Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

1	The performance and mechanism of Ag-doped CeO_2 /TiO ₂
2	catalyst on the catalytic oxidation of gaseous elemental
3	mercury
4 5 6	Songjian Zhao, Zan Qu, Naiqiang Yan*, Zhen Li, Haomiao Xu, Jian Mei, Fuquan Quan
7	School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong
8	Chuan Road, Shanghai, 200240, PR China. E-mail addresses: nqyan@sjtu.edu.cn Fax: +86 21
9	54745591; Tel: +86 21 54745591
10	Abstract
11	To improve the catalytic oxidation ability of the CeO ₂ /TiO ₂ catalyst for gaseous elemental
12	mercury, silver was introduced. Doping with Ag can significantly enhance the Hg ⁰ oxidation
13	ability of CeO ₂ /TiO ₂ . In addition, the temperature window was wide (from 150 to 450 $^{\circ}$ C). The
14	catalysts were characterized by TEM, XRD, XPS and H2-TPR. The results indicated that silver
15	nanoparticles can be loaded by the support of TiO ₂ . The catalysts had better crystallization and the
16	higher redox ability after adding silver. The silver existed mostly in its metallic state, which can
17	keep Ce in a higher Ce (IV) state, and HCl was oxidized into active Cl by CeO_2 and then was
18	adsorbed on the silver nanoparticles. In addition to the HCl and Hg ⁰ breakthrough experiments, a
19	Hg ⁰ desorption experiment and Cl ₂ yield experiment were conducted to study the catalytic
20	mechanisms of the elemental mercury oxidation at various temperature ranges; these experiments
21	indicated that the reaction was followed by the Langmuir Hinshelwood mechanism at a low
22	temperature, and by the Eley Rideal mechanism and the homogeneous gas-phase reaction at high
23	temperature. Furthermore, a mercury valence state change experiment was analyzed to indicate
24	that HCl was the major catalytic oxidization component.

25 **1. Introduction**

Elemental mercury emitted into atmosphere during the process of coal combustion 26 will pollute the air and cause adverse effects to the health of humans.¹ Therefore, 27 many measures have been taken to reduce mercury emissions in recent decades. The 28 U.S. EPA updated the emission limits for new power plants under the Mercury and 29 Air Toxics Standards (MATS) on March 28, 2013.² In October 2013, a new 30 international convention to control mercury emissions named the Minamata 31 Convention on Mercury was signed by most countries, which was a response to the 32 issue of the global mercury pollution problem.³ 33

Mercury exists in three forms in coal-fired flue gas: elemental mercury (Hg⁰), 34 oxidized mercury (Hg^{2+}) and particulate-bound mercury (Hg^{p}) . Hg^{2+} and Hg^{p} are 35 relatively easy to remove from flue gas by typical air pollution control devices. 36 However, elemental mercury (Hg⁰) is difficult to remove from flue gas due to its high 37 equilibrium volatility and low solubility in water.⁴ Therefore, it is necessary to 38 develop effective technologies to remove Hg⁰. The catalytic conversion of Hg⁰ to its 39 oxidized form by catalysts subsequently captured by existing air pollution control 40 devices is considered to be an effective method for Hg⁰ control. 41

In recent years, a great deal of research into metal oxide catalysts has been extensively conducted to develop effective Hg^0 oxidation technologies.⁵⁻⁸ CeO₂ was heralded due to its large oxygen storage capacity and unique redox couple Ce^{3+}/Ce^{4+} with the ability to shift between CeO₂ and Ce₂O₃ under oxidizing and reducing conditions, respectively, which was used for the catalytic oxidation of elemental

Catalysis Science & Technology

47 mercury.^{9, 10} However, the appropriate temperature window of Hg⁰ oxidation was not
48 wide, and the efficiency of Hg⁰ oxidation over CeO₂-TiO₂ catalysts depends on the
49 HCl concentration of the flue gas.¹¹

Silver has long been recognized as an effective catalytic component and has been 50 shown to facilitate the redox process. $^{12, 13}$ Delaigle et al. used V₂O₅/TiO₂ catalysts 51 which added silver in the oxidation of chlorobenzene, which maintained the vanadium 52 in a higher oxidation state and induced higher catalytic performances.¹⁴ Ma et al. 53 prepared Ag/CeO_2 nanosphere catalysts for formaldehyde oxidation and found that 54 synergetic interactions might exist between the Ag and CeO2 nanosphere, and the 55 presence of silver could facilitate surface chemisorbed oxygen activation, which 56 mainly contributed to the HCHO oxidation.¹⁵ In addition, silver has been recognized 57 as an efficient adsorbent for the capture of Hg⁰ at low temperatures through an 58 amalgamation mechanism. Thus, the combination of Ag and Ce may be feasible, 59 which can enhance the Hg⁰ catalytic efficiency and widen the temperature window of 60 the reaction. 61

In the present study, catalysts were prepared using a room-temperature impregnation method. The physical and chemical properties of the catalysts, as well as the Hg^0 oxidation efficiency, were investigated. Furthermore, the catalytic mechanisms involved in improving the efficiency at various temperatures were discussed.

