn, (23)

which is calculated from the excitation energies (ωn) and tran-

sition dipole moments (µn0). Although OCDFT does not pro-

vide a direct way to compute transition dipole moments, these

can be approximated using the Kohn–Sham determinants as:

µn0 =
〈

Φ(n)
∣

∣r̂
∣

∣Φ(0)
〉

, (24)

where Φ(n) is a generic excited state and r̂ is the position vec-

tor. Eq. (23) yields the absolute oscillator strength ( fabs) for a

given transition. The intensity of the spectrum is then scaled

relative to the most intense peak, we will refer to these scaled

values as the relative oscillator strength ( frel). Natural spec-

troscopic broadening effects are simulated by convoluting the

OCDFT peaks with a Gaussian function whose exponent was

calibrated to best fit the experimental spectrum.

4 Results and Discussion

4.1 Calibration of OCDFT core-excitation energies

The accuracy of OCDFT was benchmarked using a test set

that comprises molecules containing first-row (CO, H2CO,

N2O, N2, HCN, CH4, C2H4) and second-row elements (SiH4,

Table 1 OCDFT core-excitation energies for a benchmark set

composed of 13 diatomic molecules. Mean absolute error (in eV)

computed using various combinations of basis sets and density

functionals. These statistics refer to a subset of the benchmark set

comprised of 35 core-excited states.

Basis Set Mean Absolute Error (eV)

BLYP B3LYP PBE0

def2-TZVP 1.0 1.0 0.9

def2-QZVP 1.0 1.0 1.4

cc-pCVTZ 1.3 1.3 1.6

cc-pCVQZ 1.5 1.5 1.7
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Table 2 Core excitation energies for molecules containing first-row elements. Computations were performed using the B3LYP density

functional and def2-QZVP basis set. The OCDFT and TDDFT results are reported here as deviations from the experimental value in electron

volts (eV), mean absolute error (MAE) is also reported for each method. Experimental values are from Refs. 69– 77.

Molecule Excitation Exp. (eV) Error (eV) fabs×10−2

TDDFT OCDFT OCDFT

CO C 1s→ π∗ 287.4 −11.3 −0.8 4.23

C 1s→ 3s 292.4 −10.5 0.9 0.26

O 1s→ π∗ 534.2 −13.4 −1.2 1.74

O 1s→ 3s 538.9 −13.0 0.2 0.01

H2CO C 1s→ π∗ 286.0 −10.7 −0.6 3.33

C 1s→ 3s 290.2 −10.7 −0.2 0.62

O 1s→ 3s 535.4 −14.1 −0.6 0.06

O 1s→ π∗ 530.8 −14.0 −0.8 2.04

N2O† O 1s→ π∗ 534.8 −14.3 −1.0 1.08

O 1s→ 3s 536.7 −13.6 −0.4 1.67

Nc 1s→ 3s 407.5 −12.1 0.6 3.11

Nt 1s→ π∗ 401.1 −12.2 −0.9 2.41

Nt 1s→ 3s 404.0 −11.5 −0.4 0.90

N2 N 1s→ π∗ 401.0 −12.4 −0.9 2.90

N 1s→ 3s 406.2 −8.5 1.7 0.00

HCN C 1s→ π∗ 286.4 −10.6 −0.5 2.57

C 1s→ 3s 289.1 −9.9 −0.1 0.81

N 1s→ π∗ 399.7 −12.0 −0.8 2.46

N 1s→ 3s 401.8 −10.4 0.2 0.28

CH4 C 1s→ 3p 288.0 −10.1 0.1 1.85

C 1s→ 3s 287.1 −10.8 −0.5 0.00

C2H2 C 1s→ π∗ 285.8 −10.5 −0.6 2.27

C 1s→ 3s 287.7 −9.1 −0.1 0.11

MAE 11.6 0.4

†The subscripts c and t stand for the center and tail nitrogen of N2O.

