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Computational chemistry deals with the first-principles calculation of electronic and crystal structures, phase diagrams, charge

distributions, vibrational frequencies, or ion diffusivity in complex molecules and solids. Typically, none of these numerical

experiments allows for the calculation of electrical currents under the influence of externally applied voltages. To address this

issue, there is an imperative need for an advanced simulation approach capable of treating all kind of transport phenomena

(electron, energy, momentum) at a quantum mechanical level. The goal of this tutorial review is to give an overview of the

“quantum transport” (QT) research activity, introduce specific techniques such as the Non-equilibrium Green’s Function (NEGF)

formalism, describe their basic features, and underline their strengths and weaknesses. Three examples from the nanoelectronics

field have been selected to illustrate the insight provided by quantum transport simulations. Details are also given about the

numerical algorithms to solve the NEGF equations and about strategies to parallelize the workload on supercomputers.

Key learning points

1. State-of-the-art in atomistic device modeling

2. Introduction to quantum transport techniques with an arbitrary orbital basis

3. Differences between closed, periodic, and open boundary conditions

4. Working principle of different nanoelectronic devices with emphasis on transistors

5. Utility of supercomputers in computational nanotechnology

1 Introduction

The functionality of nanoelectronic devices such as ultra-thin-

body transistors1, molecular switches2, nanowire thermoelec-

tric generators3, quantum well solar cells4, or quantum dot

light emitting diodes5 strongly depends on the materials they

are made of. In fact, the concepts of “new materials” and

“new devices” converge towards each other at the nanometer

scale: modifying the dimensions of a given nanostructure di-

rectly affects its material properties (band gap, effective mass,

quantized energy levels, absorption coefficient, electron/hole

mobility, or thermal conductivity), while replacing a material

by another one changes the size, shape, and composition re-

quirements to achieve the targeted figures of merit (magni-

tude of the drive and leakage currents, absorption efficiency, or
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switching speed). As a consequence, fabricating nano-devices

that properly work and fulfill the foreseen specifications is a

very challenging task and a complicated, expensive, and time-

consuming process. The first prototypes rarely achieve the de-

sired characteristics and many fabrication cycles are necessary

before a satisfactory level of performance can be obtained. For

all these reasons, it clearly appears that designing nanoscale

devices has become so tedious that it cannot be accomplished

without the support of advanced simulation tools offering a

materials science and device perspective.

Ab-initio (from first-principle) software packages such as

VASP6, ABINIT7, Quantum ESPRESSO8, SIESTA9, or

CP2K10 are widely recognized as essential tools to shed light

on the material properties of nanostructures like their elec-

tronic structures, phase diagrams, molecular dynamics, charge

distributions, or crystal vibrations. For that purpose, they im-

plement density-functional theory (DFT) methods based on

the evaluation of the Kohn-Sham equations11. Although very
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powerful these full-band approaches have technical and con-

ceptual limitations. One of them is their heavy computational

burden and long calculation times. This prevents the consider-

ation of large atomic systems and/or out-of-equilibrium trans-

port situations where electrons move due to externally applied

voltages and temperature differences. Hence, DFT calcula-

tions are usually limited to small-size structures in equilib-

rium with their environment and composed of less than 1,000

atoms. Another limitation relates to the fundamentals of the

method: DFT is a ground state theory that does not accurately

capture the physics of unoccupied electron states, leading to

an underestimation of the band gap of most semiconductors.

Currently, novel solutions are emerging to solve this problem

and give more accurate band gap values12.

From a device point of view the objective is to compute

particle flows in structures driven out-of-equilibrium and ex-

tract their “current vs. voltage” or “dissipated power vs. tem-

perature” characteristics. At the nanometer scale this is

only possible with a quantum transport simulator that ac-

counts for energy quantization, quantum mechanical tun-

neling, and geometrical confinement. The Non-equilibrium

Greens Function (NEGF) formalism, simultaneously intro-

duced by Kadanoff/Baym13 and Keldysh14 in the 1960’s,

meets all these criteria. Since the beginning of the 1990’s it

has slowly imposed itself in the device modeling community

as one of the most efficient techniques to simulate transport

phenomena at the nanoscale15.

The inclusion of open boundary conditions that couple a

device with its out-of-equilibrium environment makes quan-

tum transport calculations computationally very intensive and

not really compatible with an ab-initio full-band model such

as DFT. This is already true in the ideal case where electrons

move along ballistic trajectories. When interactions with sur-

faces, impurities, crystal vibrations (phonons), and other elec-

trons are considered, the physical complexity and the com-

putation costs further increase16, almost excluding the possi-

bility for first-principles quantum transport simulations in the

presence of scattering. However, since full-band and quanti-

zation effects are critical at the nanoscale and cannot be ne-

glected, DFT is very often replaced by empirical models that

are less accurate, but computationally more efficient. Tight-

binding (TB)17 represents a good example, but it is nor perfect

either. The problem with TB comes from its parameterization

that is done for specific atomic configurations, bulk usually,

that do not necessarily correspond to the actual situation, out-

of-equilibrium nanostructures. Because of this shortcoming,

empirical models may lead to uncertainties in the results and

lack of predictability. At the same time, they do not underes-

timate the band gap of semiconductors and they enable the in-

vestigation of quantum transport in large-scale domains, both

in the ballistic limit of transport and with scattering.

Here, the basics of quantum transport calculations will be

reviewed, starting from the derivation of open boundary con-

ditions in Section 2, the inclusion of different scattering mech-

anisms in Section 3, and the benefits of empirical models such

as tight-binding in Section 4. Three typical examples in the

field of nanoelectronics have been selected to illustrate the

physical quantities that can be observed with a quantum trans-

port solver: (i) a carbon nanotube, (ii) a silicon nanowire, and

(iii) a GaSb-InAs broken gap heterostructure. All these struc-

tures are investigated in Section 5. A possible scheme to re-

duce the simulation time through a massive parallelization of

the workload is presented in Section 6. Finally, the review is

summarized and conclusions are drawn in Section 7.