67

68 2. Experimental section

69 **2.1 Materials.**

Commercially available TiO₂ powder (Degussa P25) was mainly used as the carrier of various catalysts, which was a standard material for all purposes and contained anatase and rutile phases in a ratio of approximately 3:1. All chemicals used for the catalysts' preparation were of analytical grades and were purchased from Sigma-Aldrich Co. and Sino-pharm Chemical Reagent Co. The standardized SO₂ (10000 ppm), NO (5000 ppm) and HCl (2000 ppm and 5%) gases were provided by Dalian Date Gas Co.

77 **2.2 Preparation of Catalysts.**

Catalysts were prepared by the impregnation method, which included 78 CeO₂-TiO₂, Ag-TiO₂ and Ag-CeO₂-TiO₂. An appropriate amount of P25 was added 79 to the (NH₄)₂Ce(NO₃)₆ solution and stirred for 1 h, which was marked as the "A" 80 solution. The polyvinylpyrrolidone (PVP) was dissolved in water, and the AgNO₃ 81 82 precursor was then added. The mixed solution was stirred for 6 h at room temperature and was marked as the "B" solution. The B solution was added dropwise 83 into the A solution and stirred constantly for 2 h. The mixed solution was then 84 85 evaporated and dried with the rotary evaporation apparatus and was then finally calcined in a muffle furnace (5 h, 500 °C). The CeO₂-TiO₂, Ag-TiO₂ and 86 Ag-CeO₂-TiO₂ catalysts were labeled as Ce-Ti, Ag-Ti and Ag-Ce-Ti. The proportion 87 of the Ce and Ag to TiO_2 is on the basis of the atom percentages, such that 88 Ce(x%)-Ti represents the CeO_2/TiO_2 mole ratio, and 1% was omitted. 89

90 **2.3 Catalytic Activity Evaluation.**

91	The catalytic activity was evaluated in a simulated gas preparation system and a
92	catalytic reaction device, in which a cold vapor atomic absorption spectrometer
93	(CVAAS) and an online data acquisition system were employed. The simulated gas
94	system and the catalytic reaction device included eight mass flow controllers to
95	prepare simulated flue gases compositions and a fixed-bed reactor (a quartz tube with
96	an inner diameter of 6 mm and a tube type resistance furnace). The catalyst (40-60
97	meshes particles) was filled in a quartz tube and fixed with quartz wool. Hg^0 vapor
98	was prepared from the Hg^0 permeation unit and was blended with the gases before
99	they entered the reactor. The concentration of elemental mercury in the gas was
100	analyzed using a mercury analyzer (CVAAS SG-921).

At the beginning of each test, the gas containing the elemental mercury was first 101 102 passed through the bypass without a catalyst and subsequently sent to the CVAAS to 103 determine the baseline. When the concentration of elemental mercury remained within \pm 5% for more than 30 min, the gas was diverted to the fixed-bed reactor with 104 catalysts. 5 ppm HCl was passed to estimate the oxidation efficiency of Hg⁰ until the 105 catalysts were saturated. The gas flow rate was 30 L/h, corresponding to a space 106 velocity (SV) of 4.26×10^5 h⁻¹. Nitrogen was used as the carrier gas, and the oxygen 107 108 content was 4%.

Because the catalysts were first saturated in approximately $300 \ \mu g/m^3 \ Hg^0 \ plus \ N_2$ and O_2 gas flow, the decrease of Hg^0 concentration across the catalysts after passing HCl was attributed to the Hg^0 oxidation; Besides, the Online Mercury Emissions Monitoring System (3300 RS) proved that Hg^0 in flue gas was oxidized by catalyst;

Furthermore, mercury on the surface of catalysts was analyzed by a RA-915+ mercury analyzer (Lumex, Russia) equipped with a liquid analysis unit and a solid pyrolysis unit (RP-91C), which found the Hg^0 on the surface of catalyst was little, and only a little amount of Hg^{2+} species existed. Accordingly, the definition of Hg^0 oxidation efficiency (Eoxi) over catalysts is as follows:

118
$$\operatorname{Eoxi}(\%) = \frac{\Delta \operatorname{Hg}^{0}}{\operatorname{Hg}^{0}_{in}} = \frac{\operatorname{Hg}^{0}_{in} - \operatorname{Hg}^{0}_{out}}{\operatorname{Hg}^{0}_{in}}$$

