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We report fluorescence measurements of three quantum dots (QDs) of 5 

different sizes functionalised with the same pH responsive naphthalimide 
dye. QD size strongly influences energy transfer between dye and dot. 
Using QDs with an emission maximum of 570 nm gives rise to an 
interesting mutual transfer of energy, while QDs with an emission 
maximum at 670 nm give unexpected enhancement of the dye emission. 10 

Titrations of QDs with the dye provide a means to establish the loading and 
hence an approximation of the surface dye density, which varies in 
proportion to QD size. Quenching effects are observed beyond the loading 
limit, and may indicate non-specific interactions between the excess dye 
and the nanoparticle. Attachment of the dye to the QD core is achieved by a 15 

thiol/disulfide exchange process that has been interrogated with Raman 
spectroscopy. The stability of these QD-dye conjugates over time and 
across a physiological pH range has been investigated, to provide an 
assessment of their performance and robustness. 

Introduction 20 

Fluorescent nanoparticles, and specifically quantum dots (QDs), have found 
widespread application in biomedical imaging in recent years.1-4 Much of this work 
involves tracking the localisation of nanoparticle reporters functionalised with a 
ligand that binds some cognate biological molecule, and much of the interest is 
focussed on intracellular measurements. We have become interested in two less 25 

well-explored areas of sensing that we feel could be addressed with the 
appropriately built fluorescent nanoparticle: 1) monitoring analyte concentrations 
and dynamics in the extracellular (intercellular) space; and 2) developing 
nanoparticles that are responsive to analytes, in that their fluorescent output changes 
with the (varying) local concentration of an analyte – responsive QDs (RQDs). 30 

 Our initial approach to sensing using nanoparticles targets pH. Intercellular pH 
regulates a wide range of poorly understood processes including cell adhesion,5 
motility,6 myelin repair,7 and cancer progression.8 We felt that proof of concept for a 
reversible sensing scaffold would be more easily attained with a pH-sensitive system 
than a prototype based on the metal-responsive probes we have developed recently.9-

35 
11 While there is some precedence for pH-responsive nanoparticles12-16 there is 
considerable scope for the development of new responsive probes that can be simply 
prepared. 
 To this end we recently reported an easily-constructed functionalised nanoparticle 
that responds to pH but which also exhibits an enhanced QD photoluminescence 40 

(PL) (Figure 1).17  This system was designed so that the dye emission overlaps with 
the absorption band of the nanoparticle, leading to energy transfer and an enhanced 
PL signal of the QD (Figure 1B). The conjugate thus exhibits energy transfer from 
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dye to dot, in contrast to the majority of the quantum dot literature in which energy 
transfer is designed and observed to occur to the dye from the excited dot. Dye-to-
dot transfer was sought, but not conclusively found, by Mattoussi in 2005,18 who 
proposed that in their system energy transfer in this direction was precluded by 
competition between the dye’s fast radiative decay pathways and the slower non-5 

radiative Förster Resonance Energy Transfer (FRET) pathways, as well as strong, 
unavoidable direct excitation of the nanoparticle itself. However, three more recent 
reports have described dye-to-dot transfer in QDs directly functionalised with simple 
organic dyes19, 20 or a photosynthetic light harvesting complex.21 None of these 
systems respond to analytes. Our conjugate consists of a naphthalimide dye attached 10 

to a QD (via a passive disulfide exchange reaction22) to give a system in which the 
resulting emission is sensitive to the pH. The conjugate exhibits dye-to-dot energy 
transfer that is pH-dependent, constituting the first responsive dye-to-dot system. 
The fluorophore is (2-(dimethyl)ethyl)amino-naphthalimide, a pH-sensitive probe 
that is switched off at basic pH due to a photoinduced electron transfer (PET) from 15 

the non-protonated dimethylamino- group.23 When this kind of dye is attached to the 
nanoparticle, pH-induced changes to the properties of the dye are communicated to 
the QD, modulating the intensity of the QD emission. 
 