2 From electronic structure to quantum trans-

port calculations

Quantum transport theories do not only apply to electrons, but

also to phonons or photons. This review will mainly focus

on electron transport, but will also briefly treat phonons since

they are needed to describe electron-phonon interactions. The

starting point is the single-particle Schrödinger equation

Ĥψ(r) = Eψ(r), (1)

Ĥ = −
h̄2

2m0
∇2 +V̂e f f (r), (2)

where h̄ refers to the reduced Planck constant and m0 to the

rest electron mass. Many-body effects are cast into the effec-

tive potential V̂e f f (r). The wave function ψ(r) is not directly

computed, but expanded in a basis. While in electronic struc-

ture calculations any basis is possible, in quantum transport

applications, it is more convenient to use a localized basis, as

explained later. The wave function ψ(r) becomes then

ψ(r) = ∑
n,σ

cσ
n φσ (r−Rn) (3)

with the unknown expansion coefficients cσ
n and the basis

functions φσ (r −Rn) of type σ and centered at position Rn.

Typically, the φσ (r −Rn)’s take the form of linear combina-

tions of atomic orbitals9, contracted Gaussian functions10,

Löwdin orbitals17, or Wannier functions18. By plugging

Eq. (3) into Eq. (1), left-multiplying it by a basis function,

and integrating over space, the following matrix elements

Hσ1σ2
nm =

∫

dr3 φ ∗
σ1
(r−Rn)Ĥφσ2

(r−Rm) (4)

Sσ1σ2
nm =

∫

dr3 φ ∗
σ1
(r−Rn)φσ2

(r−Rm) (5)

arise between the atom positions Rn and Rm and orbitals

σ1 and σ2. They must be carefully evaluated in order to

solve the Schrödinger equation. What differentiates density-

functional theory (DFT) from empirical tight-binding or
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Fig. 1 (a) Schematic view of a GaAs quantum dot embedded

between two AlGaAs barriers and GaAs extensions. Depending on

the choice of the boundary conditions (black blocks), either (b)

electronic structure or (c) quantum transport calculations are

performed. In (b), the second |ψ2(x)|
2 and the eleventh |ψ11(x)|

2

electron state of the nanostructure are plotted together with the

conduction band diagram (periodic boundary conditions). Subplot

(c) shows the spectral current (current as a function of the transport

axis x and electron energy E) flowing through the device in (a) when

a voltage difference V is applied (open boundary conditions). Red

indicates high current concentrations, green no current. The

difference between the chemical potential (Fermi levels) of the left

µL and right µR contact is equal to qV .

pseudo-potential methods are the approximations that are

made to Eqs. (4) and (5), as discussed in Section 4.

The boundary conditions (BCs) represent a critical aspect of

Eq. (1). In electronic structure calculations, the most popular

approaches are closed (hard wall potential) and periodic (rep-

etition of the same structure) BCs. In the first case (closed),

the wave function ψ(r) is set to 0 at the boundaries (Dirichlet

BCs), in the second case, the probability |ψ(r)|2 is continuous

at the interface between the simulation domain and its image,

i.e. in a one-dimensional structure of length L with 0≤ x ≤ L,

|ψ(L)|2=|ψ(0)|2 and ψ(L)=exp(iϕ)ψ(0).

Neither closed nor periodic boundary conditions lend them-

selves to quantum transport calculations. Electrons need to be

able to enter and leave the simulated region with any probabil-

ity between 0 and 1. In a two-terminal device with a left and

right reservoir/contact, no injection can happen if the wave

function is equal to 0 at the boundaries. With periodic BCs,

the electrical properties of the two contacts must be identical,

which does not allow for the application of an external voltage.

Quantum transport requires open boundary conditions (OBCs)

that are illustrated in Fig. 1 for a GaAs quantum dot embed-

ded between two AlGaAs barriers and two GaAs reservoirs.

Simulation Domain

(out-of-equilibrium)

x

L0

aLφ+exp(ikLx)

bLφ-exp(-ikLx)

aRφ-exp(-ikR(x-L))

bRφ+exp(ikR(x-L))

HDD

HLL

μL

HRR

μR

HRD

HDL

HLD

HDR

Reservoir/Contact Reservoir/ContactDevice

Fig. 2 (a) Illustration of the open boundary condition mechanism in

a two-terminal device. Plane waves are injected into the simulation

domain from a left and right reservoir/contact with a probability aL

and aR, respectively. These coefficients are proportional to the

electron distribution in the contact regions, which in turn depends on

the chemical potentials µL and µR. The b’s refer to the out-going

waves, either reflected or transmitted. (b) Hamiltonian matrices

representing the device (HDD), the left reservoir (HLL), the right

one (HRR) as well as the coupling between the reservoirs and the

device (HLD, HDL, HRD, and HDR).

With closed boundary conditions, discrete and confined states

arise in the central quantum dot. Two examples are shown in

Fig. 1(b). With OBCs, these states get broadened and form

conduction channels for the electrons, as seen around the en-

ergy E=1.94 eV in Fig. 1(c). The key feature of the OBCs

resides in the total separation of the left and right contact prop-

erties. They can have different geometries, electrostatic poten-

tial, or Fermi levels. Note that OBCs are not restricted to two

contacts, but can be generalized to N ports of entry19.

The tricks to introduce OBCs in the Schrödinger equation

are presented in Fig. 2. First, the contacts are assumed to be

semi-infinite regions divided into unit cells defined in such a

way that atomic connections exist only between adjacent cells.