119

120 **2.4 Characterization of the Catalysts.**

The XRD patterns of the catalysts were obtained by an X-ray diffractometer 121 122 (APLX-DUO, BRUKER, Germany) using Cu Ka radiation (40 kv and 20 mA). The microstructure of the catalysts was analyzed by transmission electron microscopy 123 124 (TEM). The sample was dispersed in ethanol with strong sonication before the 125 analysis. H₂-TPR experiments were performed on the Chemisorp TPx 2920 instrument, the catalysts were degassed at 200 °C for 3 h under Ar at atmosphere 126 before the H₂-TPR test, the reducing gas was 10% H₂/Ar. The X-ray photoelectron 127 128 spectroscopy (XPS) measurement was conducted using an AXIS UltraDLD (Shimadzu-Kratos) spectrometer with Al Ka as the excitation source. The C1s line at 129 130 284.8 ev was taken as a reference for the binding energy calibration. The Cl_2 131 produced by Deacon Reaction was monitored in situ by a UV/vis spectrometer equipped with an optical fiber for UV-beam transmission and a detector in the range 132 of 200-800 nm. The maximum UV absorbance for chlorine is at approximately 330 133 nm. The valence state change for mercury was analyzed by the Online Mercury 134

135	Emissions Monitoring System (3300 RS). The temperature programmed desorption
136	curves of Hg ⁰ performed as follows: a known amount of catalysts was placed in the
137	catalytic reaction device with N_2 + 4% O_2 at 30 L/h and 100 ${}^\circ\!\mathrm{C}$ to adsorb mercury
138	for 2 h; afterwards, the oxygen was stopped, and the Hg signal curve was recorded at
139	2 °C/min until it reached 450 °C under nitrogen.
140	
141	3. Results and discussion
142	3.1 The effect of silver on the catalytic oxidation of Hg ⁰ .
143	
144	Figure 1
145	
146	Figure 1 shows the comparison of the Hg ⁰ catalytic oxidation efficiencies over
146 147	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26 ×10 ⁵ h ⁻¹ space velocity. Figure
146 147 148	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with
146 147 148 149	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was
146 147 148 149 150	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high
146 147 148 149 150 151	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high temperature, which indicated the silver had an important role in the catalytic
146 147 148 149 150 151 152	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high temperature, which indicated the silver had an important role in the catalytic performance improvement of the Ce-Ti catalyst. It was also found that Ag-Ce-Ti was
146 147 148 149 150 151 152 153	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high temperature, which indicated the silver had an important role in the catalytic performance improvement of the Ce-Ti catalyst. It was also found that Ag-Ce-Ti was an excellent catalyst and had a wide temperature window for oxidizing Hg^0 . Therefore,
146 147 148 149 150 151 152 153 154	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high temperature, which indicated the silver had an important role in the catalytic performance improvement of the Ce-Ti catalyst. It was also found that Ag-Ce-Ti was an excellent catalyst and had a wide temperature window for oxidizing Hg^0 . Therefore, it was necessary to analyze the physical and chemical properties of the catalysts and
146 147 148 149 150 151 152 153 154 155	Figure 1 shows the comparison of the Hg^0 catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with various temperatures at 4.26×10^5 h ⁻¹ space velocity. Figure 1 shows that the catalytic efficiency of Ce-Ti and Ag-Ce-Ti were both improved with the increase in temperature. Moreover, the Hg^0 catalytic oxidation efficiency was significantly improved after adding silver whether at a low temperature or at a high temperature, which indicated the silver had an important role in the catalytic performance improvement of the Ce-Ti catalyst. It was also found that Ag-Ce-Ti was an excellent catalyst and had a wide temperature window for oxidizing Hg^0 . Therefore, it was necessary to analyze the physical and chemical properties of the catalysts and the reaction mechanism.

157 158 Figure 2 159 Figure 2 shows the XRD patterns of various catalysts calcined at 500 °C. The 160 anatase phase and the rutile phase of TiO_2 are clearly seen in Figure 2 (b)-(d). The 161 162 intensity of the peaks increased after adding silver. This indicates that the catalysts had better crystallization, which was beneficial to the catalysis reaction.^{16, 17} The 163 characteristic peaks of CeO_2 were observed in Figure 2 (a), while the peaks were not 164 obvious in Figure 2 (d), which manifested the CeO₂ uniform distribution. Additionally, 165 Ag^0 peaks could be observed in Figure 2 (c) and Figure 2 (d), indicating that metallic 166 silver was present on the support.¹⁸⁻²⁰ 167 168 Figure 3 169 170 Figure 3 shows the transmission electron microscopy (TEM) of Ce-Ti and 171 172 Ag-Ce-Ti. Figure 3 (a) shows that the Ce-Ti catalysts were nanoparticles and the sizes were between 20 and 30 nm. Ceria oxide particles could not be found on the surface 173 174 of the catalyst, while EDS analysis in Figure 3 (a) could prove the existence of ceria 175 oxide on the carrier, which indicated that ceria atoms were well dispersed on the TiO₂ or the low content referred to the results of XRD. Many small particles were attached 176 on the surfaces of TiO₂, as seen in Figure 3 (b), which were Ag nanoparticles. The 177 size distribution of silver nanoparticles was between 2-3 nm, indicating the silver 178

179 nanoparticles were evenly deposited on the titanium.