 20 

Figure 1 Schematic representation of the previously reported pH-responsive QD-dye 
conjugate using disulfide 1 and water-soluble, core/shell type CdSeS/ZnS QDs.17 

 The signal changes observed as a function of pH are significant but not as large as 
had been anticipated. Further investigation is required to understand the mechanism 25 

behind this dye-to dot fluorescence enhancement. Several aspects of this system in 
particular require further elucidation. First, we wished to confirm that the 
spectroscopic performance of the system can indeed be attributed to the 
spectroscopic overlap between dye and dot as envisaged in the original conjugate 
design. Second, it was important to ascertain whether the dye interacts directly with 30 

the surface of the core of the particle (and not with the outer polymer coating added 
to the QD to aid aqueous solubility) and if so to what extent, i.e. how many 
molecules of dye could be installed on the particles. Third it was important to assess 
the performance and stability of the conjugate with respect to time and changes in 
pH.  35 

Results and Discussion 
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1) The Dot-Dye Energy Transfer Changes Dramatically with Particle Size 

In our previous studies we had found that there was a mutual enhancement of the 
dye emission as well as the QD PL signal presumably arising from energy transfer 
going in both directions, i.e. dye-to-dot as well as dot-to-dye energy transfer. To 
understand these effects further, QDs of different sizes (QD-460 and QD-670) were 5 

employed to complement the originally-used QDs (QD-570) (vide infra for further 
discussion of the particle sizes). 
 The three types of dot were exposed to increasing concentrations of disulfide 1 
under the same conditions (HEPES buffer, pH 7.4, room temperature). The resulting 
PL spectra for QD-570 (Figure 2a) show the enhancement of the QD fluorescence at 10 

570 nm, and the growth of the ‘shoulder’ next to the QD arising from the 
fluorophore emission, which, by virtue of the conjugation to the QD, is blue-shifted 
to 516 nm with respect to the emission of 1 alone (the lower emission maximum 
centred at 534 nm). Clearly this blue-shift is accompanied by a substantial increase 
in PL intensity of the fluorophore emission. A maximum is reached for the QD 15 

fluorescence output after the addition of a given amount of 1, beyond which the 
intensity decreases (Figure 2b). The spectra are notable in that they show mutual 
enhancement of the two signals. 

Figure 2 Normalised PL emission spectra and plots of emission signal changes as a 20 

function of particle number (i.e. ratio of 1:QD-570) in HEPES buffer, excitation at 435 nm. 
a) addition of 1 up to saturation of fluorescence emission increase (up to 3 nmol), b) 
addition of 1 beyond emission signal saturation (up to 12 nmol) and 1 alone at same 

concentration (12 nmol), c) plot of fluorophore emission intensity at 516 nm, d) plot of QD 
emission intensity at 570 nm and e) overlay of plots of emission intensities at 516 and 570 25 

nm 
 
Plotting the intensity at the emission maximum as a function of the ratio of numbers 
of dye molecules over number of QDs (“Particle Number”, Figure 2c – calculated as 
described below) shows that the PL signal approaches an asymptote around 50, 30 

implying further conjugation (or even interaction) of dye and dot is not taking place 
above a certain concentration of the added dye. This is a strong indicator that the 
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surface of the dot is covered with the maximum amount of dye; each particle thus 
accommodates ca. 100 fluorophore molecules (since the assumption is made that 
each molecule of the disulfide 1 delivers two molecules of the fluorophore). The 
absence of further QD-dye interaction is indicated by the increasing red-shift as the 
titration of 1 is continued (Figure 2b) (up to 12 nmol). However, the signal intensity 5 

arising from the fluorophore remained essentially unchanged in this subsequent 
titration, i.e. a small increase in dye emission was expected (because more dye is 
being added) but this was not observed, suggesting some non-specific interaction 
between the dye and some other component (likely the polymer) of the nanoparticle. 
This unexpected phenomenon becomes more apparent when comparing the final 10 