Then, all these unit cells have identical properties, both in term

of their atomic configuration and in term of their electrostatic

potential. Hence, the propagation of electrons along the in-

jection direction can be modeled with a plane wave. This ap-

proach is known as quantum transmitting boundary method20.

After some algebra, the Schrödinger equation with open

boundary conditions can be written as21

(

E ·SDD −HDD −ΣB(E)
)

· c(E) = Inj(E). (6)

In this Wave Function (WF) approach, the matrix HDD

(SDD) contains all the elements H
σ1σ2
nm (S

σ1σ2
nm ) between two
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atoms/orbitals situated at positions Rn and Rm. It is very sparse

because most of its entries are equal to 0 (no atomic con-

nection). In applications with a unique transport direction,

HDD and SDD show a block-tri-diagonal structure that can be

leveraged by dedicated numerical algorithms to solve quantum

transport problems more efficiently19.

All the expansion coefficients cσ
n become energy-dependent

and are squeezed into the c(E) vector. It is important to realize

that c(E) has multiple columns, some of them corresponding

to states injected from the left contact, some of them from

the right contact, all being independent from each other. Not

shown in Eq. (6) is the momentum- or k-dependence, i.e. c(E)
is in fact c(E,k). It only occurs in structures with periodicity

along at least one of its transverse directions and is omitted

here for brevity. The OBCS are cast into the self-energy ma-

trix ΣB(E) and the injection vector Inj(E). Both quantities

depend on the matrices HLD, HDL, HRD, and HDR that con-

nect the simulation domain with its contacts. In ΣB(E) only

the entries that correspond to atoms with direct connections to

the contact regions differ from 0. They are located in the upper

left and lower right corner of the ΣB(E) matrix. This sparsity

pattern comes from the usage of a localized basis set.

The size of the linear system of equations in Eq. (6) is

NA ×Norb, where NA is the number of atoms in the device and

Norb the number of orbitals per atom. Equation (6) must be

solved for each electron energy E and momentum k before the

c coefficient are summed up to give the charge density ρ(r)
and current Id flowing through the considered structures21.

The charge ρ(r) induces an electrostatic potential V (r) that

is calculated with the Poisson equation and inserted in the

Hamiltonian operator Ĥ in Eq. (1). Hence, the Schrödinger

and Poisson equations are self-consistently coupled and must

be solved iteratively until convergence is achieved.

A retarded Green’s function GR(E) can be computed from

Eq. (6) instead of the vector c(E). They are related through
(

E ·SDD −HDD −ΣB(E)
)

·GR(E) = I (7)

c(E) = GR(E) · Inj(E) (8)

where I is the identity matrix. This is the so-called Non-

equilibrium Green’s Function (NEGF) formalism for quantum

transport problems. One of the strength of NEGF comes from

its ability to compute ρ(r) and Id without evaluating c(E) as

an intermediate step15. In ballistic transport simulations, all

the observables can be derived from GR(E), especially the

transmission probability T (E) between two contacts. The cur-

rent Id is then calculated with the Landauer formula22

Id = −
e

h̄

∫

dE

2π
T (E)

(

f (E,E f L)− f (E,E f R)
)

(9)

with the elementary charge e. Here, it is assumed that the elec-

trons move between two contacts (left and right) characterized

by the Fermi level E f L and E f R, respectively.

phE ωh+

phE ωh−

phωh

phωh

In-scattering

1

2

1 Phonon-emission

2 Phonon-absorption

phE ωh+

phE ωh−

phωh

phωh

Out-scattering

3

4

3 Phonon-absorption

4 Phonon-emission

Fig. 3 In- and out-scattering probability for an electron with energy

E interacting with a phonon with frequency ωph. Through phonon

emission or absorption, an empty state can be filled (in-scattering) or

an occupied state can be emptied (out-scattering).

3 Beyond ballistic transport

Additional Green’s Functions are required in the presence of

scattering such as electron-phonon or anharmonic phonon-

phonon interactions. Apart from the retarded GR(E) Green’s

function, a lesser G<(E) and greater G>(E) component must

also be taken into account in the NEGF formalism. The matrix

entries G<σ1σ2
nm (E) and G>σ1σ2

nm (E) describe the correlations

between the orbital σ1 at position Rn and σ2 at Rm and if n=m,

the probability that a state is occupied (<) or unoccupied (>).

The origin of the different Green’s Functions and the deriva-

tion of their time-dependent equations of motion can be found

in Ref.23 and references therein.

In stationary quantum transport simulations, the time argu-

ments are Fourier-transformed, giving rise to an energy de-

pendence of all the Green’s Functions24. For electrons, the

following system of equations must be solved







(

E ·SDD −HDD −ΣRB(E)−ΣRS(E)
)

·GR(E) = I

G≷(E) = GR(E) ·
(

Σ≷B(E)+Σ≷S(E)
)

·GA(E).
(10)

In Eq. (10), the advanced Green’s Function GA(E) is equal to

(GR(E))†. Furthermore, lesser and greater self-energies Σ≷

are introduced. They indicate the probability for in-scattering

(<, an unoccupied state gets filled) and out-scattering (>, an

occupied state becomes empty). All the self-energies can be of

boundary (index B) or scattering (index S) type. The latters are

used to model the desired scattering mechanisms, for example
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Structure Model NA NCPU OBCs (s) LSEs (s) Total Time (s) Factor

