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Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem.
A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work
we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states.
Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation
energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and
second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of
the functional and the amount of Hartree—Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray

absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

1 Introduction

The advent of synchrotron light sources created a strong resur-
gence of spectroscopy in the X-ray region.! Near-edge X-ray
absorption spectroscopy (NEXAS) is a useful experimental
technique to probe the local electronic and geometrical struc-
ture in a variety of molecular environments. The most dom-
inant feature of NEXAS spectra, the near edge (see Fig. 1),
is composed of the excitations of core-electrons to unoccu-
pied valence orbitals. Core excitations are atom-specific and
sensitive to the local chemical environment, thus, NEXAS
spectra can provide information about the chemical compo-
sition and the electronic structure of molecules. NEXAS has
been successfully applied to large biological systems,? small
molecules in the gas phase,? organic thin-films,* and semi-
conducting materials.” This wide range of applications is pos-
sible because synchrotron light sources can span an energy
range that goes from a few electron volt (€V)® to hundreds of
MeV.’

As NEXAS experiments are becoming more feasible, there
is a growing need to develop accurate theoretical approaches
to aid the interpretation of experimental spectra. Calcula-
tions of NEXAS spectra are challenging, and require com-
putational methods that explicitly account for the excita-
tions of core-level electrons, orbital relaxation effects, and
electron correlation.® Several theoretical approaches have
been adapted to compute core-valence excitations, including:
scaled-opposite-spin configuration interaction singles with

Department of Chemistry and Cherry L. Emerson Center for Scientific Com-
putation, Emory University, Atlanta, Georgia 30322, USA

1 Electronic Supplementary Information (ESI) available: Cartesian geome-
tries for adenine and thymine optimized at the B3LYP/def2-TZVP level
of theory, tables reporting all computed excitation energies of adenine and
thymine. See DOI: 10.1039/b000000x/

perturbative doubles [SOS-CIS(D)],? a restricted open-shell
DFT/CIS method, !*!! second-order algebraic digrammatic
construction [ADC(2)],'>!3 multiple scattering X, meth-
ods,'* a maximum overlap ASCF approach, 1 restricted ac-
tive space SCF method (RASSCF), !¢ transition potential the-
ory, 7 coupled-cluster response theory,® time-dependent den-
sity functional theory (TDDFT),!® and restricted excitation
window TDDFT (REW-TDDFT).!'® Among these methods,
TDDFT is perhaps the most attractive option because of its
reduced computational cost and ability to calculate multiple
excited states.

TDDFT is a rigorous extension of the DFT ground-state
formalism,2° and it is regarded as the method of choice
to treat electronic excited states within a density functional
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core — valence MOs

core — continuum

Intensity

Photon Energy

Fig. 1 Example of a X-ray photoabsorption spectrum (XAS). The
near edge, located in the low energy region, consists of excitations
of core electrons to valence orbitals. These transitions are sensitive
to the chemical environment surrounding the excited atom. The high
energy region of the spectrum results from excitations of core
electrons to the continuum.
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framework. When applied in conjunction with frequency-
independent exchange-correlation potentials, TDDFT yields
accurate excitation energies for low-lying excited states. For
example, the TDDFT benchmark study of Silva-Junior and
co-workers?! on 28 organic molecules, showed that singlet
and triplet excitation energies can be calculated with a mean
average error (MAE) of 0.27 eV and 0.44 eV, respectively.
However, Besley et al.!> showed that TDDFT core excita-
tions computed with conventional exchange-correlation func-
tionals grossly underestimate experimental results, yielding a
MAE of 20.2 eV. It is customary to remedy this deficiency of
TDDFT by shifting the position of computed spectra by an
amount that minimizes the difference between the computa-
tional and experimental peak features. For example, a study
done by DeBeer, Petrenko, and Neese 22 showed that it is nec-
essary shift the TDDFT Fe near-edge spectrum of different
iron complexes by 171.3 eV in order to achieve quantitative
agreement with experiment. This shift is dependent on the ba-
sis set and functional used and must be recalibrated for every
basis set/functional combination applied to a given system.

Work by Peach et al.?? provided evidence for a direct cor-
relation between the accuracy of TDDFT and the degree of
spatial overlap (A) between the occupied and virtual orbitals.
The inaccuracy of TDDFT for excitations with low values of
A has been attributed to the incorrect asymptotic behavior
of the exchange-correlation potential and self-interaction er-
ror.>3 Low orbital overlap is a characteristic feature of both
charge-transfer excitations and core excitations, and as ex-
pected, the same correlation between accuracy and orbital
overlap is observed for core excitations.>* As a consequence,
TDDFT core-valence excitation energies can be improved by
introducing self-interaction corrections (SIC)% or range sepa-
rated hybrid functionals in which the amount of long and short
range Hartree—Fock exchange is reparametrized.?*?® How-
ever, the optimal value of the range separation parameter and
the amount of Hartree—Fock exchange are strongly system de-
pendent and must be tuned. 272

A general method that can systematically produce accurate
core-excitation energies with traditional (that is, non range
corrected) hybrid density functionals is highly desirable. The
maximum overlap method (MOM) !> combined with a ASCF
treatment of core-valence excitations is able to obtain highly
accurate excitation energies using conventional functionals.
However, this procedure is not guaranteed to avoid the prob-
lem of variational collapse—albeit MOM ameliorates the dif-
ficulties encountered by a straightforward ASCF procedure—
and has not been generalized to multiple excited states of the
same symmetry.

The goal of this work is to find cost-effective alternative
theories to TDDFT that can be used to simulate NEXAS
spectra. Orthogonality constrained density functional theory
(OCDFT)*° was rigorously derived from a variational time-

independent formulation of excited state DFT. It builds upon
previous successful efforts to formulate variational excited
state DFT, such as: the ASCF procedure,3'? constrained
DFT, stationary state DFT, 34 constricted variational density
functional theory (CV-DFT), 338 perturbative constrained ex-
cited state DFT,3%*! ensemble DFT,*** and variational time
independent DFT (TI-DFT). %647 Formally, OCDFT may be
viewed as bridging constrained and constricted variational
DFT. Its main advantages are: 1) a favorable accuracy/cost
ratio, similar to that of ground state DFT, 2) a numerically ro-
bust optimization procedure that avoids variational collapse,
and 3) the ability to compute spin adapted excitation energies.
Benchmark computations3® show that valence excitation en-
ergies computed with OCDFT have error metrics comparable
to that of TDDFT. In addition, OCDFT has the ability to ac-
curately compute charge-transfer excitation energies regard-
less of the amount of Hartree—Fock exchange present in the
exchange-correlation functional.

This work introduces two new developments of OCDFT
that are necessary for the simulation of near-edge X-ray ab-
sorption spectra. First, we formulate an OCDFT algorithm
that can be used to compute core-valence excitation energies.
This new method is assessed over a test set that includes 13
molecules with 40 unique core-electron excitations. Second,
we discuss one approach to extend OCDFT to multiple ex-
cited states of the same symmetry. We demonstrate the po-
tential of this new method with computations of the gas-phase
near-edge spectrum of adenine and thymine.