spectrum (in Figure 2b) with the emission of 1 alone taken at the concentration that 
would be expected in the absence of the QD (9 nmol, blue line) where the intensities 
are seen as being approximately equivalent indicating there is no energy transfer 
from the dot to the dye beyond the surface saturation point. 
 The plot of the QD’s PL signal intensity as a function of particle number shows 15 

the same behaviour as that of the dye emission (Figure 2e) with the only difference 
being the weaker changes in signal intensity, providing supporting evidence that we 
are looking at a saturation of the dye on the surface of the dot. We conclude that the 
communication, presumably FRET, between dye and dot operates in both directions, 
since both QD and fluorophore signals are enhanced by the addition of 1. There is 20 

no donor quenching in this system, because the energy transfer is mutual, precluding 
a simple calculation of FRET efficiency. To verify this, QD-460 and QD-670 were 
employed in equivalent experiments. The spectra obtained when 1 was titrated into 
solutions of QD-460 (Figure 3) and QD-670 (Figure 4) show very different 
behaviour. 25 

 In the case of QD-460, with an emission maximum at 459 nm, the combination 
with 1 (absorption maximum at 435 nm) implies the nanoparticle is the energy 
donor, and the dye the acceptor, when the sample of the conjugate is excited at 400 
nm. Thus adding 1 to QD-460 results in an immediate decrease in QD PL intensity 
(unlike the case for QD-570) accompanied by a large enhancement of fluorophore 30 

emission (Figure 3a). The blue-shifted dye emission is centred at 515 nm (pink line), 
as seen for QD-570. 

Figure 3 Normalised PL emission spectra and plots of emission signal changes as a 
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function of particle number (i.e. ratio of 1:QD-460), in HEPES buffer (pH 7.4), excitation at 
400 nm. a) addition of 1 up to saturation of fluorophore emission increase of (up to 1.5 

nmol) and 1 alone at this same concentration (1.5 nmol, blue line), b) addition of 1 beyond 
emission signal saturation (up to 12 nmol) and 1 alone at same final concentration (12 

nmol), c) plot of fluorophore emission intensity at 515 nm, d) plot of QD emission intensity 5 

decrease at 459 nm and e) Stern-Volmer plot (F/F0) of fluorescence emission intensity at 
459 nm. 

 
 Interestingly, further addition of dye 1 to the QD-1 conjugate led to a decrease in 
fluorophore emission intensity and a red-shifted emission signal (Figure 3b, grey 10 

lines). This emission signal experienced a second saturation at a number of particles 
per dot roughly twice that seen for the first saturation, with the emission centred at 
534 nm (the emission maximum of the dye 1 itself), followed by a subsequent 
increase in emission intensity. The signal increase was accompanied by a further 
red-shift to 550 nm, suggesting that the free dye is experiencing some interaction 15 

with the QD or its surroundings, again potentially with the polymer outer layer. The 
total increase in dye emission intensity (up to the maximum seen at 515 nm during 
the initial addition of 1, Figure 3a) is of about 6 orders of magnitude, as judged by 
the final intensity compared with the intensity of 1 alone at the same concentration. 
The quenching of QD emission during addition of 1 is high, with the signal 20 

disappearing almost completely after further dye addition (Figure 3b); the further 
decrease in intensity at this wavelength for this conjugate was observed to be a 
partly time-dependent phenomenon (vide infra, Figure 9a). 
 From the decrease in QD donor PL intensity, the FRET efficiency (E) can be 
determined using equation (1). 25 

 

𝐸 = 1 − !!
!