CNT d=0.6 nm TB 2560 1 1.4e-3 4.72e-2 4.86e-2 -

CNT d=0.6 nm DFT 2560 8 25.7 13.5 39.2 6600x

NW d=2.2 nm TB 10560 1 1.7 12.2 13.9 -

NW d=2.2 nm DFT 10560 64 213 236 449 2070x

NW d=2.5 nm TB 12096 1 4.6 28.9 33.5 -

NW d=2.5 nm DFT 12096 64 353 415 768 1470x

Table 1 Time to solve the Schrödinger equation with open-boundary conditions in a carbon nanotube with a diameter d=0.6 nm, in a Si

nanowire with d=2.2 nm, and in another Si nanowire with d=2.5 nm. All the structures are 35 nm long. As basis in Eq. (3) tight-binding (TB)

and density-functional theory (DFT) with Gaussian functions have been selected. The number of atoms in the structure (NA), the number of

CPUs used for the calculation (NCPU ), the time to compute the open boundary conditions, the time to solve Eq. (6), the total time, and the

DFT/TB time ratio multiplied by NCPU,DFT are reported. All the numerical experiments have been performed on a Cray-XE6 machine.

electron-phonon interactions25

Σ≷S(E) = ih̄

∫

dω

2π
|Me−ph|

2
(

G≷(E − h̄ω)D≷(ω)+

G≷(E + h̄ω)D≶(ω)
)

. (11)

Here, Me−ph describes the strength of the electron-phonon

coupling and the D≷(ω)’s are the greater/lesser phonon

Green’s Functions at frequency ω , where the lesser (greater)

component gives the number of occupied (unoccupied)

phonon states at ω . The retarded scattering self-energy

ΣRS(E) are derived from the value of Σ≷S(E)16.

A visual interpretation of Eq. (11) can be found in Fig. 3. In

the in-scattering case (Σ<S, left subplot), an unoccupied state

at energy E is filled through the absorption by a filled state

situated at E − h̄ω (G<(E − h̄ω)) of a phonon with frequency

ω (D<(ω)). A similar in-scattering process occurs if a filled

state at energy E + h̄ω (G<(E + h̄ω)) emits a phonon with

frequency ω . This requires the availability of phonon states

at this frequency, which depends on D>(ω). With the same

arguments, the out-scattering processes can be explained.

The phonon Green’s Functions can be calculated in differ-

ent ways. The most simple one consists in assuming that

the phonon population is at equilibrium so that the D≷(ω)’s
are approximated by Bose-Einstein distribution functions26.

In the case of an out-of-equilibrium phonon population, a

dynamical equation with open boundary conditions must be

solved. It has the same form as Eq. (10), but the Hamilto-

nian matrix HDD is replaced by a dynamical matrix ΦDD, the

electron energy E by ω2, and the self-energies are labeled

ΠR,≷(ω) instead of ΣR,≷(E)27. As for the Hamiltonian ma-

trix, ΦDD can be evaluated at the ab-initio or empirical level,

the pendant of tight-binding for phonons being the valence-

force-field model with a Keating potential28.

A critical issue in quantum transport simulations with scat-

tering is the coupling of Eqs. (10) and (11). The Green’s Func-

tion equations depend on the scattering self-energies, which

in turn exhibit a Green’s Function dependence. Hence, both

equations must be solved self-consistently till convergence.

From 10 to 100 iterations might be necessary to reach this

point, depending on the material, structure, and bias condi-

tions. This is a computationally very intensive process that

cannot be avoided. Non-self-consistent schemes have recently

started to emerge29, but their accuracy still needs to be care-

fully assessed in realistic devices.

In the presence of dissipative scattering, the current Id can-

not be computed as in Eq. (9) any more because no transmis-

sion function T (E) can be defined. In this case, it is evaluated

at each position xn along the transport direction as30

Id(xn) =
e

h̄
∑
i∈xn

∑
j∈xn+1

∫

dE

2π
tr
(

Hi jG
<
ji(E)−G<

i j(E)H ji

)

, (12)

where G<
i j and Hi j are blocks of size Norb ×Norb, tr indicates

the trace operator, and the index i ( j) refers to atoms situated

in the plane with x=xn (x=xn+1). Equation (12) calculates the

net transfer of electrons from the plane x=xn to x=xn+1, which

corresponds to the current flow at this location. After con-

vergence of the iterative process between Eqs. (10) and (11),

the current Id should be conserved, i.e. the values Id(xn) must

be the same for all the xn’s. It can be demonstrated that in the

ballistic limit of transport, Eq. (12) can be rearranged and then

becomes identical to Eq. (9)30.

4 The need for empirical models

As explained in the previous Section, the time-to-solution in

quantum transport simulation might be really large, even in

the ballistic limit of transport. It is therefore a goal of utmost

importance to reduce the simulation time through algorithmic

improvements or proper physical simplifications. The shape

of the H
σ1σ2
nm and S

σ1σ2
nm matrix elements in Eqs. (4) and (5) is a

major factor to accelerate the calculation of the open boundary

conditions and the solution of the Schrödinger equation.
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In a first-principles approach, the Hamiltonian operator Ĥ

contains a kinetic term and an effective potential that varies

rapidly in space. Pseudo-potentials eliminating the influence

of the very localized core electrons and mimicking the true

potential can be used to smooth these variations31. Still, the

space integral in Eq. (4) must be computed on a very fine grid,

which is a time-consuming operation.

A more serious issue stems from the long-range extension

of the basis functions in Eq. (4). Contracted Gaussian func-

tions, as utilized in the CP2K tool, can be delocalized over

several nanometers and connect atoms that are far away. The

same happens with linear combination of atomic orbitals so

that it is not uncommon to deal with connections between

seventh-nearest neighbor atoms or more. As a consequence,

the sparsity of the Hamiltonian matrix HDD in Eq. (6) rapidly

decreases while the computational burden induced by the cal-

culation of the open-boundary conditions and the Schrödinger

equation drastically increases. Despite all these challenges,

the first ab-initio quantum transport simulator was demon-

strated more than a decade ago32.