2 Theory

In this section we provide a brief summary of orthogonal-
ity constrained density functional theory along with the nec-
essary extension to multiple excited states (for the full de-
tails of the OCDFT derivation we refer the reader to Ref.
30). OCDFT builds upon the time-independent variational
DFT approach developed by Ayers, Levy, and Nagy.*® Within
this framework, each electronic state (¥",n = 0,1,...) of
a N-electron system has a corresponding density functional
(E™[p]) which is a generalization of the ground-state func-
tional of Levy. E ") [p] minimizes the energy expectation value
(¥| A |W¥) imposing two constraints on to the trial wave func-
tion ¥: 1) ¥ must be compatible with the density p, and 2)
¥ must be orthogonal to the first n — 1 exact electronic states,

(wH k=1,....n—1}:
EWlp] = min (¥|A¥). (1)
w1 {wk}

OCDFT provides a practical realization of this time-
independent DFT approach. The first step in the OCDFT
derivation consists in defining a generalized Kohn—Sham
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Fig. 2 Illustration of the projection operators used in OCDFT.
Notice, that a consequence of Egs. (4)—(5) is that the hole [¢}§1) ] and

particle [¢él)] orbitals are contained in the spaces spanned by PO
and Q(O).

scheme that, for each electronic state ‘P(”), postulates an aux-
iliary system of noninteracting electrons with wave function
& and density ps("). The density of state ®(" is assumed to
be equal to the density of the exact state ¥(*), which we indi-
cate with p(). In addition, we assume that the auxiliary wave

functions are orthogonal, that is:
(@™ D) = §,. 2)

This condition can be imposed without loss of generality. It
avoids the excited state wave functions from collapsing down
to the ground state solution, and effectively transfers some of
the complexity of the excited state density functionals to the
kinetic energy operator. Nevertheless, this variational Kohn—

Sham scheme involves energy functionals [El(fs) ] that contain
exchange-correlation contributions [E,EZ)] specific for each ex-
cited state. In OCDFT, we invoke an adiabatic approximation
similar to the one used in TDDFT, and replace Eig) with the

ground state exchange-correlation functional, E,E(C)). The re-
sulting functional for excited state n is given by:

1 occ

E(()CDFT {¢ :_’Z<

+J[p< N+ E "],

[920l") + [drv)p )

3

Minimization of the E* [{¢ }] with respect to the occu-
pied orbitals for state n can be performed with a modified
self-consistent-field algorithm.3? In the case of the first ex-
cited (n = 1), it is possible to show that the orthogonality con-
dition [Eq. (2)] implies the existence of two special orbitals.

As illustrated in Fig. 2, these are the hole [(])15”] and particle
[(f)él)] orbitals, which are respectively unoccupied and occu-

pied in the excited state wave function ®(!). These orbitals
must satisfy the conditions:

04" =0, @)
PO =0, 5)
where PO = ¥, ’(p ><¢i(0)| is a projector onto the occupied

orbitals of <I>( ,and 0 =1 - PO Egs. (4) and (5) can
be enforced via Lagrangian multipliers. Setting the variation
of the Lagrangian with respect to the occupied ({(bi(]) 1), hole

(q)él)), and particle (q)él)) orbitals to zero gives the following
eigenvalue equations:

(1-B) (1 - h};>|¢< =gy, ©
PO(1—0M) O (1= 0Py = gD jgNy ()
0O (1= FO (1= B 0O 1ply = VgV, (8)

where f(!) is the Kohn—Sham Hamiltonian of the excited state.
Eq. (6) determines the occupied orbitals, while Eqgs. (7) and
(8) determine the hole and particle orbitals, respectively. The
projection operators involved in the OCDFT equations are de-
fined as (see Fig. 2):

=lo{") o+ |os (o] ©
)7 (10)
(11)

where the subscript stands for spectator orbitals. In
OCDFT computations of valence excited states, the hole or-
bital is assumed to be the solution of Eq. (7) with the highest

h/p

A = pV 4 iV
A — ph) _ Aé

o~ -4,

“ ”

value of sél). Similarly, the particle orbital corresponds to the
lowest eigenvalue of Eq. (8).

Our OCDFT approach for core-excited states introduces
two new aspects. First, in order to compute core-excited states
with OCDFT, we select hole orbitals with the smallest val-
ues of 8}(11). However, this simple extension allows us only to
compute one core-excited state for each irreducible represen-
tation. In principle, OCDFT can be generalized to compute an
arbitrary number of excited states. For each additional excited
state, it is necessary to minimize the OCDFT energy impos-
ing orthogonality with respect to the lower energy solutions.
While this appears to be a viable solution, it would undoubt-
edly lead to a more elaborate minimization procedure. In this
work we propose simplified orthogonality conditions that are
based on the orthogonality of the hole and/or particle orbitals.
For example, if we choose the hole orbital for the second ex-

cited state [¢l£2)] to be orthogonal to the first hole [¢é1)] and to
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Fig. 3 Constrained multiple hole/particle (CMHP) algorithm illustrated in the case of two hole and three particle orbitals.

spans the occupied space of the ground state determinant:

(07 o) =0, (12)
00> —o, (13)

then the determinant &) is guaranteed to be orthogonal to
@) and ). The conditions Egs. (12) and (13) are sufficient
but not necessary to guarantee orthogonality among the first
three electronic states.

In the following we describe our constrained multiple
hole/particle (CMHP) algorithm, which generalizes Eqs. (12)
and (13) to the case of n electronic states. Due to the complex-
ity of this algorithm, we recommend the reader to follow its
description with the help of Fig. 3. Suppose we are interested
in the excited states that result from the excitation of a given
number of core orbitals () and unoccupied orbitals (7). For
convenience we will label the excited state Kohn—Sham deter-
minants [':ID(iva)] with two indices, i and a, which stand respec-
tively for the core and unoccupied orbital that are involved in
an excited state. Qur algorithm starts with a ground-state DFT
computation, which yields the determinant @00 Next, we
perform a sweep of n, OCDFT computations, which produces
the series of solutions:

o) o2 @llm), (14)

"y

These solutions are characterized by hole (particle) orbitals
that span the occupied (unoccupied) space of @00,

{QA(O)(b}El,a) —0

<
ﬁ(0)¢[§17“):0 , Ya < ny, (15)

and particle orbitals that form an orthogonal set:

CSISOET %

In the following iteration of the CMHP algorithm we in-
crease the core index by one and sweep again through a series

Ya,b <ny. (16)

of solutions:

q)(z,l),q)(2,2) @(Z,nu)

; a7

such that the hole and particle orbitals span respectively the
virtual and occupied space of the ground-state determinant:

0 ¢é27“) -0
J20) ¢[§27“) -0

goeey

; Va < ny, 18)

and the particle orbitals are orthogonal:

(07 105") = Sa,

In addition, we impose orthogonality between the first core

)

Ya,b < ny. 19)

orbital of the first sweep, ¢I§1’1 , and the second core orbital of

each of the states determined during the current sweep, ¢é2’a):

(o) =o,

This condition guarantees that the hole orbital for the second
series of computations is different from the first one. The
CMHP algorithm proceeds in a similar way until i = n.. After
each sweep over the particle orbitals, a new set of orthogo-
nality conditions is imposed onto the hole orbitals. We no-
tice that the CMHP algorithm does preserve strict orthogo-
nality among all states, but it is not equivalent to imposing the
strictly minimum orthogonality conditions.

In summary, the CMHP algorithm simplifies the optimiza-
tion of a series of mutually orthogonal determinants by im-
posing separate orthogonality conditions onto the core (hole)
and valence (particle) orbitals. It is instructive to compare the
computational cost of OCDFT and TDDFT. The cost to com-
pute d excited state in OCDFT is proportional to N> and dN*
for pure and hybrid functional, respectively, since for each ex-
cited states one has to solve a set of constrained Kohn—Sham
equations. In the case of TDDFT, the computational cost is
dominated by the solution of a pseudo-eigenvalue problem,

Ya < ny. 20)

4| Journal Name, 2010, [vol],1-17
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which scales as dN*. TDDFT certainly provides a more direct
approach to the computation of multiple excited states, but in
our experience we observe that the OCDFT/CMHP algorithm
has a cost comparable to that of TDDFT and in most cases can
be applied in a black-box way.