- 180
- 181

Figure 4

182

Figure 4 shows the XPS spectra of Ce-Ti, Ag-Ce-Ti and Ag-Ce-Ti passed 15 ppm 183 184 HCl at various temperatures. It was reported that the CeO₂ spectrum was composed of 185 two multiplets (v and u), where V and U correspond to the spin-orbit split 3d 5/2 and 3d 3/2 core holes, respectively. The peaks referred to as v, v" and v " are contributed 186 by CeO₂ and assigned to a mixture of Ce IV $(3d^94f^2)$ O $(2p^4)$, Ce IV $(3d^94f^1)$ O $(2p^5)$ 187 and Ce IV $(3d^9 4f^0)$ O $(2p^6)$, respectively. The same peak assignment is applied to u 188 structures. The peaks v_0 and v' are assigned to a mixture of Ce III (3d⁹ 4f²) O (2p⁵) 189 and Ce III (3d⁹ 4f¹) O (2p⁶), respectively. ^{9, 21} The Ce 3d spectra collected for the 190 191 Ag-Ce-Ti was shown in Figure 4 (a). It can be seen that Ce existed in the mixture of Ce (IV) and Ce (III) states, and the characteristic peaks shifted to the high binding 192 193 energy after adding silver, which indicated that the amount of Ce (IV) states were 194 increased to being beneficial for the oxidation ability. When HCl was passed, the characteristic peaks slightly shifted to the low binding energy, manifesting the 195 196 decreasing Ce (IV) states, which was because that HCl was oxidized by CeO₂. In 197 addition, the intensity of peaks was not weakened, showing that the HCl was not adsorbed on the CeO₂. 198

The binding energies of Ag 3d5/2 for Ag, Ag₂O and AgO were 368, 367.7 and 367.4 eV, respectively.²² The XPS peaks of Ag 3d in Figure 4 (b) clearly show that silver is mostly present with the metallic state, which indicates that the particles on the TiO_2 are silver nanoparticles referred to the results of TEM. When HCl was passed, the intensity of the characteristic peaks was weakened and shifted to the low binding energy. It may be that the HCl adsorbed on the surface of Ag and Ag⁰ was oxidized to Ag⁺. The peak of Ag₂O was shifted to the low binding energy, which may be the effect of HCl. With the increasing temperature, the peaks' intensity was enhanced, indicating that the amount of adsorbed Cl was reduced.

The XPS Cl 2p spectra was investigated in this study, shown in Figure 4 (c). 208 209 Carrasco, et al reported that the Cl 2p spectra were resolved with three spin – orbit 210 split doublets (Cl 2p3/2 and Cl 2p1/2) with the binding energies for the Cl 2p3/2 components at ~ 197, ~ 199 and ~ 200 eV.^{23, 24} In Figure 4 (c), the Cl 2p peaks 211 212 centered at 197.2 and 200.2 eV correspond to ionic (Cl⁻) and covalent (- Cl) chlorine species, respectively, whereas the component at 198.3 eV is ascribed to the 213 intermediate chlorine species (Cl*). Figure 4 (c) shows that the chlorine species 214 mainly existed in covalent (-Cl) chlorine species and intermediate chlorine species 215 216 (Cl^{*}) at 200 $^{\circ}$ C, the covalent (– Cl) chlorine might be the HCl adsorbed on the surface of the catalyst, and the Cl* might be the species that the adsorbed HCl was oxidized. 217 218 With the increase in temperature, the covalent (-Cl) chlorine was reduced, while the 219 chlorine species (Cl*) and the ionic species (Cl⁻) were increased. It indicated that the HCl adsorption ability of the catalyst was poor with the increasing temperature. In 220 221 addition, the catalyst oxidation ability was enhanced at high temperatures and can 222 improve the yield of Cl*. The appearance of ionic (Cl⁻) may be the reduced chlorine

Catalysis Science & Technology

species (Cl*) was, oxidizing the Ce^{3+} and Ag^{0} to Ce^{4+} and Ag^{+} . It can also be found that the peak intensities slowly decreased with increasing temperature, which may be because the adsorbed surface Cl was gradually removed.

226 The O 1s XPS spectrum is shown in Figure 4 (d). The common main peaks at 529.8 eV might be ascribed to lattice oxygen, and the peak at 531.4 eV could be 227 attributed to surface chemisorbed oxygen. Furthermore, the positions of the O 1s 228 229 528.2 eV were nucleophilic states and 530.4 eV denoted electrophilic states, and the 230 electrophilic oxygen could improve the oxidation step of the low valence state to the high valence state for metal ions.²⁵ Figure 4 (d) shows that there was no nucleophilic 231 232 oxygen after adding silver, which was beneficial for the oxidation ability of the 233 catalyst. When the HCl was passed at 200 °C, the characteristic peak of O was shifted, 234 which indicated that surface chemisorbed oxygen had increased. The chemisorbed 235 oxygen was beneficial for the oxidation reaction. With the increase of temperature, the 236 chemisorbed oxygen was reduced, and the adsorption of oxygen on the surface of the 237 catalyst at high temperatures was difficult.