Empirical tight-binding models enable a faster evaluation

of Eq. (4) by approximating it as the multiplication of a form

factor that depends on the vector Rn −Rm connecting the two

neighbor atoms and of a material-specific constant17

Hσ1σ2
nm = ∑

b

f
σ1σ2
b (Rn −Rm)×Vσ1σ2,b (13)

In Eq. (13), the form factors f
σ1σ2
b (Rn −Rm) and the material

parameters Vσ1σ2,b are different for each bond configuration b

that can be of σ -, π-, or δ -type. While the f
σ1σ2
b (Rn −Rm)’s

are derived from geometrical considerations and the proper-

ties of spherical harmonics, the Vσ1σ2,b’s are not directly com-

puted, but used as fitting parameters so that the bandstructure

of the investigated crystals is accurately reproduced around the

points of high symmetry in the Brillouin Zone. In an orthogo-

nal sp3d5s∗ basis with 20 orbitals per atom, nearest-neighbor

connections are sufficient to model most semiconductors33. It

results very sparse HDD and diagonal SDD matrices in Eq. (6).

The benefit of tight-binding in terms of computational effi-

ciency can be observed in Table 1: the time to solve Eq. (6)

with a tight-binding and DFT basis is reported for a carbon

nanotube, and two silicon nanowires. Only one single energy

point is computed. It turns out that DFT quantum transport

calculations are about three orders of magnitude more expen-

sive than tight-binding ones, thus severely limiting the size of

the structures that can be studied at the ab-initio level. They

further require the usage of massively parallel algorithms, es-

pecially for the evaluation of the open boundary conditions34.

Note that if Eq. (7) (NEGF) is solved instead of Eq. (6) (WF),

the computational intensity is at least one order of magnitude

larger, both with a tight-binding and DFT basis. Also, the

parallelization of the WF formalism is more straightforward

than that of NEGF35. These facts, combined with the manda-

tory Green’s Function / self-energy iterations in the presence

of scattering, explain why quantum transport simulations are

mostly restricted to the ideal ballistic case.

5 Applications

5.1 Short transistor review

Three nano-device applications have been chosen to illustrate

the quantum transport methodology presented in this paper,

(i) a carbon nanotube, (ii) a silicon nanowire, and (iii) a GaSb-

InAs broken gap heterostructure. All operate as transistors,

i.e. as binary switches, the active components of integrated

circuits (ICs). After more than 40 years of aggressive scaling

according to Moore’s law36, the size of the transistors does

not exceed a few nanometers any more and their behavior is

largely dominated by quantum mechanical effects.

The three structures proposed here represent possible evolu-

tions of the transistor in an horizon of 5 to 10 years from now.

They are all composed of a heavily doped source and drain ex-

tensions that are separated from each other by a potential bar-

rier whose height is controlled by a gate contact. The latter is

isolated from the semiconducting channel by a dielectric layer

that minimizes leakage currents. Usually, the source contact

is grounded while a voltage is applied to the drain and/or gate

contact. This voltage may vary between 0 and VDD, the tran-

sistor supply voltage. When Vgs, the gate-to-source voltage,

is equal to 0 and Vds, the drain-to-source voltage, to VDD, the

transistor is said to be in its OFF-state. When Vgs and Vds are

equal to VDD, the ON-state is reached.

In a n-type (p-type) metal-oxide-semiconductor field-effect

transistor (MOSFET), high-energy electrons (holes) overcome

the gate-induced potential barrier that separates the source

and drain. Because of the thermionic nature of this pro-

cess, Vgs must be changed by at least 60 mV to increase the

electron/hole current by one order of magnitude. This “60

mV/dec” limit does not depend on the material or the number

of gates. It is a serious obstacle to reduce the power consump-

tion of ICs while keeping good characteristics. In effect, at a

given VDD, either a low OFF-current or a high ON-current is

possible, but not both simultaneously.

In the sub-threshold regime of MOSFETs, at low Vgs and

Id , electrons with an energy smaller than the potential barrier

controlled by the gate, are reflected back to their origin, except

if the channel length is short enough that quantum mechanical

tunneling occurs. This phenomenon known as source-to-drain

tunneling deteriorates the transistor performance and should

be avoided at any costs. In band-to-band tunneling transistors

(TFETS), this is exactly the opposite that is expected. The

tunneling current should be maximized because it does not

suffer from the 60 mV/dec limit37, as detailed in Section 5.4.
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5.2 Carbon nanotube
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Fig. 4 (a) Schematic view of a carbon nanotube field-effect

transistor (CNTFET) composed of a source, drain, and gate region

of length Lg. Electrons flow along the x-axis. The carbon atoms are

depicted as red dots. (b) Transfer characteristics Id-Vgs, i.e. current

at the drain side as a function of the gate-to-source voltage, of a

CNTFET with a diameter d=0.6 nm and Lg=15 nm. The

drain-to-source voltage Vds is set to 0.5 V. The structure contains

2,560 atoms. Both an empirical (dashed line) and an ab-initio (solid

line with circles) models have been used to compute Id . (c)

Conduction bandstructure of the same nanotube as in (b) calculated

with an ab-initio model. (d) Energy-resolved transmission

probability through the same structure as before. Each electron

channel directly relates to the turn-on of a conduction sub-band.

The first application is dedicated to a carbon nanotube field-

effect transistor (CNTFET) as depicted in Fig. 4(a). The struc-

ture has a diameter of 0.6 nm, a gate length of 15 nm, and

source and drain extensions of 10 nm each. This is exactly the

same size as in Table 1. The first quasi-ballistic CNTFET was

demonstrated in 200338. Since then, a lot of progresses have

been realized, placing this device architecture as a promising

alternative to Si transistors.

