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Intermetallic TaPt3 nanoparticles (NPs) are materialized for 
the first time and exhibit much higher catalytic performance 
than state-of-the-art Pt3Sn NPs for the electrooxidation of 
ethanol. In-situ infrared-reflection-absorption spectroscopy 
(IRRAS) elucidates that the TaPt3 NPs cleave the C-C bond in 
ethanol at lower potentials than Pt NPs, efficiently promoting 
the complete conversion of ethanol to CO2. Single-cell tests 
demonstrate the feasibility of the TaPt3 NPs as a practical 
energy-extraction catalyst for ethanol fuels, which realizes 
more than 2 times higher output currents than Pt-based cells 
at high discharge currents. 

 
Small organic molecules (SOMs) including formic acid 

and alcohols are becoming crucial as environmentally-benign 
fuels for sustainable economy and society.1 In particular, 
ethanol is of confocal interest because it contains the 
energetically dense C-C bond and can be produced via 
biochemical processes, possibly leading to carbon-neutral 
economy.2,3 However, ethanol fuels are still precluded in 
widespread use except as an additive to petroleum for 
traditional combustion systems because of the lack in efficient 
catalysts which promote the complete oxidation of ethanol 
near room temperature, not being accompanied by heat loss.3,4  
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Pt catalysts can efficiently promote the complete 
electrooxidation of ethanol to carbon dioxide (CO2) involving 
the C-C bond cleavage, but suffer from poor long-term 
activity due to severe catalytic poisoning by one of the 
reaction intermediates, carbon monoxide (CO-poisoning).3b,5 

Alloying Pt with late-d-metals or metalloids including Ru, Fe, 
Co, Ni, Cu or Sn improves both the CO-poisoning tolerance 
and catalytic activity toward C1-molecule fuels such as 
methanol and formic acid, but diminishes the catalytic 
activity toward the complete electrooxidation of ethanol.3c,5b 
In addition, the traditional binary-alloy catalysts lack long-
term stability in repeated use because of surface segregation: 
the counter elements of Pt readily leach out of the alloy or 
migrate into the bulk during long-term operation at high 
overpotentials.6    

It is acknowledged that the improved catalytic 
performance of the late-d-metal-Pt alloys for the C1 
molecules is attributed to reaction-active OH admolecules, 
which are formed over the electropositive late-d-metal atoms 
in aqueous media and preferentially oxidize reaction 
intermediates on the neighboring Pt atoms (bi-functional 
mechanism).7 Early-d-metals including Ta may be a rational 
alloy counterpart to Pt because Ta is much more 
electropositive and oxyphilic than the late-d-metals and can 
more favorably form the OH species to promote the desired, 
complete electrooxidation of ethanol.8 Furthermore, the Ta-Pt 
alloys, when atomically ordered in an intermetallic phase of 
TaPt3, can act as a more stable catalyst than conventional late-
d-metal alloys because of its large enthalpy of formation: e.g., 
ΔHf = -59.5 kJmol-1 of Ta for TaPt3 compared with ΔHf = -
13.6 kJ mol-1 of Fe for Fe-Pt alloys.9 However, synthesis of 
intermetallic TaPt3 catalysts in the desired form of 
nanoparticles or porous materials has been a big challenge 
because of the extremely oxyphilic nature of Ta metal (Ta(0)). 

In this communication, we report the first successful 
synthesis of intermetallic TaPt3 in the form of nanoparticles 
(TaPt3 NPs) and demonstrate their much enhanced activity 
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diminishes when the potential exceeds +0.40 V and finally 
becomes invisible at +0.60 V, as a result of the full 
conversion of CO admolecules to CO2 (Figure S10). By 
contrast, CO evolves over the Pt NPs first at +0.25 V or 
higher potentials, which is consistent with literature (Figure 
4b).18 The TaPt3 NPs are more active than Pt catalysts toward 
the C-C bond cleavage, in terms of the low onset potential for 
the CO generation. 

The TaPt3 NPs efficiently catalyze not only the C-C bond 
cleavage but also the complete conversion of ethanol to CO2. 
As shown in Figure 4c, when the potential exceeds +0.35 V, 
the asymmetric stretching peak of CO2 appears at 2342 cm-1 
over the TaPt3 NPs. The CO2-stretching peak over the Pt NPs 
becomes first visible at +0.45 V, indicating that the Pt NPs 
are less active toward the complete ethanol/CO2 conversion 
than the TaPt3 NPs (Figure 4d, note that the IRRAS spectra 
contain background signals from atmospheric CO2 at 2350 
cm-1).19 Importantly, CO2 starts to evolve over the TaPt3 NPs 
at a similar potential to which the CO-stretching peak starts to 
decrease, +0.35 V (compare Figures 4a and 4c). In addition, 
the increase in the CO2-streching peak at > +0.40 V (Figure 
4c) is proportional to the decrease in the CO-stretching peak 
(Figure 4a). The enhanced ethanol/CO2 conversion over the 
TaPt3 NPs is primarily attributed to the electrooxidation of 
the CO admolecules.  

In conclusion, we have successfully developed a high-
performance alcohol-electrooxidation catalyst, TaPt3 NPs. 
The TaPt3 NPs are superior to state-of-the-art binary alloy 
catalysts in terms of the stability and catalytic activity toward 
the electrooxidation of ethanol. In-situ IRRAS measurements 
have elucidated that the TaPt3 NPs efficiently promote both 
the C-C bond cleavage in ethanol and the complete 
conversion of ethanol to CO2. Moreover, single-cell tests have 
demonstrated that the TaPt3 NPs act as a highly feasible 
catalyst for the desirable low-temperature energy extraction 
from ethanol fuels. The large particle size of the current TaPt3 
NPs limits the figure of merit of TaPt3 NPs-based catalysts. 
However, the particle size of catalysts can be significantly 
reduced by dispersing the NPs over appropriate electro-
conductive supports, such as carbon nanoparticles or 
graphenes (Figure S15).20 The molecular kinetics of the 
promoted C-C bond cleavage and CO2 evolution over the 
TaPt3 surface is currently being investigated. The developed, 
high-performance TaPt3 NPs electrocatalyst may prompt the 
low-temperature energy management based on ethanol fuels, 
meeting the energy/environmental challenges presently we 
face. 
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Intermetallic TaPt3 nanoparticles (NPs) efficiently promote C-C bond cleavage in ethanol and exhibit much 
higher catalytic performance than any of the traditional binary-alloy catalysts for the ethanol 

electrooxidation.  
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