- 238
- 239

Figure 5

240

The TPR profiles of the various catalysts are shown in Figure 5. CeO_2 shows three peaks in Figure 5 (a). A peak that appeared at 410 °C was corresponded with the reduction of surface oxygen and the peak at approximately 510 °C was related to the bulk oxygen,²⁶ while the peak at approximately 800 °C could be assigned to the lattice

245	oxygen of CeO_2 . ²⁷ When CeO_2 was loaded on the TiO ₂ , the characteristic peak of
246	CeO ₂ was shifted to the high temperature, which may have meant that the CeO ₂ was
247	dispersed well on the carrier and there was an interaction between the two. A broad
248	reduction peak starting from 100 $^\circ\!\mathrm{C}$ and ending at about 180 $^\circ\!\mathrm{C}$ could be attributed
249	to the reduction of Ag_2O on the support. ²⁸ The peak for Ag-Ce-Ti that appeared at
250	120°C in Figure 5 (d) could be attributed to the reduction of Ag_2O , and the peak that
251	appeared at about 200 $^\circ\!$
252	CeO_2 referred to Figure 5 (b) and 5 (c), ^{15, 29} which was indicated by the fact that the
253	peaks of CeO ₂ shifted to the low temperature after adding silver. This showed that the
254	redox ability of the catalyst was enhanced and was beneficial for the oxidation
255	reaction.
256	3.3 The gas component effect analysis.
257	
258	Figure 6
259	
260	The gas component effect on the Hg^0 oxidation of Ag-Ce-Ti is shown in Figure 6.
261	The catalytic efficiency was high in the presence of HCl, increasing as the
262	temperature increased. It indicated HCl was the main catalytic component. When SO ₂

was added, the Hg⁰ oxidation efficiency began to decrease slightly at low temperature,

while dropped sharply at high temperature, suggested that Ag-Ce-Ti had a superior

resistance toward SO₂ at low temperature, and SO₂ might compete for the active sites

to inhibit the reaction of Hg⁰ and Cl at high temperature. The Hg⁰ oxidation efficiency

263

264

265

266

Catalysis Science & Technology Accepted Manuscript

267	improved when adding NO, manifested NO promoted the Hg ⁰ oxidation. Besides,
268	water inhibited the Hg ⁰ oxidation both at low temperature and high temperature.
269	3.4 The catalytic oxidation Hg ⁰ mechanism analysis.
270	
271	Figure 7
272	
273	To clarify the catalytic mechanism of the elemental mercury conversion over
274	Ag-Ce-Ti, the HCl and Hg ⁰ breakthrough experiments were conducted.
275	Figure 7 (a) shows the HCl breakthrough curves of Ag-Ce-Ti at various
276	temperatures. Figure 7 (a) shows that HCl could be adsorbed on the surface of
277	Ag-Ce-Ti, either at low temperatures or at high temperatures, and the adsorption
278	ability for HCl was reduced with the increasing temperature. The same trend can be
279	seen from Figure 7 (b), which was shown for the Hg^0 breakthrough curves. The
280	adsorption ability of Hg^0 was a little above 300 °C, indicating that Hg^0 was hardly
281	adsorbed at high temperatures. It could be concluded that Hg ⁰ oxidation over
282	Ag-Ce-Ti catalysts probably occurred through adsorbed HCl reacting with adsorbed
283	Hg ⁰ at low temperatures, the process of which is the Langmuir Hinshelwood
284	mechanism.9 Furthermore, at high temperatures, Hg ⁰ oxidation proceeded through the
285	gas-phase or weakly adsorbed Hg^0 reacted with the adsorbed HCl by the Eley Rideal
286	mechanism. ³⁰
287	

- 207
- 288

Figure 8 shows Hg⁰ breakthrough curves over HCl pretreated Ag-Ce-Ti and 290 Ce-Ti. Figure 8 (a) shows that the catalyst still has oxidation ability when HCl was 291 not passed. This indicates that the chlorine species were adsorbed on the Ag-Ce-Ti 292 and participated in the reaction. The Hg⁰ oxidation efficiency had a tendency of 293 294 increasing first and then reducing slightly with an increase in temperature and was most effective at 300 °C. Because the catalyst was purged by nitrogen after the HCl 295 296 was pretreated, there was hardly any Cl₂ adsorbed on the catalyst. The adsorption 297 ability of HCl reduced with the increasing temperature referred to in Figure 7 (a), so that the adsorbed component on the surface of the catalyst for oxidizing Hg⁰ could be 298 299 an active chlorine species formed by the reaction between adsorbed HCl and Ag-Ce-Ti, which could react with Hg⁰. The amount of active chlorine species would 300 increase at high temperatures due to the high catalytic ability of Ag-Ce-Ti. However, 301 302 the amount of adsorbed HCl decreased at high temperatures, so the amount of adsorbed active Cl was highest at 300 $^{\circ}$ C, and the Hg⁰ oxidation efficiency was the 303 highest. When the temperature was higher than 300 $^{\circ}$ C, the Hg⁰ oxidation efficiency 304 of Ag-Ce-Ti was low, which indicated that there little active Cl was adsorbed on the 305 surface of catalyst. While the catalytic efficiency of Ag-Ce-Ti was improved with the 306 increasing temperature referred to in Figure 1, it might be because Cl₂ was generated 307 by the reaction of active Cl and further reacted with Hg⁰ at high temperature. 308