Due to the low dimensions of the considered CNTFET, a

quantum transport approach is necessary to simulate its cur-

rent characteristics. With a total number of NA=2,560 atoms

only, both tight-binding (single pz-orbital model with a hop-
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Fig. 5 (a) Number of electrons in each unit cell of the CNTFET

shown in Fig. 4 at different Vgs and Vds=0.5 V. (b) Average

electrostatic potential energy as a function of x and Vgs for the same

CNTFET as before. All the results have been obtained using an

ab-initio representation of the simulation domain.

ping parameter t0=-3 eV) and density-functional theory (3SP

contracted Gaussian basis10) calculations can be done, as

summarized in the Id −Vgs “current vs. gate voltage” subplot

in Fig. 4. The DFT-TB comparison is made at the same po-

tential barrier height between the source and drain extensions.

It can be seen that the DFT current is larger than the TB one,

especially at low voltages, and the inverse sub-threshold slope

iSS=δVgs/δ log10(Id) is close to 60 mV/dec, the ideal value,

in both cases. This indicates the absence of source-to-drain

tunneling. The DFT underestimation of the CNT band gap

(Eg,DFT =0.771 eV vs. Eg,T B=1.408 eV) is therefore not the

reason for the current discrepancy. A more careful inspection

of the DFT and TB results show that the bandstructures are

different, leading to a higher DFT Fermi level and more cur-

rent at the same barrier height.

The DFT conduction bandstructure of the carbon nanotube

is shown in Fig. (4)(c) and the energy-resolved transmission

probability from source to drain, assuming a flat potential, in

subplot (d). Without any external perturbation the bandstruc-

ture and the transmission function are related to each other:
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starting from a low energy and ramping it up, each time an

additional sub-band with a positive velocity (dE/dk >0) ap-

pears, a transmission channel turns on. For example, at an en-

ergy E=-1.5 eV, there are 7 bands available for transport and

the transmission T (E)=7. In other words, the T (E) simply

counts the number of bands at a given energy E 39.

Quantum transport calculations also offers a deep insight

into the electron distribution inside the CNTFET as well as

the resulting electrostatic potential. Because the Schrödinger

and Poisson equations are solved self-consistently, these two

quantities strongly depend on each other. They are plotted in

Fig. 5 for different gate-to-source voltages Vgs at Vds=0.5 V. To

facilitate their visualization, the charge density and the elec-

trostatic potential are averaged over the CNT cross section.

As expected, when Vgs increases, the height of the potential

barrier between the source and the drain decreases, inducing

more and more mobile electrons in the channel. When the free

carrier density becomes large, it starts to screen the influence

of the gate contact so that the barrier decrease between Vgs=0.3

and 0.45 V is much smaller than between Vgs=0 and 0.15 V

when the channel was empty. Note finally that the electron

concentration remains almost constant in the source and drain

extensions where it must compensate the background doping.

The channel region is assumed intrinsic.

5.3 Silicon nanowire

Silicon nanowires with diameters well below 10 nm have al-

ready been fabricated and wrapped by gate-all-around con-

tacts to form ultra-scaled field effect transistors40. In these

devices, electron transport can only be modeled at a quan-

tum mechanical level. This is what has been done for the

Si nanowire structure shown in Fig. 6(a). The semiconduc-

tor channel is oriented along the <100> crystal axis, it has a

diameter d of 3 nm and a total length L of 35 nm decomposed

into two heavily doped source and drain regions and a 15 nm

long gate contact. A 1 nm thick SiO2 oxide layer isolates the

channel from the gate contact. The material properties of the

NA=16,019 Si atoms forming the nanowire are expressed in

a sp3d5s∗ tight-binding basis41. Phonons are also simulated

here with the valence-force-field model of Ref.42.

The electron and phonon bandstructures of the considered

Si nanowire are plotted in Fig. 6(b-c). Due to the geometrical

confinement, the electron band gap increases from Eg=1.13

eV in bulk to 1.62 eV in the nanowire and the six bulk phonon

bands are folded back to constitute 3×NA sub-bands. Before

investigating transport in nanostructures it has been verified

that a tight-binding + valence-force-field combined approach

can accurately reproduce the experimental electron and hole

mobility of bulk Si43 as well as its bulk lattice thermal con-

ductivity44. This is demonstrated in Fig. 6(d-e).

The current that flows through the Si nanowire transistor
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Fig. 6 (a) Schematic view of a Si gate-all-around nanowire

field-effect transistor (GAA NWFET). The red dots indicate Si

atoms that form a semiconducting channel. It is surrounded by a

dielectric material that isolates it from the gate contact. (b)

Conduction bandstructure of a Si nanowire with a diameter d=3 nm

as obtained with tight-binding. (c) Phonon bandstructure of the

same nanowire as in (b) calculated with a valence-force-field (VFF)

method. (d) Electron and hole mobility of bulk Si calculated from

tight-binding in the presence of electron-phonon scattering. (e)

Lattice thermal conductivity of bulk Si as a function of the external

temperature as produced by VFF together with boundary and

anharmonic phonon-phonon scattering.

of Fig. 6(a) is reported in Fig. 7 as a function of the gate-to-

source voltage Vgs at Vds=0.6 V. Three cases have been studied:

(i) ballistic transport, (ii) with electron-phonon scattering, and

(iii) with self-heating effects. The difference between the sec-

ond and third case comes from the phonon population. In (ii)

it remains at equilibrium with the external environment so that

the D≷(ω)’s in Eq. (11) are replaced by Bose-Einstein distri-

bution functions while in (iii) it is driven out-of-equilibrium

and the phonon Green’s Functions are explicitly solved. It

results an energy transfer between the electron and phonon

baths, locally increasing the lattice temperature (self-heating).