functional50,86 that has been augmented to include 58% HF

exchange, 39% B88 exchange, and 8% Slater exchange. When

applied to a test set of first row core excitations similar to those

in Figure 2, BH0.58LYP yielded a mean average error of 0.8

eV. It is encouraging that OCDFT can achieve a higher level

of accuracy without altering the amount of Hartree–Fock ex-

change included in the functional. It is also gratifying to see

that the OCDFT MAE for this set of first row core excited

states is comparable to the MAE obtained for valence excited

states (0.3 eV reported in Ref. 30). When computing core

excited states of second-row nuclei, TDDFT becomes highly

inaccurate, producing an average error larger than 30 eV. Pre-

vious work by Tozer and coworkers23 showed that there is a

correlation between the level of accuracy of TDDFT excita-

tion energies and the amount of overlap between the orbitals

involved. We expect this correlation to also be observed in

core electron excitations, where the core hole and valence par-

ticle orbitals have little overlap. Following Tozer et al.,23 in

OCDFT we define the overlap between the hole and particle

orbital (Λhp) for any excited state n as the integral:

Λhp =
∫

|φ
(n)
h (r)||φ

(n)
p (r)| dr. (25)

Figure 5 reports the distribution of OCDFT and TDDFT

excited states as a function of the energy error and the

hole/particle orbital overlap. The scatterplot clearly shows that

OCDFT is less sensitive to variations in the overlap. When

calculating core excited states with Λhp < 0.12, the MAE for

OCDFT increases by only 1.5 eV, while in the case of TDDFT

the absolute error increases drastically by 35.9 eV.

Tables 2 and 3 also report oscillator strengths computed

with OCDFT at the B3LYP level of theory. An extensive quan-

titative comparison with experimental line intensities is not

practical, however, some qualitative analysis is possible and

provides insight into the reliability of the computed oscillator

strengths. In general, the lower energy core-valence excita-
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Table 3 Core excitation energies for molecules containing second-row elements. Computations were performed using the B3LYP density

functional and def2-QZVP basis set. The OCDFT and TDDFT results are reported here as deviations from the experimental value in electron

volts (eV), mean absolute error (MAE) is also reported for each method. Experimental values are from Refs. 78– 83.

Molecule Excitation Exp. (eV) Error (eV) fabs×10−2

TDDFT OCDFT OCDFT

SiH4 Si 1s→ σ∗ 1842.5 −38.4 −1.8 0.18

Si 2p→ σ∗ 102.8 −4.8 0.6 0.33

PH3 P 1s→ σ∗ 2145.8 −44.1 −2.9 0.23

P 2p→ σ∗ 132.3 −5.1 0.7 0.36

H2S S 1s→ σ∗ 2473.1 −48.3 −3.0 0.14

S 1s→ 4p 2476.3 −52.1 −1.5 0.24

S 2p→ σ∗ 164.5 −5.1 0.8 1.98

S 2p→ 4s 166.5 −7.1 −0.7 0.51

SO2 S 1s→ π∗ 2473.8 −50.1 −3.7 0.39

S 1s→ 4p 2478.4 −49.3 −2.4 0.24

S 2p→ 4s 171.3 −8.3 −1.5 0.05

HCl Cl 1s→ σ∗ 2823.9 −53.8 −2.3 0.21

Cl 1s→ 4p 2827.8 −52.1 −0.7 0.22

Cl 2p→ σ∗ 201.0 −6.1 0.8 0.00

Cl2 Cl 1s→ σ∗ 2821.3 −53.6 −1.6 0.35

Cl 1s→ 4p 2828.5 −51.7 0.9 0.14

Cl 2p→ σ∗ 198.7 −5.7 −0.8 0.00

MAE 31.6 1.6

tions are more intense than the higher energy Rydberg excita-

tions. For example, an analysis of the experimental K-edge

spectrum of carbon monoxide obtained by Domke et al.77

shows that the C 1s → π∗ transition is a sharp, very intense

peak at 287.4 eV. While the C 1s→ 3s transition is a peak of

significantly lower intensity at 292.4 eV. OCDFT produces an

oscillator strength for the C 1s → π∗ transition that is an or-

der of magnitude greater than that of the C 1s→ 3s transition,

which is consistent with the observed experimental trend. The

same comparison can be done with the oxygen K-edge of car-

bon monoxide and OCDFT shows similar agreement with the

experimental spectrum.