Figure 8 (b) shows the Hg^0 breakthrough curves over HCl pretreated Ce-Ti. It shows the same trend as Figure 8 (a). However, the Hg^0 concentration increased with time and was higher than that of Ag-Ce-Ti, which indicated that the adsorbed active

Catalysis Science & Technology

312 chlorine species was low due to the poor catalytic ability. It revealed that the active 313 chlorine species was mainly adsorbed on silver nanoparticles corresponding to the 314 results of the XPS analysis. Silver was important for the improvement of the catalytic 315 ability. 316 Figure 9 317 318 To verify the role of chlorine, the experiment of Cl₂ produced by Deacon Reaction 319 was carried out. Figure 9 shows the yield of Cl₂ catalyzed by Ag-Ce-Ti after passing 320 5000 ppm HCl. As can be seen from Figure 9, the characteristic peak of Cl₂ was not 321 322 found below 400 $\,^{\circ}$ C, indicated that Cl₂ was difficulty to generate at low temperature 323 and chlorine was existed in the form of active Cl. With the increase of temperature, the intensity of Cl₂ characteristic peak started to enhance, manifested the yield of Cl₂ 324 increased, which might be the more gaseous chlorine atoms or the chlorine atoms 325 326 have higher activity and react with the nearby chlorine atoms on the support at high temperature. The analysis above proved that the active Cl reacted with Hg⁰ at low 327 temperature, and active Cl and Cl₂ reacted with Hg⁰ at high temperature. 328 329 Figure 10 330 331 To study the mercury combination property of catalysts, the Hg⁰ adsorption and 332 desorption experiment was performed. Figure 10 shows the Hg-TPD curves for 333

334	various catalysts after absorption for 2 h. It can be seen form Figure 10 that the
335	adsorption ability for Ce-Ti was poor, which was indicated by the fact that Hg^{0} was
336	less adsorbed on the Ce(5%)-Ti in the process of the reaction. For Ag(5%)-Ti, Hg^0
337	was desorbed as the temperature increased. This may be due to the decomposing of
338	the silver amalgam, indicating that silver was important for adsorbing Hg^{0} . The
339	mercury combination ability of $Ag(5\%)$ -Ce(5%)-Ti was also strong, which is seen in
340	Figure 10. The desorption amount of Hg^0 was similar with that of Ag(5%)–Ti, which
341	manifested that Hg ⁰ can be absorbed on Ag(5%)-Ce(5%)-Ti at low temperatures, and
342	reacted with the absorbed HCl and active Cl, proving to have an excellent catalytic
343	effect.
344	
345	Figure 11
346	
347	Based the results above the main reaction processes for the Hg ⁰ oxidation over

Ag-Ce-Ti at low temperatures and high temperatures are shown in Figure 11. The 348 active chlorine species and Hg⁰ were both adsorbed on silver nanoparticles and 349 350 reacted with each other at low temperatures following the Langmuir Hinshelwood mechanism. At high temperatures, active chlorine species adsorbed on silver 351 nanoparticles and Cl_2 was reacted with the gas-phase or weakly adsorbed Hg^0 by the 352 Eley Rideal mechanism and the homogeneous gas-phase reaction. It further proved 353 that the Hg⁰ oxidation ability could be enhanced by adding silver whether at low 354 temperatures or at high temperatures. 355

356	
357	Figure 12
358	
359	Figure 12 shows that the mercury concentration change curves over Ag-Ce-Ti
360	after adding O_2 and HCl at 150 and 350 ${}^\circ\!{\rm C}$ as a further proof of the results. Figure 12
361	shows that the concentration of total mercury and elemental mercury both reduced
362	after O2 was added either at low temperatures or at high temperatures, and the
363	concentration of elemental mercury was lower than that of total mercury. It indicated
364	that oxygen was important for the Hg^{0} oxidation. In addition, a greater amount of
365	Hg ²⁺ was generated at high temperatures than at low temperatures, showing that the
366	oxidation ability of Ag-Ce-Ti was higher at high temperatures under oxygen
367	conditions. When HCl was added, the concentration of elemental mercury was further
368	reduced at both 150 ${}^\circ\!\mathrm{C}$ and 350 ${}^\circ\!\mathrm{C}$, and the gap between Hg^0 and Hg^t was larger,
369	which indicated that HCl was the major catalytic component. The decreasing
370	concentration of Hg^0 was such that Hg^0 reacted with the adsorbed active Cl species
371	and chlorine to produce HgCl ₂ . The concentration of total mercury was also reduced,
372	which may have caused a small amount of $HgCl_2$ to be adsorbed onto the catalyst.
373	