3 Computational Details

Our OCDFT for core-excited states was implemented as a plu-
gin for the PSI4 ab initio quantum chemistry package.*® The
OCDFT excitation energies for a set of 13 small molecules
reported in this study were computed using the B3LYP,0-3
PBEO0>*, and BLYP?3-% functionals, using the correlation-
consistent polarized core-valence basis sets (cc-pCVXZ, X =
T,Q)>® and the Karlsruhe valence polarized basis sets (def2-
XZVP, X = T,Q).”7”8 All geometries were optimized at the
same level of theory as the given excitation energy. The opti-
mized geometries and the NEXAS spectrum of adenine and
thymine were computed at the def2-TZVP/B3LYP level of
theory (cartesian geometries are provided in the supplemen-
tary material). Benchmark TDDFT excitation energies were
computed at the B3LYP/def2-QZVP level of theory using the
ORCA software package.>® All excitation energies reported in
this work, including TDDFT, are for singlet states. In the case
of OCDFT, the singlet excitation energies were computed via
the spin-raising approach described in Ref. 30.

It is mandatory to consider relativistic effects when study-
ing excitations of core electrons. %93 For excitations involv-
ing s orbitals, we approximate the relativistic excitation en-
ergy (oR) as the sum of the nonrelativistic excitation energy
(@™R) minus a correction Ag):

o® = ™R — Agy, (1)

where Agjq is the energy difference between the ground-state
nonrelativistic (NR) and relativistic (R) Kohn—Sham energies
of the 1s orbital:

Agg = eR — eNR, (22)

In this work, the excitation energies computed in OCDFT
and TDDFT utilize relativistic orbital energies calculated with
first-order Douglass—Kroll-Hess (DKH) Hamiltonian, %466
Relativistic corrections for the 1s orbitals of the second row
nuclei range from 3.8 eV (Si) to 10.1 eV (CI). In the case of
first row 1s core orbitals, Ag;s is negligible (C, N, and O 1s
corrections are about 0.1, 0.2, and 0.3 eV, respectively). Sim-
ilarly, excitations from 2p orbitals of second row elements are
negligible (max 0.05 eV) and were not applied to the final re-
sults.

The treatment of core-excited states in molecules with sym-
metry equivalent atoms becomes problematic for both pure
and hybrid functionals due to the approximate treatment of

exchange and correlation which introduces a self-interaction
error.®7%8 In this case, the symmetry restricted solution pro-
duces core holes distributed evenly amongst the symmetry
equivalent atoms. Instead, the symmetry unrestricted solu-
tion may consists of core holes localized on each individual
atom. For all molecules with symmetry equivalent atoms (N>,
C,H», and Cl,) we studied both the symmetry restricted and
unrestricted solutions. To obtain a state where the core hole is
localized, we utilize a wave function with broken spatial and
spin symmetry mixing the coefficients of the alpha and beta
orbitals.

Peak intensities for the transition ¥ +— ¥(©) are based on
the oscillator strength (f5sc):

2
fosc = g‘,un0|2wn; (23)

which is calculated from the excitation energies (®,) and tran-
sition dipole moments (,). Although OCDFT does not pro-
vide a direct way to compute transition dipole moments, these
can be approximated using the Kohn—Sham determinants as:

Ho = (@ [#@), (24)

where @ is a generic excited state and # is the position vec-
tor. Eq. (23) yields the absolute oscillator strength (fas) for a
given transition. The intensity of the spectrum is then scaled
relative to the most intense peak, we will refer to these scaled
values as the relative oscillator strength (fi1). Natural spec-
troscopic broadening effects are simulated by convoluting the
OCDFT peaks with a Gaussian function whose exponent was
calibrated to best fit the experimental spectrum.

4 Results and Discussion

4.1 Calibration of OCDFT core-excitation energies

The accuracy of OCDFT was benchmarked using a test set
that comprises molecules containing first-row (CO, H,CO,
N,O, N,, HCN, CHy4, C,H,) and second-row elements (SiHy,

Table 1 OCDFT core-excitation energies for a benchmark set
composed of 13 diatomic molecules. Mean absolute error (in eV)
computed using various combinations of basis sets and density
functionals. These statistics refer to a subset of the benchmark set
comprised of 35 core-excited states.

Basis Set Mean Absolute Error (eV)
BLYP B3LYP PBEO
def2-TZVP 1.0 1.0 0.9
def2-QZVP 1.0 1.0 1.4
cc-pCVTZ 1.3 1.3 1.6
cc-pCvVQZ 1.5 1.5 1.7
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PH3, H,S, SO,, HCI, Cl,), and a total of 40 excited states.
Table 1 summarizes the performance of OCDFT by report-
ing the mean absolute error (MAE) in the excitation energy
for 12 unique combinations of basis set and density function-
als. Individual excitation energies computed with OCDFT and
TDDFT are compared to values from gas-phase NEXAS ex-
periments %% in Tables 2 and 3. Table 2 displays excita-
tions from first-row elements, while Table 3 shows excitations
from second-row elements. For molecules with symmetry-
equivalent atoms (N, C;H;, and Cl,), we examined both
the symmetrical and symmetry-broken solutions and found
that the former have a MAE of 13.7 eV, while the latter
yield a MAE of 0.9 eV. Thus all results for highly symmetric
molecules reported in Tables 2 and 3 are based on broken sym-
metry solutions. The three functionals considered in Table 1

OCDFT
8 TDDFT

> 6

C

[

>

g 4

&
2

[/ HMMH"HIMH

-60 -50 -40 -30 -20 -10 0 10
Excitation Energy Error (eV)

Fig. 4 Histogram showing the distribution of the error in the
computed core excited states. All calculations were done using the
B3LYP functional and the def2-QZVP basis set. The red filled bar is
OCDFT while the empty blue bar is TDDFT. Notice that the two
distributions do not overlap.

produce MAEs ranging from 0.9-1.7 eV. Interestingly, there is
no dramatic difference in the accuracy of OCDFT regardless
of the amount of Hartree—Fock (HF) exchange present in the
functional. Even the BLYP functional, which contains no HF
exchange, yields a MAE (1.0 eV using the def2-QZVP basis
set) comparable to that of the MAEs produced by its hybrid
counterparts. The Karlsruhe family of basis sets yields results
that are in better agreement with the experimental excitation
energies than the correlation-consistent basis sets.

The average error of OCDFT is commensurate to that of
wave function methods for core-excited states. For example,
Asmuruf and Besley® reported an average error of 1.2 eV for
SOS-CIS(D) applied to a set of excitations similar to the ones
used in the present study. While Coriani et al.® reported abso-
lute errors of less than 0.9 eV when applying coupled cluster
response theory to a set of carbon, nitrogen, and neon core
excitations.