To understand why OCDFT outperforms TDDFT, we will

consider a model consisting of two electrons in two orbitals

(φh, φp) of different symmetry.30,38,87 This model makes it

possible to compare the TDDFT and OCDFT excitation en-

ergies to that of CIS. As illustrated in Fig. 5, core excitations

are characterized by a very small overlap between the hole and

particle orbital. Therefore, our analysis considers the limit of

zero overlap (Λhp = 0). For a functional containing a given

fraction (a) of Hartree–Fock exchange, the TDDFT and CIS

singlet excitation energies (ωs) for our model differ approxi-

mately by:

ωTDDFT
s − ωCIS

s
∼= (1−a)[vx

p− vx
h]+ (1−a)[Jph− Jhh],

(26)

where vx
i = (φi|vx|φi) is an exchange potential integral and

Ji j is the Coulomb repulsion integral (φiφi|r
−1
12 |φ jφ j). When

a≪ 1, the right-hand side of Eq. 26 contains three local in-

tegrals vx
h, vx

p, and Jhh. However, the Coulomb repulsion in-

tegral between the hole and particle orbitals (Jph) is nonlocal

and causes TDDFT to incorrectly describe the physics of the

hole/particle pair. On the contrary, when a = 1 there is exact

cancellation of the nonlinear terms and TDDFT is equivalent

to CIS. This is consistent with the observation that increasing

the amount of Hartree–Fock exchange improves the descrip-

tion of core-excited states.26,88–91

The same analysis finds that the OCDFT and CIS excitation

energies differs by a sum of local self-interaction terms:

ωOCDFT
s − ωCIS

s
∼=(1−a)[vx

p− vx
h +

1

2
Jpp−

1

2
Jhh

+
1

2
(hh| f̂x|hh)+

1

2
(pp| f̂x|pp)], (27)

where (ii| f̂x|ii) is an exchange kernel integral. As observed

by Ziegler and co-workers in the case of charge-transfer exci-

tations computed via the constricted variational DFT,38 there
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function of the auxiliary system is only subject to orthogonal-

ity constraints, OCDFT can fully describe orbital relaxation.

To demonstrate this, we consider the NEXAS spectrum of

CO2, which was suggested as a test case by one of the review-

ers. Previous computational studies of CO2
114 showed that

B3LYP/TDDFT underestimates the oxygen K-edge by 14 eV.

MRCI/CIS and MRCI/CISD underestimate the same feature

by 8 and 4.2 eV, respectively. In the case of MRCI/CIS and

MRCI/CISD, the residual error was attributed to the lack of

orbital relaxation effects. A broken-symmetry OCDFT com-

putation predicts the dominant feature of the oxygen K-edge

to be at 534.4 eV, which corresponds to a deviation from ex-

periment of 0.6 eV. This result suggests that relaxation effects

do indeed play an important role in the oxygen K-edge of CO2

and that OCDFT can fully account for them.

Excitation energies computed with TDDFT are significantly

less accurate and degrade as one goes from first-row (MAE =

11.6 eV) to second-row elements (MAE = 31.6 eV). Moreover,

we show that in OCDFT the choice of the functional and the

amount of Hartree–Fock exchange has little effect on the ac-

curacy of the computed core excitation energies. We perform

a formal comparison of OCDFT, TDDFT, and CIS excitation

energies for an excitation in which the core and virtual or-

bitals have zero overlap. This analysis suggests that OCDFT’s

superior performance can be ascribed to the local nature of

the integrals that appear in the expression for the excitation

energy.

Our gas-phase OCDFT X-ray absorption spectra of thymine

and adenine are in excellent agreement with experiments.

OCDFT reproduces all the characteristic features of the

NEXAS spectra of these molecules,110,111 including the dis-

tinct π∗ transitions in the lower energy regime and the signif-

icant mixing between the π∗ and diffuse orbitals in the higher

energy regime of the spectra. In addition, OCDFT assign-

ments of the spectral features are in excellent agreement with

those made using the ADC(2) method.110 This study shows

that our OCDFT approach for core-excited states is a practical

and useful tool for the interpretation of NEXAS experiments.

From the computational point of view, the scaling of OCDFT

vs. the number of electrons (N) is identical to that of ground

state DFT (N3 and N4 for pure and hybrid functionals) and

it is lower than the second-order approximate coupled cluster

method (CC2)115 and [ADC(2)], which scale as N5.