Irrespective of the transport model, the current increase

in the sub-threshold region is limited to 60 mV/dec. When

electron-phonon scattering is turned-on, the drain current

drops by about 30% (equilibrium phonons) and by up to

50% (out-of-equilibrium), as compared to the ballistic limit.

Backscattering explains this current reduction45. When elec-

trons absorb or emit a phonon, they do not only undergo an
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NWFET with d=3 nm and Lg=15 nm. Solid line: in the ballistic

limit of transport. Dashed line: with electron-phonon scattering, but

an equilibrium phonon population. Dashed-dotted line: with both

electrons and phonons driven out-of-equilibrium. Self-heating

effects can be observed.

energy variation, but also a momentum one. If the latter be-

comes negative, the interacting electron is reflected back to its

origin and the current magnitude decreases. Backscattering

is especially important in the region before the top of the po-

tential barrier. The increase of the phonon population caused

by self-heating induces a higher probability for electrons to

backscatter and therefore a lower drive current.

Figure 8 gives a different perspective on self-heating ef-

fects. In subplot (a) and (b), the spectral electron current

is reproduced for the ballistic case and with electron-phonon

scattering, respectively. Red indicates high current concen-

trations, green no current. It can be observed that without

phonon interactions, the electrons keep the same energy from

source to drain. In the presence of scattering, they loose en-

ergy through phonon emission so that the total electron en-

ergy on the drain side (right) is lower than on the source side

(left). If it is assumed that the phonon population is at equi-

librium, the energy lost by the electrons simply vanishes and

the lattice temperature remains equal to the external one, 300

K, in the entire device structure, as in Fig. 8(c). In the out-of-

equilibrium scenario, the lost energy is responsible for an in-

crease of the lattice temperature, which is bias-dependent and

more pronounced on the drain side46, as shown in Fig. 8(d).

5.4 Broken gap heterostructure

Band-to-band tunneling (BTBT) transistors, also called

TFETs, do not rely on thermionic currents as MOSFETs, but

on the quantum mechanical tunneling of electrons from the

valence band of a p-doped source region into the conduction
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Fig. 8 (a) Spectral current of the same GAA NWFET as in Fig. 7 in

the ballistic limit of transport. (b) Same as (a), but with

electron-phonon scattering. By emitting phonons (green stars)

electrons (blue dots) loose energy while propagating from source to

drain. (c) Spatially-resolved lattice temperature as a function of Vgs

extracted from the ballistic simulations and those with equilibrium

phonons. Same as (c), but with self-heating. The lattice temperature

increases with Vgs and exhibits a maximum close to the drain region.

band of a n-doped drain extension. Hence, cold instead of hot

electrons compose the drive current, alleviating the 60 mV/dec

limit of MOSFETs mentioned above37. If TFETs would work

as expected, large ON-currents could be achieved at low OFF-

currents and supply voltages. This is an essential condition

to reduce the power consumption of integrated circuits. How-

ever, practically, no TFET satisfying all these requirements at

the same time has been fabricated so far, mainly due to tech-

nological challenges.

An advanced quantum transport approach might help im-

prove the design of TFETs, provided that it accurately mod-

els band-to-band tunneling currents. Due to its underestima-

tion of band gaps, a DFT basis is not really suitable for that

purpose, contrary to tight-binding, which fulfills the neces-

sary criteria. To maximize the tunneling efficiency, a broken

gap heterostructure, for example GaSb-InAs with GaSb in the

source and InAs in the channel and drain, is advantageous. A

region with no band gap exists between these two materials, at

the source-channel interface, favoring band-to-band tunneling

processes. Recently, GaSb-InAs Esaki (or BTBT) diodes have

been successfully produced47, but unlike transistors, they can-
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Fig. 9 (a) Experimental 47 and simulated “current vs. voltage”

characteristics of a GaSb-InAs broken gap Esaki diode. (b) Spectral

current and band diagram of the diode in (a) at a voltage V =-0.2 V.

(c) Schematic view of a single-gate ultra-thin-body GaSb-InAs

band-to-band tunneling transistor (TFET) with a body thickness

tbody=5 nm and gate length Lg=40 nm. (d) Same as (c), but for a

double-gate structure. (e) Transfer characteristics Id-Vgs at Vds=0.5

V of the two GaSb-InAs TFETs depicted in (c) and (d).

not operate as binary switches since they have only two con-

tacts. Using a quantum transport simulator, their experimental

current can be very well reproduced, as illustrated in Fig. 9(a).

Subplot (b) shows that the current mainly flows through a band

gap free energy window situated at the GaSb-InAs interface.

After verifying the accuracy of empirical tight-binding for

GaSb-InAs heterostructures, the performance of band-to-band

tunneling transistors made of the same material system can be

reliably analyzed. A single-gate and double-gate ultra-thin-

body, as schematized in Fig. 9(c-d), are simulated and their

current characteristics reported in subplot (e). In both devices,

the gate length measures Lg=40 nm and the channel thickness

is set to tbody=5 nm. To avoid leakage currents, the doping

concentration of the drain, ND=5e18 cm−3, is lower than that

of the source, NA=4e19 cm−3. Two important features should

be noticed from the simulation data: (i) the slope of the current

at low voltage is well below the 60 mV/dec of MOSFETs, as

expected from TFETs, and (ii) the double-gate transistor, due

to a better electrostatic control, offers a higher ON-current at

the same OFF-current48. These are theoretical results for ideal

atomic arrangements. In reality, impurities at the GaSb-InAs

interface and between the semiconductor channel and the in-

sulator layers alter the transistor behavior so that low inverse

sub-threshold slopes become extremely difficult to obtain37.