A full comparison of the accuracy of OCDFT and TDDFT

core-excitations computed at the B3LYP/def2-QZVP level of
theory is shown in Fig. 4. The contrast between the two er-
ror distributions is striking. As expected, TDDFT performs
rather poorly underestimating the excitation energies, on av-
erage, by 15 eV and a maximum error of —53.6 eV. On the
contrary, OCDFT yields an error distribution peaked near zero
and a maximum error of —3.7 eV. The TDDFT error distribu-
tion has a peculiar shape, displaying two distinct groups of
excited states. The first is a narrow distribution that exists in
the range —4 eV to —15 eV, while the second one is broader
and ranges from —54 eV to —38 eV. An analysis of the group
of excited states with the largest errors reveals that these con-
sist solely of 1s core-excitations of second-row elements. This
finding is in agreement with previous studies by Nakata® and
Besley.?* Since our excitation energies are corrected for rela-
tivistic effects (albeit with a crude approximation), the bulk of
the error observed for second-row elements must be attributed
to a deficiency of the exchange-correlation functional. 3> This
dramatic difference in the performance of TDDFT suggests
that it is helpful to separately analyze first-row and second-
row core excitations to highlight their distinctive features.
Table 2 reports valence and Rydberg excitation energies of
1s orbital localized on first row elements (C, N, or O). Com-
pared to experiment, TDDFT produces a mean absolute er-
ror of 11.6 eV, and as discussed earlier, this result is con-
sistent with previous studies that used TDDFT with conven-
tional hybrid functionals. > OCDFT calculations yield a mean
absolute error of 0.4 eV. To put this error into perspective,
it can be compared to the performance of TDDFT with the
BHO8LYP functional,?* a reparameterization of the BHLYP
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Fig. 5 Scatterplot displaying the excitation energy error as a
function of orbital overlap for a benchmarking test set of 40 core
excitations from 13 different molecules. Excitation energies were
calculated using the B3LYP functional and def2-QZVP basis set.
The overlap integrals were computed with numerical grid
integration making use of the Gaussian cube files produced by in
Psi4 OCDFT calculations. Grids were calculated with a double zeta
basis set and 0.1 grid spacing.
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Table 2 Core excitation energies for molecules containing first-row elements. Computations were performed using the B3LYP density
functional and def2-QZVP basis set. The OCDFT and TDDFT results are reported here as deviations from the experimental value in electron
volts (eV), mean absolute error (MAE) is also reported for each method. Experimental values are from Refs. 69— 77.

Molecule  Excitation Exp. (eV) Error (eV) fabs X 1072
TDDFT OCDFT OCDFT
CO Cls—rn* 287.4 —11.3 —0.8 423
Cls—3s 292.4 —10.5 0.9 0.26
Ols—nx* 534.2 —134 —1.2 1.74
O 1s — 3s 538.9 —13.0 0.2 0.01
H,CO Cls—n* 286.0 —10.7 —0.6 3.33
Cls—3s 290.2 —10.7 —0.2 0.62
O 1s — 3s 535.4 —14.1 —0.6 0.06
Ols—nx* 530.8 —14.0 —0.8 2.04
N,Of Ols—rn* 534.8 —14.3 —-1.0 1.08
O 1s — 3s 536.7 —13.6 —04 1.67
N¢ Is — 3s 407.5 —12.1 0.6 3.11
N; 1s — &* 401.1 —12.2 —-09 241
N; Is — 3s 404.0 —11.5 —0.4 0.90
N, Nls — «* 401.0 —12.4 —-0.9 2.90
N 1s — 3s 406.2 —8.5 1.7 0.00
HCN Cls—n* 286.4 —10.6 —0.5 2.57
Cls—3s 289.1 -99 —0.1 0.81
Nl1s — &* 399.7 —12.0 —0.8 2.46
N 1s — 3s 401.8 —104 0.2 0.28
CHy Cls—3p 288.0 —10.1 0.1 1.85
Cls—3s 287.1 —10.8 —-0.5 0.00
CH, Cls—n* 285.8 —10.5 —0.6 2.27
Cls—3s 287.7 —9.1 —0.1 0.11

MAE 11.6 0.4

TThe subscripts ¢ and t stand for the center and tail nitrogen of N, O.

functional >>8¢ that has been augmented to include 58% HF
exchange, 39% B88 exchange, and 8% Slater exchange. When
applied to a test set of first row core excitations similar to those
in Figure 2, BH>3LYP yielded a mean average error of 0.8
eV. It is encouraging that OCDFT can achieve a higher level
of accuracy without altering the amount of Hartree—Fock ex-
change included in the functional. It is also gratifying to see
that the OCDFT MAE for this set of first row core excited
states is comparable to the MAE obtained for valence excited
states (0.3 eV reported in Ref. 30). When computing core
excited states of second-row nuclei, TDDFT becomes highly
inaccurate, producing an average error larger than 30 eV. Pre-
vious work by Tozer and coworkers?® showed that there is a
correlation between the level of accuracy of TDDFT excita-
tion energies and the amount of overlap between the orbitals
involved. We expect this correlation to also be observed in
core electron excitations, where the core hole and valence par-
ticle orbitals have little overlap. Following Tozer et al.,?? in

OCDFT we define the overlap between the hole and particle
orbital (App) for any excited state n as the integral:

Anp = [ 10" @)6" (1) a. @5)

Figure 5 reports the distribution of OCDFT and TDDFT
excited states as a function of the energy error and the
hole/particle orbital overlap. The scatterplot clearly shows that
OCDFT is less sensitive to variations in the overlap. When
calculating core excited states with App, < 0.12, the MAE for
OCDFT increases by only 1.5 eV, while in the case of TDDFT
the absolute error increases drastically by 35.9 eV.

Tables 2 and 3 also report oscillator strengths computed
with OCDFT at the B3LYP level of theory. An extensive quan-
titative comparison with experimental line intensities is not
practical, however, some qualitative analysis is possible and
provides insight into the reliability of the computed oscillator
strengths. In general, the lower energy core-valence excita-
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Table 3 Core excitation energies for molecules containing second-row elements. Computations were performed using the B3LYP density
functional and def2-QZVP basis set. The OCDFT and TDDFT results are reported here as deviations from the experimental value in electron
volts (eV), mean absolute error (MAE) is also reported for each method. Experimental values are from Refs. 78— 83.
Molecule  Excitation Exp. (eV) Error (eV) fabs X 1072
TDDFT OCDFT OCDFT
SiHy Sils — o* 1842.5 —38.4 —1.8 0.18
Si2p — o* 102.8 —4.8 0.6 0.33
PH; Pls — o* 2145.8 —44.1 -29 0.23
P2p — o* 132.3 —5.1 0.7 0.36
H,S S1s—o* 2473.1 —48.3 -3.0 0.14
Sls—4p 2476.3 —-52.1 —1.5 0.24
S2p— o 164.5 -5.1 0.8 1.98
S2p—4s 166.5 =71 -0.7 0.51
SO, Sl1s — &* 2473.8 —50.1 -3.7 0.39
Sl1s—4p 2478.4 —49.3 —24 0.24
S2p —4s 171.3 —8.3 —-1.5 0.05
HC1 Clls — o* 28239 —53.8 2.3 0.21
Clls —4p 2827.8 -52.1 —-0.7 0.22
Cl2p — o* 201.0 —6.1 0.8 0.00
Cl Clls —» o* 2821.3 —53.6 —1.6 0.35
Cl1s —4p 2828.5 —-51.7 0.9 0.14
Cl2p — o* 198.7 -5.7 —0.8 0.00
MAE 31.6 1.6
tions are more intense than the higher energy Rydberg excita- mately by:
tions. For example, an analysis of the experimental K-edge -~
spectrum of carbon monoxide obtained by Domke et al.”’ o PP — of S = (1- @)y =vi] + (1 = @) Jph = i,
shows that the C 1s — 7* transition is a sharp, very intense (26)

peak at 287.4 eV. While the C 1s — 3s transition is a peak of
significantly lower intensity at 292.4 eV. OCDFT produces an
oscillator strength for the C 1s — 7* transition that is an or-
der of magnitude greater than that of the C 1s — 3s transition,
which is consistent with the observed experimental trend. The
same comparison can be done with the oxygen K-edge of car-
bon monoxide and OCDFT shows similar agreement with the
experimental spectrum.