4. Conclusions

The silver-doped Ce-Ti catalyst can significantly improve the performance of the catalyst at various temperatures. The characterization results indicated that silver nanoparticles were deposited on the titanium and the catalysts had better

378	crystallization after adding silver. The silver existed mostly in its metallic state. The
379	silver can keep the element of Ce in a greater amount of Ce(IV) states, and HCl was
380	oxidized to active Cl by CeO_2 and then was adsorbed on the silver nanoparticles. The
381	gas component analysis indicated that SO_2 and water inhibited slightly the Hg^0
382	oxidization, and NO can promote the reaction. HCl and Hg ⁰ breakthrough curves and
383	Cl_2 yield experiment revealed that active chlorine species and Hg^0 were both adsorbed
384	on silver nanoparticles and reacted with each other at low temperatures following the
385	Langmuir Hinshelwood mechanism. At high temperatures, active chlorine species
386	adsorbed on silver nanoparticles and chlorine were reacted with the gas-phase or
387	weakly adsorbed Hg^0 by the Eley Rideal mechanism and the homogeneous gas-phase
388	reaction. These results proved that the Hg^0 oxidation ability could be enhanced by
389	adding silver whether at low temperatures or at high temperatures. Furthermore, the
390	Hg^{0} adsorption and desorption experiment showed that the mercury combination
391	ability of Ce(5%)-Ti was enhanced by adding silver. Finally, the valence state change
392	for mercury was analyzed to indicate that HCl was the major catalytic oxidization
393	component.
394	

395 Acknowledgments

This study was supported by the Major State Basic Research Development Program of China (973 Program, No. 2013CB430005), the National Natural Science Foundation of China (No. 50908145) and the National High-Tech R&D Program (863) of China (No. 2011AA060801).

400		
401		
402	Ref	erences
103	1	H. Yang, W. Hou, H. Zhang and L. Zhou, International Journal of Environmental Science and
403	1.	Technology 2013 10 689-696
405	2	recimology, 2013, 10, 005 050.
406	3.	J. Dong. 7. H. Xu and S. M. Kuznicki. Environmental Science & Technology, 2009, 43.
407		3266-3271.
408	4.	Y. Li, M. Daukoru, A. Suriyawong and P. Biswas, <i>Energy & Fuels</i> , 2009, 23, 236-243.
409	5.	N. Q. Yan, W. M. Chen, J. Chen, Z. Qu, Y. F. Guo, S. J. Yang and J. P. Jia, <i>Environmental Science</i> &
410		Technology, 2011, 45, 5725-5730.
411	6.	Y. Liu, Y. J. Wang, H. Q. Wang and Z. B. Wu, <i>Catalysis Communications</i> , 2011, 12, 1291-1294.
412	7.	J. F. Li, N. Q. Yan, Z. Qu, S. H. Qiao, S. J. Yang, Y. F. Guo, P. Liu and J. P. Jia, Environmental
413		Science & Technology, 2010, 44, 426-431.
414	8.	W. J. Lee and G. N. Bae, Environmental Science & Technology, 2009, 43, 1522-1527.
415	9.	H. Li, CY. Wu, Y. Li and J. Zhang, Environmental science & technology, 2011, 45, 7394-7400.
416	10.	H. L. Li, C. Y. Wu, L. Q. Li, Y. Li, Y. C. Zhao and J. Y. Zhang, <i>Fuel</i> , 2013, 113, 726-732.
417	11.	C. W. Lee, S. D. Serre, Y. Zhao, S. J. Lee and T. W. Hastings, Journal of the Air & Waste
418		Management Association, 2008, 58, 484-493.
419	12.	T. Kou, D. Li, C. Zhang, Z. Zhang and H. Yang, Journal of Molecular Catalysis A: Chemical, 2014,
420		382, 55-63.
421	13.	X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li, M. Huo and Y. Guo, Journal of hazardous materials,
422		2010, 175, 429-438.
423	14.	R. Delaigle, P. Eloy and E. M. Gaigneaux, Catalysis Today, 2011, 175, 177-182.
424	15.	L. Ma, D. Wang, J. Li, B. Bai, L. Fu and Y. Li, Applied Catalysis B-Environmental, 2014, 148,
425		36-43.
426	16.	B. M. Reddy, A. Khan, P. Lakshmanan, M. Aouine, S. Loridant and JC. Volta, The Journal of
427		<i>Physical Chemistry B</i> , 2005, 109, 3355-3363.
428	17.	H. Li, J. Li and Y. Huo, The Journal of Physical Chemistry B, 2006, 110, 1559-1565.
429	18.	B. Xin, L. Jing, Z. Ren, B. Wang and H. Fu, The Journal of Physical Chemistry B, 2005, 109,
430		2805-2809.
431	19.	M. Wen, L. Zhou, W. Guan, Y. Li and J. Zhang, Applied surface science, 2010, 256, 4226-4230.
432	20.	C. Hu, Y. Lan, J. Qu, X. Hu and A. Wang, <i>The Journal of Physical Chemistry B</i> , 2006, 110,
433		4066-4072.
434	21.	E. Beche, P. Charvin, D. Perarnau, S. Abanades and G. Flamant, <i>Surface and Interface Analysis</i> ,
435	22	
436	22.	S. B. Atla, CC. Chen, CY. Chen, PY. Lin, W. Pan, KC. Cheng, Y. M. Huang, YF. Chang and JS.
437	22	Jean, Journal of Photochemistry and Photobiology a-Chemistry, 2012, 236, 1-8.
438	23.	P. IVI. Carrasco, IVI. Cortazar, E. Ocnoteco, E. Calanorra and J. A. Pomposo, Surface and
439	24	H Dian K Adib and M A Bartoau Surface Science 2004 EET 12 20
440	Z4.	n. riau, n. auiu aiiu ivi. a. dalteau, <i>suijute stienite,</i> 2004, 557, 13-20.

