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Abstract: (DAF)Pd(OAc)2 (DAF = 4,5-diazafluorenone) catalyzes aerobic intramolecular aryl 

C–H amination with N-benzenesulfonyl-2-aminobiphenyl in dioxane to afford the corresponding 

carbazole product. Mechanistic studies show that the reaction involves in situ generation of 

peroxide species from 1,4-dioxane and O2, and the reaction further benefits from the presence of 

glycolic acid, an oxidative decomposition product of dioxane. An induction period observed for 

the formation of the carbazole product correlates with the formation of 1,4-dioxan-2-

hydroperoxide via autoxidation of 1,4-dioxane, and the in situ-generated peroxide is proposed to 

serve as the reactive oxidant in the reaction.  These findings have important implications for the 

palladium-catalyzed aerobic oxidation reactions conducted in ethereal solvents.  
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Introduction 

Palladium-catalyzed oxidation reactions that form aryl C–N bonds from aryl C–H bonds and 

amines could have significant value in organic synthesis, and such transformations could 

complement other widely used C–N bond-forming reactions, such as Ullmann-type and 

Buchwald-Hartwig cross-coupling reactions.
1

 Palladium-catalyzed C–H amination methods 

typically require strong stoichiometric oxidants, such as diacetoxyiodobenzene,
2
 oxone,

3
 or [F

+
] 

sources.
4,5

 A common reaction pathway associated with these reactions involves oxidation of an 

aryl-Pd
II
 intermediate to a high-valent Pd

III
 or Pd

IV
 species,

6
 which then undergoes facile 

reductive elimination of the C–N bond and circumvents the intermediacy of an unstable Pd
0
 

species (Scheme 1).
7,8

   

 

Scheme 1.  Aryl C–H amination via Pd
II
/Pd

IV
 catalysis. 

 

 

The requirement for strong stoichiometric oxidants impacts the appeal of the reactions, 

because the advantage of direct C–H functionalization in terms of step economy are partially 

offset by reduced overall atom economy. To address this deficiency, we have been interested in 

the development of C–H amination methods compatible with molecular oxygen as the 
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oxidant.
9,10,11

 Here, we report the identification of a unique mechanistic pathway to achieve 

aerobic aryl C–H amination in the conversion of N-benzenesulfonyl-2-aminobiphenyl to N-

benzenesulfonylcarbazole. The reaction involves in situ generation of a peroxide-based oxidant 

from O2 and the solvent, 1,4-dioxane, and mechanistic insight into in situ generation of the 

peroxide-based oxidant is provided.
12,13

 

 

Results 

In an effort to discover mild conditions for aryl C–H amination reactions, we evaluated the 

various ligand-supported palladium catalysts for the transformation of N-benzenesulfonyl-2-

aminobiphenyl into the corresponding carbazole with molecular oxygen as the sole oxidant. This 

reaction was selected based on the ease of product analysis as well as the precedence for this 

reaction to be compatible with aerobic catalytic turnover (albeit at high temperature, 120 °C, and 

with limited scope).
7a,b

 During the course of screening studies, 44 turnovers were achieved with a 

4,5-diazafluorenone (DAF)-ligated Pd(OAc)2 catalyst in 1,4-dioxane at 80 °C under 1 atm O2 

(Scheme 2a). Inspection of the crude 
1
H NMR spectrum of the reaction mixture, however, 

revealed the presence of numerous byproducts, which were eventually traced to the use of an 

aged bottle of dioxane that had been used in the experiments. Significant quantities of 1,4-

dioxan-2-hydroperoxide were detected in the bottle of dioxane by 
1
H NMR spectroscopic 

analysis of a partially concentrated sample of the solvent, and the same hydroperoxide and 

various oxidative fragmentation products were identified in the crude 
1
H NMR spectrum of the 

completed catalytic reaction (Scheme 2b).   
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Scheme 2. a) Discovery of a positive effect of peroxide species in carbazole synthesis. b) 

Dioxane decomposition by autoxidation. 

 

 

When the reaction was repeated with a fresh bottle of 1,4-dioxane, no carbazole product was 

obtained (Table 1, entry 1). This result prompted us to carry out a number of control experiments 

to probe the origin of successful reactivity with the old bottle of dioxane depicted in Scheme 2. 

Upon changing the solvent to toluene and adding tert-butylhydroperoxide (TBHP), a yield 

comparable to that obtained with the decomposed dioxane was observed (45%, entry 2). 