To understand why OCDFT outperforms TDDFT, we will
consider a model consisting of two electrons in two orbitals
(@n, 9p) of different symmetry.33887 This model makes it
possible to compare the TDDFT and OCDFT excitation en-
ergies to that of CIS. As illustrated in Fig. 5, core excitations
are characterized by a very small overlap between the hole and
particle orbital. Therefore, our analysis considers the limit of
zero overlap (App = 0). For a functional containing a given
fraction (a) of Hartree—Fock exchange, the TDDFT and CIS
singlet excitation energies (wy) for our model differ approxi-

where vi = (¢;|v.|¢;) is an exchange potential integral and
Jij is the Coulomb repulsion integral (¢:¢;|r;;'|¢;9;). When
a < 1, the right-hand side of Eq. 26 contains three local in-
tegrals vy, v;;, and Jyy. However, the Coulomb repulsion in-
tegral between the hole and particle orbitals (Jpy) is nonlocal
and causes TDDFT to incorrectly describe the physics of the
hole/particle pair. On the contrary, when a = 1 there is exact
cancellation of the nonlinear terms and TDDFT is equivalent
to CIS. This is consistent with the observation that increasing
the amount of Hartree—Fock exchange improves the descrip-
tion of core-excited states. 26-38-91

The same analysis finds that the OCDFT and CIS excitation
energies differs by a sum of local self-interaction terms:

1 1
0P — o =(1—a)[vy —vi+ 5 Jpp — 5

2 2

1 R 1 A
+ E(hh‘fx‘hh)+§(pp|fx|pp)]a (27)
where (ii|fy|ii) is an exchange kernel integral. As observed
by Ziegler and co-workers in the case of charge-transfer exci-
tations computed via the constricted variational DFT, 38 there

8| 1-17
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is partial cancellation between the local integrals that appear
in Eq. (27) and the excitation energy has the correct asymp-
totic behavior. Our observation that the amount of Hartree—
Fock exchange has little influence on the computed core ex-
citation energies, suggests that even in the case of OCDFT
there is partial cancellation of the terms in Eq. (27) that appear
in square brackets. Thus, although charge-transfer and core-
excited states are very different in nature, this simple model
suggests a formal connection between the two.

4.2 Application to Nucleobases: Thymine and Adenine
Near-Edge Spectra

Nucleobases play a key biological role as the building blocks
of DNA and recently show promise as potential materials for
electronic/technological applications.?> %> Early X-ray stud-
ies of nucleobases consisted of scattering and diffraction ex-
periments.?*% The first near-edge absorption experiments
were performed in the 90s by Mitra-Kirtley et al.'?® These
authors specifically targeted the nitrogen core electrons and
probed the sensitivity of the 1s — z* resonances to the sur-
rounding chemical environment. More recent experiments
have moved beyond simple characterization of the intramolec-
ular environment and aim to probe intermolecular interactions
of nucleobases with metal surfaces. 1°1-1%4 At the same time
a wide array of computational methods have been used to
compute the near-edge structure of nucleobases, including:
restricted active space SCF (RASSCF),!% improved virtual
orbital SCF (IVO-SCF)!%, a complex polarization propaga-
tor method (CPP)107, SIC-DFT,1%® a DFT transition poten-
tial method (DFTTP), % the equivalent core approximation
(ECA) method, ' and the second-order algebraic diagram-
matic construction [ADC(2)] method. 110111

Here we present an OCDFT simulation of the gas-phase
NEXAS spectrum of thymine and adenine. We first give an
overview of the performance of OCDFT relative to the gas-
phase NEXAS experiments done by Plekan et al.!'% This is
followed by an in-depth analysis of the spectral features simu-
lated in OCDFT. Last we compare our work to previous stud-
ies employing ADC(2) theory. The numbering schemes used
for adenine and thymine are shown in Tables 4 and 6. We
follow a widely used convention of numbering the atoms ac-
cording to the Hartree—Fock core orbital energy. The rele-
vant ground-state virtual orbitals for thymine and adenine are
shown in Figs. 6 and 8, respectively. The simulated and exper-
imental NEXAS spectra of thymine and adenine are reported
in Figs. 7 and 9.

4.2.1 Overall Performance The simulated thymine and
adenine NEXAS spectra shown in Figs. 7 and 9 agree well
with the experimental data. Tables 4 and 6 report the dom-
inant contributions to the NEXAS spectra (full tables show-
ing all contributions are provided in the supplementary ma-

Anti-Bonding Orbitals

b "V * .t’ ( ! €3

- —~ el 4 N
(bﬂ{ ¢”§ ¢7V§

~

Diffuse Orbitals

Fig. 6 Relevant virtual orbitals for thymine numbered in according
to the orbital energy. Orbitals with obvious 7* character are labeled
as such, while orbitals where electron density is diffused are labeled
as D.

terial), along with excitation energies and relative oscillator
strengths. We also report the nature of each excited state. That
is, for each transition we specify the core 1s electron excited
(X; where X = O, N, C and { is the label of the atom in our
numbering scheme), and the ground-state virtual orbital that
has the most overlap with the particle orbital, together with its
weight. The experimental energies reported are the peak max-
ima for each spectral feature, and can be approximated by the
OCDFT transition in that region with the strongest oscillator
strength. When using peak maxima as a comparison, OCDFT
represents the thymine spectrum with an average error of 0.3
eV, and that of adenine with an average error of 0.1 eV. A com-
mon feature of NEXAS spectra is the appearance of multiple
low-intensity transitions in the higher energy regions. This is
represented well by OCDFT as evidenced by the stick spec-
trum shown in Figs. 7 and 9 where the higher energy regions
are populated by multiple low intensity transitions. We em-
phasize that the computed OCDFT spectra are obtained from
unshifted excitation energies.

4.2.2 Thymine Oxygen K-Edge Figure 7a displays the
experimental and theoretical oxygen K-edge!'? spectra of
thymine. The low energy regime of the oxygen K-edge is
dominated by two high intensity peaks. Peak A results from
the transition O, — ¢ﬂ5, while peak B results from the tran-

This journal is © The Royal Society of Chemistry [year]
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sition O — d)ﬂl* with a peak intensity that is roughly equal to
that of peak A. Experimentally, A and B are centered at 531.4
eV and 532.3 eV, respectively, and are predicted by OCDFT

a)

Experiment

Intensity (arbitrary units)

Y
OCDFT

| Ml I
530 531 532 533 534 535 536 537 538 539
Energy (eV)

b)

[Experiment

Intensity(arbitrary units)

OCDFT

400 401 402 403 404
Energy (eV)

A

Experiment

Intensity(arbitrary units)

ML

| by Y ol
283 284 285 286 287 288 289 290 2|91 292
Energy (eV)

Fig. 7 Core excited states for thymine computed using B3LYP
functional and def2-TZVP basis set. The OCDFT oxygen and
nitrogen K-edge spectra were convoluted with a Gaussian function
with full width at half maximum (FWHM) equal to 0.3 eV, while the
carbon spectrum uses a Gaussian with FWHM equal to 0.2 eV. The
experimental spectra are reproduced with permission from Ref. 110.