441	25.	V. V. Kaichev, V. I. Bukhtiyarov, M. Havecker, A. Knop-Gercke, R. W. Mayer and R. Schlogl,
442		Kinetics and Catalysis, 2003, 44, 432-440.
443	26.	S. Watanabe, X. L. Ma and C. S. Song, Journal of Physical Chemistry C, 2009, 113,
444		14249-14257.
445	27.	P. Li, Y. Xin, Q. Li, Z. P. Wang, Z. L. Zhang and L. R. Zheng, Environmental Science & Technology,
446		2012, 46, 9600-9605.
447	28.	S. Zhao, Y. Ma, Z. Qu, N. Yan, Z. Li, J. Xie and W. Chen, Catalysis Science & Technology, 2014,
448		Advance Article.
449	29.	Y. Kang, M. Sun and A. Li, Catalysis letters, 2012, 142, 1498-1504.
450	30.	W. Gao, Q. C. Liu, C. Y. Wu, H. L. Li, Y. Li, J. Yang and G. F. Wu, Chemical Engineering Journal,
451		2013, 220, 53-60.
452		

454 **Figure Captions**

- **Figure 1** The comparison of the Hg⁰ catalytic oxidation efficiencies over Ce-Ti and Ag-Ce-Ti with
- 456 various temperatures at $4.26*10^5$ h⁻¹ space velocity.
- 457 Figure 2 The XRD patterns of various catalysts calcined at 500 °C: CeO₂ (a), Ce(5%)-Ti (b),
- 458 Ag(5%)-Ti (c) and Ag(5%)-Ce(5%)-Ti (d).
- 459 Figure 3 The transmission electron microscopy (TEM) of Ce-Ti and Ag-Ce-Ti: Ce-Ti (a) and
- 460 Ag-Ce-Ti (b).
- 461 Figure 4 The XPS spectra of Ce-Ti, Ag-Ce-Ti and Ag-Ce-Ti passed 15 ppm HCl at various
- 462 temperatures: Ce 3d (a), Ag 3d (b), Cl 2p (c) and O 1s (d).
- 463 Figure 5 The TPR profiles of the various catalysts: CeO₂ (a), Ce-Ti (b) and Ag-Ce-Ti (c).
- 464 **Figure 6** The gas component effect on the Hg^0 oxidation of Ag-Ce-Ti.
- 465 Figure 7 The HCl and Hg⁰ breakthrough curves of Ag-Ce-Ti at various temperatures: HCl
- 466 breakthrough curves (a) and Hg^0 breakthrough curves (b).
- 467 Figure 8 Hg⁰ breakthrough curves over HCl pretreated Ag-Ce-Ti and Ce-Ti: Ag-Ce-Ti (a) and
- 468 Ce-Ti (b).
- **Figure 9** The yield of Cl₂ catalyzed by Ag-Ce-Ti after passing 5000 ppm HCl.
- 470 Figure 10 The Hg-TPD curves for various catalysts.
- 471 Figure 11 The reaction process for the Hg⁰ oxidation over Ag-Ce-Ti at low temperatures and high
- 472 temperatures.
- 473 Figure 12 The mercury concentration change curves over Ag-Ce-Ti after adding O₂ and HCl at
- 474 150 $^{\circ}$ C and 350 $^{\circ}$ C: 150 $^{\circ}$ C (a) and 350 $^{\circ}$ C (b).

479 480

482

483

486

496

497

498

501

505

Catalysis Science & Technology Accepted Manuscript

528

532

533

535

534

545

547 Figure 11

Catalysis Science & Technology Accepted Manuscript