Addition of a more activated peroxide oxidant, tert-butylperoxybenzoate (TBPB), provided an 

even higher yield of carbazole (82%, entry 3). These results implicate the involvement of 1,4-

dioxan-2-hydroperoxide as an oxidant in the reaction, and they resemble previous observations 

of Alper
14

 and Sigman
15

 in their studies of Wacker oxidations of alkenes in tetrahydrofuran 

(THF). In these reactions, oxidative decomposition of THF was observed, and TBHP was found 

to be effective as an oxidant.  
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Table 1.  Investigation of additive effects on aerobic carbazole synthesis with a (DAF)Pd(OAc)2 

catalyst system. 

 

Entry Additive (equiv) 
Solvent 

(0.1 M) 

% 

Yield 

dioxane 

decomposition? 

1 none dioxane 0 no 

2 t-butylhydroperoxide (1.1) toluene 45 n/a 

3 t-butylperoxybenzoate (1.1) toluene 82 n/a 

4 glycolic acid (0.1) dioxane 10 trace 

5 glycolic acid (1) dioxane 43 yes
a 

6 glycolic acid (2) dioxane 80 yes
a 

7 glycolic acid (2) toluene 0 n/a 

8 glyoxylic acid (2) dioxane 0 no 

9 oxalic acid (2) dioxane 0 no 

10 methyl glycolate (2) dioxane 4 trace 

11 ethylene glycol (2) dioxane 0 no
b
 

12 1-propanol (2) dioxane 0 no
b 

a
 1,4-Dioxan-2-hydroperoxide, 1,4-dioxan-2-one and unidentified formate 

species were detected in the 
1
H NMR spectrum of the reaction mixture. 

b
 Co-

solvent quantities (4:1 dioxane:alcohol) were also ineffective. 

 

Additional control experiments showed that successful catalytic turnover could be achieved in 

fresh dioxane if specific additives were included in the reaction mixture. The reaction of N-

benzenesulfonyl-2-aminobiphenyl was performed using fresh dioxane in the presence of 1-2 

equiv of glycolic acid, glyoxylic acid and oxalic acid (cf. Scheme 2b) (Table 1, entries 4-9). Of 

these additives, glycolic acid promotes the reaction. An 80% yield of carbazole was obtained 

when two equivalents of glycolic acid were included in the reaction mixture (entry 6). In 

contrast, no product was observed from reactions performed in the presence of glyoxylic acid 

and oxalic acid (entries 8 and 9), nor was product formed in the presence of glycolic acid when 

Page 6 of 19Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t



 

7

toluene was used as the solvent (entry 7). Analysis of the reaction mixtures after 20 h showed 

that dioxane decomposition products, similar to those observed when the reaction was performed 

with aged dioxane, were observed in the successful reactions that contained glycolic acid (entries 

5 and 6). Dioxane decomposition was not observed in the unsuccessful reactions containing 

glyoxylic acid or oxalic acid. Inclusion of methyl glycolate provided only trace reactivity (entry 

10), while ethylene glycol and propanol were completely ineffective (entries 11-12). In none of 

the latter three reactions was dioxane decomposition observed. To summarize, successful 

formation of carbazole product correlates with the oxidative decomposition of dioxane. 1,4-

Dioxan-2-hydroperoxide and 1,4-dioxan-2-one were isolated from the successful reaction 

mixtures, and several unidentified formate species were evident in the 
1
H NMR spectrum of the 

crude reaction mixtures (see the electronic supplementary information for details).  

The reaction of N-benzenesulfonyl-2-aminobiphenyl in the presence of 2 equiv of glycolic 

acid in dioxane was monitored by 
1
H NMR spectroscopy, and the results reveal a significant 

induction period for product formation. As shown in Figure 1a, the appearance of carbazole 

product correlates with the appearance of dioxane oxidation products 1,4-dioxan-2-

hydroperoxide and 1,4-dioxan-2-one. The transformation of glycolic acid into oxidized products 

was not monitored, but glycolic acid was consumed by the end of the reaction. This time course 

may be compared with a time course for the same reaction, using tert-butylperoxybenzoate 

(TBPB) in toluene (Figure 1b), which exhibits a negligible induction period but proceeds in 

similar yield. 
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Figure 1. a) Reaction time course: (DAF)Pd(OAc)2 catalyst with glycolic acid in dioxane and b) 