to within 0.3 eV. The O, — d)ﬂg transition is predicted as the
peak of highest intensity with f,ps = 0.02, and this result is
consistent with the ADC(2) analysis performed by Plekan et
al. 119 which predicts faps = 0.03. According to OCDFT, the
shoulder feature B’ is composed of O; — d)ﬂg and O — 7}
transitions predicted to have a fairly strong oscillator strength
(fre1 =~ 0.2), which is in discrepancy with the low intensity
peaks observed in the experimental spectrum. As stated ear-
lier, excitations of weaker intensity are characteristic of the
higher energy regime of the K-edge and have been attributed
to strong mixing of core-valence excited states with Rydberg
excited states of similar energy.'!® This strong mixing causes
excitations to be spread out over several different final states,
resulting in transitions of weak intensity. The mixing in this
region of the spectrum makes it difficult to classify specific
transitions experimentally. OCDFT results show that peak C
is largely composed of a mixture of diffuse Rydberg excita-
tions within the energy interval of 534.7 to 536.4 eV. While
the majority of the contributions to peak D, are excitations to
¢p, and ¢p,, with f; < 0.1, peaks C and D both have d),,;
character. In both cases, these resonances are weak and over-
shadowed by multiple Rydberg transitions in both cases.

4.2.3 Thymine Nitrogen K-Edge The K-edge pictured
in Figure 7b is characterized by four distinct spectral peaks.
These lowest energy contributions to peak A are excitations
from N3 and Ny to ¢ﬂ;. OCDFT predicts their excitation en-
ergies to be 401.8 eV and 401.2 eV, respectively. The experi-
mental peak maximum is at 401.7 eV, which agrees well with
the Gaussian profile shown in the OCDFT spectrum. Rydberg
transitions from the N3 and Ny to ¢p, are the dominant reso-
nances contributing to the character of peak B, along with a va-
lence excitation Ny — d)ﬂf predicted at 402.5 eV. This agrees
well with the experimental peak assignment at 402.7 eV. A
very intense Ny — ¢p, transition accounts for the peak at
404.1 eV. OCDFT simulates this peak perfectly with a Gaus-
sian centered at 404.2 eV. peak D is the amalgamation of two
" resonances and multiple Rydberg states with the ©* reso-
nances being the transitions of strongest intensity. Excitation
energies of these m* resonances agree well with the experi-
mental peak assignment at 405.5 eV, with Ny — d)m; at 405.3
eVand N3 — ¢”1* at 405.7 eV.

4.2.4 Thymine Carbon K-Edge The shape of the carbon
K-edge displayed in Figure 7c is governed by four strong *
resonances. Unique to the carbon K-edge is the fact that the
strongest transition is not the lowest energy 7* resonance, the
Cs — d)ﬂf transition is a relatively high energy excitation and
produces the strongest peak intensity, despite close proximity
to several Rydberg states. Peak A at 284.9 eV is the result of
the transition Cg — ¢,,§, the position of this peak is predicted
exactly by OCDFT. A slightly stronger transition at 285.9 eV
is mostly duetoa Cy; — d)ﬂg excitation, with small contribution

10 | Journal Name, 2010, [vol], 117
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Table 4 Calculated (B3LYP/def2-TZVP) and experimental thymine
oxygen, nitrogen, and carbon core excitation energies (®y;, in eV)
and relative oscillator strengths (fiea). For each calculated
transition, we also report the label of the core atomic orbital (¢y,) and
the largest ground-state virtual orbital contribution to the particle
orbital (¢).

Experiment

o % i frel Peak @y;

Oxygen K-Edge
(0 81.8% nf 531.1 1.000 A 531.4
O 64.0% 75 532.1 0.995 B 532.3
(o)1 71.2% =ef 5334 0.130 M
(03 78.3% 75 533.8 0.143 B 3338
(0] 69.5% D3 535.5 0.092
(0] 76.0% 75 536.1 0.212 C 9357
(03 69.0% 75 536.2 0.090
O 83.5% Dy 537.1 0.040
O 35.6% Ds 537.5 0.049 D 537.1
Oy 44.0% Ds 537.7 0.065

Nitrogen K-Edge
Ny 81.8% nf 401.2 0.998
N3 64.0% 7y 401.8 0.802 A 401.7
Ny 78.3% 7y 402.5 0.087
N3 77.0% D 403.1 0.895 B 402.7
Ny 65.9% D 403.3 0.790
Ny 44.1% D3 404.2 0.894 C 404.1
N3 69.5% D3 405.1 0.370
Ny 86.3% Dy 405.3 0.852 D 405.5
N3 71.2% =ef 405.7 0.502

Carbon K-Edge
Cg 92.1% ={ 284.9 0.328 A 284.9
Cy 95.9% wf 286.0 0.635 B 285.9
Cg 97.6% 5 287.3 0.140
Csg 81.8% nf 287.7 0.770 C 287.8
Co 89.9% nf 287.9 0.108
Co 87.7% Dy 288.5 0.205 D 288.4
Cs 64.0% 7y 289.1 1.000
Co 63.1% 75 289.3 0.294 E 289.4
Co 49.5% D3 289.3 0.343
Cg 33.3% Dy 290.3 0.098
Co 30.5% Dqy 290.4 0.042 F 290.7
Cy 71.6% D3 290.4 0.041

from another d)ﬂg transition resulting from an excitation from
the Cq core. Peaks C and D have experimental peak maxima
at 287.8 eV and 288.4 eV respectively, and blend together to

Anti-Bonding Orbitals
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Fig. 8 Relevant virtual orbitals for adenine numbered according to
the orbital energy. Orbitals with obvious * character are labeled as

such, while orbitals where electron density is mostly diffused on the
outside of the molecule are labeled as ¢p.

Pos

form one band. Both contributions to the spectral band are
represented well by OCDFT. Peak E is mostly composed of
core excitations to diffuse orbitals, however these transitions
have relatively weak intensities compared to the strong d)ﬂg
transition predicted at 289.1 eV. Excitations to diffuse orbitals
are dominant contributors to the remaining spectral features F
and F'.

4.2.5 Adenine Nitrogen K-Edge Figure 9a displays the
nitrogen k-edge of adenine computed with OCDFT. The most
dominant feature of the spectrum, peak A, is experimentally
classified at 399.5 eV, OCDFT predicts that this feature is a
result of core-valence excitations originating from three of the
four nitrogens on the purine ring system (N4, N3, Ns). The
largest contributor being a transition from N5 — d)ﬂg predicted
at 399.4 eV, which agrees well with the experimental classifi-
cation for the peak. An apparent shoulder feature with fairly
weak oscillator strength is present in the experimental spec-
trum in the region from 399.8 — 400.4 eV. OCDFT represents
this feature well, with two weak ™ resonances resulting from
the two nitrogens on the six-membered ring. A few rising
shoulder features are shown in the experimental spectrum in
the region from 401.0 eV —401.3 eV, OCDFT predicts a N3 —
¢ transition in this region with a relative oscillator strength
of 0.094. Peak B is a mixture of transitions to ™ orbitals
as well as diffuse orbitals, with the 7#* resonances being the
prominent contributors. The experimental spectrum shows a
relatively weak resonance around 403.0 (peak C). We predict
that the dominant contributor to peak C is a transition from Ny
— ¢p,, the intensity of which, that rivals the strongest tran-
sition (peak A fi,; = 0.925). This peak intensity is contrary
to the experimental spectrum which shows peak C as a super-
position of weak transitions. The highest energy transitions

This journal is © The Royal Society of Chemistry [year]

1-17 |11



Physical Chemistry Chemical Physics

a)

C Experiment

Intensity(arbitrary units)
>
=
&
/m

OCDFT

1

| : I i
398 399 400 401 402 403 404 405

Energy (eV)
b)

(&}
z
c B
bes A /
> B
©
= '
2 [Experiment < D E F G
3 g™ — T —r— e~
o
= @
e B
E’ A
(]
2
=

OCDFT | ¢

|
285 286 287 288 289 290 291
Energy (eV)

Fig. 9 Core excited states for adenine computed using B3LYP
functional and def2-TZVP basis set. The OCDFT carbon and
nitrogen K-edge spectra were convoluted with a Gaussian function
with full width at half maximum (FWHM) equal to 0.3 eV. The
experimental spectra are reproduced with permission from Ref. 110.

are all weak transitions to mostly orbitals of diffuse character,
with transitions getting more intense as they approach 405.0
eV.