At this point, there is still a lot of design and process opti-

mization to do before TFETs can really challenge MOSFETs

as future state-of-the-art binary switches.

6 Numerical aspects
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Fig. 10 (a) Four-level parallelization scheme that can naturally be

applied to quantum transport calculations: (i) bias points, (ii)

momentum, (iii) energy, and (iv) 1-D spatial domain decomposition.

(b) Illustration of the walltime strong scaling (blue line) and

performance increase (red line) obtained by leveraging the parallel

approach in (a) for the ballistic simulation of a realistic InAs

transistor on 2,700 up to 221,400 cores. (c) Same as (b), but for a Si

device including electron-phonon scattering. The number of cores

ranges from 5,400 up to 170,400.

To reduce the computational costs of quantum transport cal-

culations, the solution of the Schrödinger equation must be

parallelized, i.e. Eqs. (6), (7), or (10) must be distributed over

several central processing units (CPUs) that work in parallel

to produce either expansion coefficients or Non-equilibrium

Green’s Functions. This spatial domain decomposition (each

CPU stores only a fraction of the simulation domain) is the

lowest possible parallelization level, but also the most diffi-

cult to realize. Since the Schrödinger equation must be solved
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for each electron energy and momentum (only in structures

with periodicity along at least one transverse direction), two

additional levels of parallelism can be identified, the distribu-

tion of the energy and momentum points. Finally, at the high-

est level, each external voltage can be treated by a different

group of CPUs, thus forming a fourth possibility of acceler-

ating quantum transport simulations. A typical 4-level par-

allelization scheme including bias, momentum, energy, and

spatial domain decomposition is shown in Fig. 10(a).

Inter-processor communication, if intensive, limits the par-

allel efficiency of a code or algorithm and should be avoided

as much as possible. For example the distribution of the bias

points is embarrassingly parallel, which means that each point

can be handled independently from the others and no commu-

nication is needed. This is the ideal case. In ballistic transport

simulations, the parallelization of the momentum and energy

points has the same virtue because each Schrödinger equation

is independent from the others. If electron-phonon interac-

tions are turned on, the situation changes due to the calcula-

tion of the scattering self-energies, as in Eq. (11). The integral

over the phonon frequency ω couples different energies (and

momentum if present) together, making the implementation of

dissipative transport simulations more complicated and reduc-

ing the parallel efficiency.

To demonstrate the acceleration potential brought by a mas-

sive parallelization of the computational tasks, two strong-

scaling experiments are reported in Fig. 10, one dealing with

ballistic transport in subplot (b) and one with dissipative trans-

port in subplot (c). In both simulations, a two-dimensional

transistor structure with a single-gate contact is investigated.

A strong-scaling experiment consists in measuring the time

needed to simulate a pre-defined device as a function of the

number of CPUs, from 2,700 up to 221,400 in the ballistic

case, from 5,400 up to 170,400 in the dissipative one. In sub-

plot (b) the four levels of parallelism mentioned above are

leveraged. The simulation time almost linearly decreases as

the number of CPU increases. The parallel efficiency, de-

fined as t2,700/t221,400×2,700/221,400, exceeds 90% so that

less than 1 hour is required on 221,400 cores to compute the

“current vs. voltage” characteristics of the considered tran-

sistor instead of years on a single CPU49. In subplot (c),

electron-phonon scattering reduces the parallel efficiency to

about 70%. This is still more than acceptable for a real-world

application, but poorer than without electron and momentum

coupling. It is worthwhile noting that in this experiment only

one single bias point has been computed. With ten bias points,

a machine with more than 1 million CPUs could be very effi-

ciently used.

Another important metrics in high performance computing

(HPC) is the number of floating point operations per second

(Flop/s) that is performed during a standard simulation. The

ballistic run reached a sustained performance of 1.268 PFlop/s

(1e15 Flop/s), which corresponds to 50% of the peak perfor-

mance of the supercomputer that was used, a Cray-XT5. The

sustained performance of the dissipative run drops to 20%

due to the increased inter-processor communication. Still,

typical applications operate at about 10% of the peak per-

formance of supercomputers. Figure 10 shows that a well-

implemented quantum transport simulator significantly out-

performs this number49.

7 Summary and Conclusion

The purpose of this tutorial review has been to give an

overview of the quantum transport field and current research

activities. The techniques to model electron, phonon, and/or

photon flows through nanostructures have been introduced

with a special emphasis on the inclusion of open boundary

conditions and their differences with electronic structure cal-

culations. To reduce the simulation time and allows for the

consideration of diverse scattering mechanisms, it has been

shown that an empirical basis such as tight-binding is pre-

ferred to first-principles approaches. Three applications, all

dealing with nanoscale transistors, have been proposed as il-

lustration of quantum transport simulations. Finally, the im-

portance of parallel computing has been stressed out to accel-

erate ballistic and dissipative transport calculations.

As future challenges, quantum transport will have to evolve

towards “ab-initio” modeling although the computational

costs are much higher than with empirical methods. This di-

rection seems to be the only one offering really predictive sim-

ulation capabilities that can be applied to any material config-

uration without the need for a sometimes complicated param-

eterization. The band gap problem of DFT approaches can be

overcome by using hybrid functionals12 and high performance

computing can help minimize the computational burden. The

highest hurdle will probably be the inclusion of scattering in a

first-principles basis. There have been some attempts to reach

this holly grail, but only in tiny atomic structures and with-

out a fully self-consistent treatment of the Green’s Function

/ scattering self-energy iterations50. The future availability

of larger and larger supercomputers might help go one step

further and enable ab-initio device simulators with dissipative

quantum transport functionalities.
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