Reaction time course: (DAF)Pd(OAc)2 catalyst with t-butylperoxybenzoate in toluene. Yields 

were calculated with respect to 0.05 mmol of starting substrate and were determined by 
1
H NMR 

spectroscopic analysis using phenyltrimethylsilane as the internal standard. DAF = 4,5-

diazafluorenone. 
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A screen of common (bi)pyridyl ligand derivatives in the presence of glycolic acid revealed 

that DAF is especially effective as a ligand for the reaction (Chart 1).
16

 Simple pyridine, 

bipyridine, and phenanthroline derivatives did not promote the reaction, and a control experiment 

in which no ligand was added gave only trace carbazole product. Different diazafluorene 

derivatives and 6,6'-dimethylbipyridine also promoted the reaction, but not as effectively as 

DAF.  

 

Chart 1. Comparison of neutral donor ligands for the Pd(OAc)2 / glycolic acid mediated 

carbazole synthesis in dioxane. 

 

 

Discussion 

The results described above suggest that in situ formation of alkyl peroxides from 1,4-

dioxane solvent enable Pd-catalyzed C–H oxidation with O2 as the terminal oxidant. The 

principal observations described above may be summarized as follows: (1) 1,4-dioxan-2-

hydroperoxide is directly observed in the reaction mixture, (2) product formation is observed in 
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dioxane only when solvent oxidative decomposition products are also observed, (3) formation of 

1,4-dioxan-2-hydroperoxide (and other dioxane-based decomposition products) temporally 

correlates with the formation of the carbazole product, (4) glycolic acid promotes the oxidative 

decomposition of fresh dioxane under the catalytic conditions, and (5) the reaction carried out 

with dioxane and glycolic acid exceeds the performance of reactions that employ simple 

alkylperoxide-based oxidants.  

Although various mechanistic aspects of these reactions are not fully understood, a number 

of reasonable hypotheses can be offered to explain the experimental observations (Schemes 3, 4 

and 5). The disappearance of glycolic acid under the catalytic conditions is best explained by 

(DAF)Pd(OAc)2-mediated oxidation of the primary alcohol to afford glyoxylic acid via aerobic 

Pd
II
/Pd

0
 catalysis. Aerobic alcohol oxidation by Pd

II
 generates hydrogen peroxide,

17
 which could 

form an adduct with glyoxylic acid (the aldehyde generated from glycolic acid oxidation; 

Scheme 3a). Either hydrogen peroxide or the corresponding glyoxylic acid adduct could serve as 

an initiator for autoxidation of dioxane via a radical chain pathway (Scheme 3b). Trapping of 

alkyl radicals by O2 eventually affords 1,4-dioxan-2-hydroperoxide and other associated 

oxidative decomposition products.
18

 

 

  

Page 10 of 19Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t



 

11

Scheme 3. a) Generation of activated peroxide by reduction of O2 and in situ trapping. b) 

Proposed mechanism for autoxidation of dioxane. 

 

 

Our results suggested that 1,4-dioxan-2-hydroperoxide and TBHP are capable of promoting 

the aryl C–H amination reaction, but the more activated peroxide TBPB gave a higher yield, 

comparable to that obtained when glycolic acid was used in dioxane (cf. Table 1). The 1,4-

dioxan-2-hydroperoxide species generated from the autoxidation of dioxane accumulates during 

the reaction (cf. Figure 1a), and various options exist to generate a more reactive peroxide 

(Scheme 4a). Any of the activated peroxide species could potentially contribute to the catalytic 

aryl C–H amination reaction, and these oxidants also could be consumed in the oxidative 

decomposition of dioxane (Scheme 4b) and glycolic acid (Scheme 4c).  
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Scheme 4. Mechanistic pathways for a) peroxide activation b) decomposition of dioxane and c) 

decomposition of glycolic acid. 

 

 

These mechanistic considerations provide a rationale for the role of glycolic acid in the 

generation of a strong peroxide oxidant under Pd-catalyzed aerobic oxidation conditions in 

dioxane. A hypothetical Pd
II
/Pd

IV
 catalytic cycle that incorporates a peroxide-based oxidant in 

intramolecular aryl C–H amination is shown in Scheme 5. In 2013, Jiao and coworkers described 

the use of N-hydroxyphthalimide to mediate autoxidation of toluene to generate a reactive 

oxidant in chelate-directed Pd-catalyzed arene hydroxylation.
19

 Although certain details of their 

proposed mechanism differ from Scheme 5, both reactions exploit autoxidation of a weak C–H 

bond in the solvent to generate an O2-derived peroxide capable of oxidizing an arylpalladium(II) 

intermediate to a higher oxidation state, resulting in facile carbon-heteroatom bond formation. 