Two classes of systems that are worth further exploration

are transition metal complexes and open-shell molecules.

Core excitations in transition metal complexes present a num-

ber of additional challenges that will require further extension

of the present theory. One of the biggest improvements that

will be necessary is a proper treatment of relativistic effects.

While the scheme used in this work was sufficient for first- and

second-row elements, it will likely prove ineffective for the

treatment of transition metals where both scalar and spin-orbit

relativistic effects play an important role. Scalar relativistic

effects can be accounted for by combining OCDFT with spin-

free approximate relativistic Hamiltonians. One of our imme-

diate goals is to combine OCDFT with the one-electron spin-

free version of the exact two-component approach.116–121 This

improvement will provide a more consistent way to introduce

scalar relativistic effects, and will be essential to compute ac-

curate K-edge spectra of elements past the second row. The

simulation of L-edge spectra presents additional challenges11

due to the strong mixing of excitations from degenerate 2p

core orbitals and the necessity to account for the coupling

of molecular multiplets that experience strong spin-orbit cou-

pling. In this respect, the current formulation of OCDFT—

which is ideal for excitations that are dominated by a sin-

gle Slater determinant—cannot properly treat multidetermi-

nantal electronic states that arise in L-edge excitations. One

way to overcome this limitation is to employ the basis of non-

orthogonal determinants that are generated in an OCDFT com-

putation in a subsequent configuration interaction procedure,

as described in the original formulation of OCDFT. This solu-

tion will certainly present some challenges, but if successful,

could be used to account for the coupling of various molecu-

lar multiplets via spin-orbit interactions. These considerations

also apply to species with a high-spin open-shell ground state

and whose excited states cannot be represented by a single

Slater determinant. A case that is more problematic is that of

molecules with a low-spin open-shell ground state. In this sit-

uation, if the ground state DFT calculation yields an unphysi-

cal result, then it will be unlikely for OCDFT to yield accurate

excitation energies.
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Appendix A: OCDFT Equations for the Con-

strained Multiple Hole/Particle Approach

In this appendix we report details of the algorithm used to

compute multiple solutions of the OCDFT equations via the

constrained multiple hole/particle method. The OCDFT equa-
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tions are solved following the sequence:

(i,a) : (0,0)→ (1,1)→ (1,2)→ ·· · → (1,nu)→

→ (2,1)→ (2,2)→ ·· · → (2,nu)→

...

→ (nc,1)→ (nc,2)→ ·· · → (nc,nu),

, (A28)

where nc and nu are the number of core and unoccupied or-

bitals, respectively, and ncnu is the total number of excited

states computed.

The OCDFT equations consist of a set of three coupled

eigenvalue equations:

(1− P̂
(i,a)
h/p

) f̂ (i,a)(1− P̂
(i,a)
h/p

)|φ
(i,a)
k 〉= ε

(i,a)
k |φ

(i,a)
k 〉,

P̂(0)(1− Q̂
(i,a)
s ) f̂ (i,a)(1− Q̂

(i,a)
s )P̂(0)|φ

(i,a)
h 〉= ε

(i,a)
h |φ

(i,a)
h 〉,

Q̂(0)(1− P̂
(i,a)
s ) f̂ (i,a)(1− P̂

(i,a)
s )Q̂(0)|φ

(i,a)
p 〉= ε

(i,a)
p |φ

(i,a)
p 〉,

(A29)

where f̂ (i,a) is the Kohn–Sham Hamiltonian operator com-

puted using the density corresponding to the state Φ(i,a). The

projection operators that enter the OCDFT equations are de-

fines as:

P̂
(i,a)
h/p

=P̂
(i,a)
h + P̂

(i,a)
p (A30)

P̂
(i,a)
h =

holes

∑
j<i

∣

∣φ
( j,1)
h

〉〈

φ
( j,1)
h

∣

∣ (A31)

P̂
(i,a)
p =

particles

∑
b<a

∣

∣φ
(i,b)
p

〉〈

φ
(i,b)
p

∣

∣, (A32)

P̂
(i,a)
s =P̂(i,a)− P̂

(i,a)
p , (A33)

Q̂
(i,a)
s =Q̂(i,a)− P̂

(i,a)
h . (A34)
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