4.2.6 Adenine Carbon K-Edge Fig. 9b compares the
OCDFT and experimental carbon K-edge of adenine. The
experimental carbon K-edge for adenine is dominated by a
large single band with three distinct resonances in the low en-
ergy regime. The theoretical spectrum shows peaks A and B,
blending together into a single band, the experimental spec-
trum shows these peaks at similar intensities, with peak B be-
ing slightly more intense, this is represented well in our cal-
culated spectrum. Spectral positions for peaks A, B, and C
are all in good agreement with experiment, however, the os-
cillator strength is inconsistent with experimental peak inten-
sities. According to the experimental results, peak C should be
roughly 50% more intense than the adjacent peak B. OCDFT
predicts that the Cs — ¢z that dominates peak C is only
slightly more intense than the dominant contributions to peaks

Table 5 Comparison of the most intense transitions at each edge of
the thymine and adenine spectra. OCDFT assignments and energies
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(in eV) are shown and are compared to the most intense transitions
from the theoretical ADC(2) spectra reported in Ref 110.

K-Edge OCDFT ADC(2)
Thymine

Oxygen O, 7 (531.1) O, — 7} (531.4)

Nitrogen Ny — 77 (401.2) Ny — 7} (401.5)

Carbon  Cs — 7} (289.1) Cs — 7} (289.7)
Adenine

Nitrogen N5 — 7} (399.4) Ns — 1} (399.6)

Carbon  Cg — 7} (287.3) Cg — 7} (287.4)

A and B. A very weak shoulder feature is present on the falling
edge of peak C, we denote this feature as C’ and it is repre-
sented well by OCDFT. This shoulder results from 7* transi-
tions with hole orbitals located on the bridge carbons (Cg and
C10) and a carbon located on the six-member ring (Cy). Peaks
D-G were not assigned due to their low intensities. OCDFT re-
veals that peak D is a very weak spectral feature with dominant
contributions from excitations to diffuse orbital ¢p,. Peaks E
and F are also weak spectral features resulting mostly from
transitions to diffuse orbitals. Every transition with energy
higher than peak F is extremely weak

4.2.7 Comparison with ADC(2) Calculations Previous
theoretical studies performed using ADC(2) allow us to as-
sess the accuracy of our adenine and thymine OCDFT spectra.
Three key differences in the spectra are noted here. The shoul-
der feature B’ in the thymine oxygen K-Edge shown in Fig.
7 is absent from the ADC(2) spectrurn.110 However, a more
recent study by Wenzel, Wormit, and Dreuw 1! uses a core-
valence separation (CVS) approximation to the ADC(2) work-
ing equations [CVS-ADC(2)] and predicts three excitations in
this shoulder region B, all with f,s < 0.001. These weaker
oscillator strengths predicted by CVS-ADC(2) are more con-
sistent with the experimental peak profile.

The overall shape of the OCDFT thymine nitrogen K-Edge
is more consistent with the experimental excitation manifold
than the ADC(2) spectrum. The two peaks A and B in Fig. 7b
have clear, distinct maxima which are produced well quantita-
tively with ADC(2) (after applying a uniform shift of -2.59 eV
to the spectrum), strong * resonances are reported near both
experimental peak maxima. However, the contour of the peak
is inconsistent with the experimental manifold. The ADC(2)
spectrum blends into one large spectral band over the interval
from 401.0 eV to 404.5 eV encompassing very closely spaced
transitions, all with relatively high oscillator strengths. The
extremely tight spacings and high intensities of these transi-
tions seem to be present even in the updated CVS-ADC(2) re-
sults. The OCDFT spectrum doest not suffer from this single

12| Journal Name, 2010, [vol], 117
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Table 6 Calculated (B3LYP/def2-TZVP) and experimental adenine
nitrogen and carbon core excitation energies (®y;, in eV) and
relative oscillator strengths ( fia). For each calculated transition, we
also report the label of the core atomic orbital (¢y,) and the largest
ground-state virtual orbital contribution to the particle orbital (¢)).

OCDFT Experiment

d’h ¢P Cl)ﬁ frel Peak Cl)ﬁ

Nitrogen K-Edge
Ny 81.0% mf 399.1 0.825
N3 63.7% w; 399.3 0.915 A 399.5
Ns 92.6% w} 399.4 1.000
Ns 92.4% rf 399.7 0.001 ,
Ny 98.9% my 4004 0.019 A 4004
N3 81.6% m; 401.2 0.094 B’ 401.3
N2 82.1% mf 4014 0.351
N; 69.3% w; 401.8 0.587 B 401.9
N2 78.4% Dy 402.3 0.204
N; 74.8% 1y 403.1 0.109
N; 87.2% Dy 403.3 0.418 C 403.0
N2 57.1% D3 403.3 0.925

Carbon K-Edge
Cio 92.6% m; 286.3 0.270
Cy 81.0% mf 286.5 0.924 A 2864
Cio 92.4% w 286.7 0.242
Cy 82.1% mf 286.9 0.878 E 280.8
Cs 69.3% w; 287.3 1.000
Cs 63.7% w; 287.4 0.965 € 2874
Cio 34.7% 75 287.9 0.083 ,
Cy 98.9% my 288.0 0.021 ¢ 2880
Cs 74.8% w3y 288.8 0.006
Cio 36.4% Dy 289.2 0.033 D 289.0
Cg 66.2% 1y 289.2 0.012
Cy 77.4% w5 289.4 0.010
Cy 87.1% m; 289.4 0.029 E
Cy 57.1% D3 289.7 0.291
Cy 80.2% D 290.0 0.225
Cg 90.2% Dy 290.1 0.038 F
Cy 83.4% Dy 290.1 0.140
Cy 94.8% w3y 290.4 0.073
Cs 77.2% w5 290.7 0.052 G
Cy 56.6% Dy 290.8 0.047

band issue, as the T resonances in peak A are well separated
from the strong ¢p, transitions in peak B by more than 1.0 eV.
The agreement of these results with experiment, suggest that
well-separated * and Rydberg resonances are more congru-

ous with reality. However, a more detailed study of the nitro-
gen core excitation manifold of thymine is required to verify
this observation. ADC(2) was unable to fully resolve peaks
B’, B, and C in the adenine nitrogen edge shown in Fig. 9a.
On the contrary, the OCDFT spectrum represents these peaks
well, as separated spectral features, in compliance with the
experimental result.

Table 5 shows a direct comparison of the OCDFT peak as-
signment with those obtained from ADC(2). The comparison
is restricted to the transitions of highest intensity at each K-
edge. All peak assignment are consistent between the two
methods and we observe only small deviations in the com-
puted excitation energy (max error 0.54 eV). The excellent
agreement of OCDFT and ADC(2) for the highest intensity
transitions is encouraging, and suggests that OCDFT could be
a very useful tool to aid the assignment of NEXAS spectra.