Overall, this concept represents an unusual, but valuable strategy to use O2 as a stoichiometric 

oxidant in Pd-catalyzed oxidation reactions.
20
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Scheme 5. Proposed mechanism for substrate oxidation via high-valent Pd
II
/Pd

IV
 catalysis with 

an in situ generated peroxide as the oxidant. 

 

 

 

Conclusions 

In summary, we have identified a palladium catalyst system that takes advantage of glycolic 

acid as a primary alcohol additive and 1,4-dioxane as a solvent for in situ generation of strong 

peroxide oxidants that promote efficient Pd-catalyzed intramolecular aryl C–H amination of a 2-

aminobiphenyl derivative. Monitoring of the reaction time course demonstrates a direct 

correlation between generation of the reactive hydroperoxide and formation of the C–H 

amination product. These observation highlight a valuable strategy to use O2 as a stoichiometric 

oxidant in challenging C–H oxidation reactions, but also highlight potential complexities that 

could arise when performing aerobic oxidation reactions in the presence of solvents that have 

weak C–H bonds.  
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Experimental 

General considerations 

All commercially available compounds were purchased and used as received, unless otherwise 

noted. Anhydrous 1,4-dioxane in 100 ml sure-seal bottles was purchased from Aldrich. 
1
H and 

13
C NMR spectra were recorded on Bruker 400 MHz or 500 MHz spectrometers and chemical 

shifts are given in parts per million relative to internal tetramethylsilane (0.00 ppm for 
1
H) or 

CDCl3 (77.16 ppm for 
13

C). Flash chromatography was carried out with SiliaFlash® P60 

(Silicycle, particle size 40-63 um, 230-400 mesh) or by using a CombiFlash Rf® automated 

chromatography system with reusable high performance silica columns (RediSep® Rf Gold 

Silica, 20-40 µm spherical particles). 

CAUTION: Although no explosions or other safety incidents were encountered in the course of 

this work, the experiments described here involve the formation of potentially explosive 

peroxide intermediates. All reactions were performed on small scale behind a blast shield. 

Appropriate safety measures should be taken into consideration in the reproduction or extension 

of this work. 

 

General procedure for reactions set up in a custom parallel reactor 

A heavy wall 13x100 mm culture tube was charged with N-benzenesulfonyl-2-aminobiphenyl 

(15.5 mg, 0.05 mmol) and other solid additives, such as glycolic acid, as desired. Separate stock 

solutions of Pd(OAc)2 and ligand were prepared such that the correct quantity of each (0.01 

equiv) could be delivered and the total volume would reach 0.5 ml (0.1 M). The culture tube was 

loaded onto a custom 48-well parallel reactor that allows for heating under a reflux condenser 

and 1 atm of O2 with orbital shaking in the absence of ambient light. The reaction vessel was 

Page 14 of 19Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t



 

15

purged with O2 after being loaded onto the shaker apparatus. The reaction mixtures were heated 

to 80 °C and allowed to shake vigorously. At the desired time point, the reaction mixtures were 

allowed to cool to room temperature, removed from the parallel reactor and concentrated to oil. 

The mixtures were analyzed by 
1
H NMR spectroscopy using CDCl3 containing 

phenyltrimethylsilane as the internal standard. 

General procedure for reactions employing peroxide additives 

A 6 ml vial was charged with N-benzenesulfonyl-2-aminobiphenyl (15.5 mg, 0.05 mmol). Stock 

solutions of peroxide additive (t-butylhydroperoxide or t-butylperoxybenzoate) in toluene were 

prepared such that the correct quantity (1.1 equiv) could be added via syringe. Separate stock 

solutions of Pd(OAc)2 and ligand were prepared such that the correct quantity of each (0.01 

equiv) could be delivered and the total volume would reach 0.5 ml (0.1 M). The vial was sealed 

with a Teflon cap and loaded into a heating block on a shaker table, allowing for orbital shaking. 

The reaction mixture was heated to 80 °C and allowed to shake vigorously. At the desired time 

point, the reaction mixture was allowed to cool to room temperature and concentrated to oil. The 

mixture was analyzed by 
1
H NMR spectroscopy using CDCl3 containing with 

phenyltrimethylsilane as the internal standard. 

Notes 
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