5 Conclusions

In this work we have extended OCDFT in order to calculate
multiple core-excited states of first- and second-row elements.
We present two developments in OCDFT theory: 1) we show
that core excitations can be easily targeted by selecting hole
orbitals that correspond to core electrons, and 2) we proposed
a generalized set of orthogonality conditions that can be used
to compute multiple excited states. Our benchmark compu-
tations on core excitations from 1s and 2p orbitals of first-
and second-row elements using conventional pure and hybrid
functionals yield excitation energies with a mean absolute er-
ror (MAE) of 1.0 eV. OCDFT excitation energies are slightly
more accurate for first-row elements (MAE = 0.4 eV) than
second-row elements (MAE = 1.6 eV).

There are a few potential sources of the remaining error in
the OCDFT excitation energies. First, is the fact that the (in
principle) exact OCDFT excited state functional is approxi-
mated with the ground-state exchange-correlation functional.
Second, in our comparison with experiment we use vertical
excitation energies, which neglect vibrational effects. Third,
our treatment of relativistic effects is rather simplistic. It can
only approximately account for the relaxation of the core-
hole and neglects relaxation effects of valence orbitals. Last,
OCDFT cannot properly handle states that have a multideter-
minantal character. We expect that the use of an approximate
excited state functional is the most important source of error,
and that the relativistic and configuration mixing errors are
perhaps the least relevant in the case of first- and second-row
elements.

The results of our formal analysis and benchmark compu-
tations suggests that there are two factors contributing to the
success of OCDFT. As in the case of other variational and
constrained DFT approaches, OCDFT can properly describe
charge-transfer excitations. In addition, because the wave

This journal is ©@ The Royal Society of Chemistry [year]
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function of the auxiliary system is only subject to orthogonal-
ity constraints, OCDFT can fully describe orbital relaxation.
To demonstrate this, we consider the NEXAS spectrum of
CO,, which was suggested as a test case by one of the review-
ers. Previous computational studies of CO, !'* showed that
B3LYP/TDDFT underestimates the oxygen K-edge by 14 eV.
MRCI/CIS and MRCI/CISD underestimate the same feature
by 8 and 4.2 eV, respectively. In the case of MRCI/CIS and
MRCI/CISD, the residual error was attributed to the lack of
orbital relaxation effects. A broken-symmetry OCDFT com-
putation predicts the dominant feature of the oxygen K-edge
to be at 534.4 eV, which corresponds to a deviation from ex-
periment of 0.6 eV. This result suggests that relaxation effects
do indeed play an important role in the oxygen K-edge of CO,
and that OCDFT can fully account for them.

Excitation energies computed with TDDFT are significantly
less accurate and degrade as one goes from first-row (MAE =
11.6 eV) to second-row elements (MAE =31.6 eV). Moreover,
we show that in OCDFT the choice of the functional and the
amount of Hartree—Fock exchange has little effect on the ac-
curacy of the computed core excitation energies. We perform
a formal comparison of OCDFT, TDDFT, and CIS excitation
energies for an excitation in which the core and virtual or-
bitals have zero overlap. This analysis suggests that OCDFT’s
superior performance can be ascribed to the local nature of
the integrals that appear in the expression for the excitation
energy.

Our gas-phase OCDFT X-ray absorption spectra of thymine
and adenine are in excellent agreement with experiments.
OCDFT reproduces all the characteristic features of the
NEXAS spectra of these molecules, %! including the dis-
tinct £* transitions in the lower energy regime and the signif-
icant mixing between the ©* and diffuse orbitals in the higher
energy regime of the spectra. In addition, OCDFT assign-
ments of the spectral features are in excellent agreement with
those made using the ADC(2) method.''% This study shows
that our OCDFT approach for core-excited states is a practical
and useful tool for the interpretation of NEXAS experiments.
From the computational point of view, the scaling of OCDFT
vs. the number of electrons (V) is identical to that of ground
state DFT (N° and N* for pure and hybrid functionals) and
it is lower than the second-order approximate coupled cluster
method (CC2)'!5 and [ADC(2)], which scale as N°.

Two classes of systems that are worth further exploration
are transition metal complexes and open-shell molecules.
Core excitations in transition metal complexes present a num-
ber of additional challenges that will require further extension
of the present theory. One of the biggest improvements that
will be necessary is a proper treatment of relativistic effects.
While the scheme used in this work was sufficient for first- and
second-row elements, it will likely prove ineffective for the
treatment of transition metals where both scalar and spin-orbit

relativistic effects play an important role. Scalar relativistic
effects can be accounted for by combining OCDFT with spin-
free approximate relativistic Hamiltonians. One of our imme-
diate goals is to combine OCDFT with the one-electron spin-
free version of the exact two-component approach. !1-121 This
improvement will provide a more consistent way to introduce
scalar relativistic effects, and will be essential to compute ac-
curate K-edge spectra of elements past the second row. The
simulation of L-edge spectra presents additional challenges !
due to the strong mixing of excitations from degenerate 2p
core orbitals and the necessity to account for the coupling
of molecular multiplets that experience strong spin-orbit cou-
pling. In this respect, the current formulation of OCDFT—
which is ideal for excitations that are dominated by a sin-
gle Slater determinant—cannot properly treat multidetermi-
nantal electronic states that arise in L-edge excitations. One
way to overcome this limitation is to employ the basis of non-
orthogonal determinants that are generated in an OCDFT com-
putation in a subsequent configuration interaction procedure,
as described in the original formulation of OCDFT. This solu-
tion will certainly present some challenges, but if successful,
could be used to account for the coupling of various molecu-
lar multiplets via spin-orbit interactions. These considerations
also apply to species with a high-spin open-shell ground state
and whose excited states cannot be represented by a single
Slater determinant. A case that is more problematic is that of
molecules with a low-spin open-shell ground state. In this sit-
uation, if the ground state DFT calculation yields an unphysi-
cal result, then it will be unlikely for OCDFT to yield accurate
excitation energies.
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Appendix A: OCDFT Equations for the Con-
strained Multiple Hole/Particle Approach

In this appendix we report details of the algorithm used to
compute multiple solutions of the OCDFT equations via the
constrained multiple hole/particle method. The OCDFT equa-

14 | 1-17

Page 14 of 17



Page 150

f17

Physical Chemistry Chemical Physics

tions are solved following the sequence:

(i,

a):(0,0) = (L,1) = (1,2) = --- = (1,ny) —

= (2,1)=>(2,2) == (2,ny) —

, (A28)

= (ne, 1) = (ne,2) = -+ — (ne,ny),

where n. and n, are the number of core and unoccupied or-
bitals, respectively, and n¢n, is the total number of excited
states computed.

The OCDFT equations consist of a set of three coupled
eigenvalue equations:
< h/p N FEO (1B ) = 9",
ﬁ<"><1— - 8“) P09y ) = 9y,
0O (1 =AM FEO (1= A1) 01 gy ) = "0y,
(A29)

where f(:4)

is the Kohn—Sham Hamiltonian operator com-

puted using the density corresponding to the state ®(*?). The

projection operators that enter the OCDFT equations are de-
fines as:
plia) _plia) | plia)
By =B+ B (A30)
z a) holes 1
=Y o) (o] (A31)
Jj<i
(i) particles (i) (i)
Alia i i
= o), (A32)
b<a
o) —plia) _ plie), (A33)
Ol =Qtie) — A, (A34)
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