!!
       (1) 

 
 The FRET efficiency is thus defined as the ratio of the fluorescence intensity of 
the donor in the presence of the quencher (Fq

D) over the fluorescence intensity of the 30 

donor in the absence of the quencher (FD). Here the FRET efficiency is 80% at 
maximal QD coverage and approaches 96% in the course of further dye addition. 
Plotting the fluorescence intensity at 515 nm as a function of the number of dye 
molecules covering the QD, shows that PL signal increase of the dye emission signal 
is maximal around a dye-to-dot ratio of 25 (Figure 3c). The same number is obtained 35 

by plotting the decrease in QD PL intensity at 459 nm (Figure 3d) at 80% FRET 
efficiency.  
 From the Stern-Volmer plot24 (Figure 3e), where the rate of the fluorescence 
intensity quenching (F/F0) is plotted as a function of the quencher concentration (as 
particle number) it is obvious that a linear relationship only holds at low dye 40 

density, i.e. in the concentration range up to the fully covered QD where static 
quenching is possible. Addition of further dye continues the linear trend up to a 
particle number of around 50 (corresponding to the second saturation limit) with 
subsequent addition leading to an upward curving plot indicative of combined static 
and dynamic quenching processes; one would expect dynamic quenching with dye in 45 

solution. The linear range between particle number 25 and 50 is interesting in that 
this may be supporting evidence for association of the dye with the polymer coating, 
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as opposed to direct interaction with the dot or free dye in solution. 
 

Figure 4 Normalised PL emission spectra and plots of emission signal changes as function 
of particle number of 1 per single QD-670 in HEPES-buffer (pH 7.4), excitation at 435 nm. 5 

a) addition of 1 up to saturation of fluorophore emission increase and 1 alone at the same 
concentration (5.5-6.5 nmol), b) addition of 1 beyond emission signal saturation (up to 20 

nmol) and 1 alone at same final concentration (20 nmol) and c) plot of fluorophore emission 
intensity at 518 nm. 

 10 

 Also shown (Figure 3b) is the emission intensity of the dye alone (i.e. the 
disulfide 1 at a concentration of 12 nmol) at the concentration equal to the final 
concentration reached following addition of 1 into the QD solution, which is 
observed to be significantly higher (blue line) than in the presence of the QD. A 
quenching effect appears to operate on the dye even after the surface of the QD is 15 

fully covered with dye molecules. However, the increase in dye emission after the 
point of saturation indicates that these processes are starting to be suppressed and 
radiative processes of the fluorophore start to dominate. We were not able to observe 
this for the QD-570 system, but would expect similar behaviour to be operating.  
 The PL spectra of QD-670 in the presence of disulfide dye 1 (Figure 4) were 20 

acquired. The absorption of the first exciton band is centred around 660 nm and the 
emission maximum of the QD is centred at 668 nm. Addition of 1 to solutions of 
QD-670 resulted in a large increase of the fluorophore emission band and a blue 
shifted emission signal to 518 nm as before, but the QD emission remained 
unchanged. These results are clearly surprising, since the emission of the QD is far 25 

outside the fluorophores’ absorption, which stretches out to only 570 nm and thus 
should not be able to function as an energy donor. It was expected that a QD of this 
size would have limited capacity for FRET due to FRET’s strong distance 
dependence25 and these QDs were not chosen for our previous studies for precisely 
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this reason. However, the blue-shifted emission suggests very similar interactions to 
the ones found for the smaller QDs, i.e. energy transfer from the QD donor. 
 Plotting the emission intensity as a function of dye to dot density shows that 
maximal fluorescence enhancement of the dye is achieved at a ratio in the range 80-
100. Further addition of 1 led to a decrease in intensity of the dye signal (Figure 4b) 5 

which reached an asymptote (red line) around twice the number of molecules of 1 
(200) (Figure 4c) in a similar way to the QD-460 system. Comparison with the 
signal intensity of 1 alone (blue line) at 518 nm at this final concentration shows that 
the final intensity of the dye emission in the conjugate is higher than the dye signal 
alone; thus the signal of the fluorophore is enhanced in the presence of the QD and 10 

remains enhanced in the presence of an excess of the dye. As before it is possible 
that the first 100 molecules of added 1 interact with the inorganic core of the QD, 
with the remaining dye interacting with the outer polymer matrix in a non-specific 
manner. 
 The Förster radius (R0) represents the distance for 50% of energy transfer and 15 

normally falls within the core/shell radius for larger dots due to the 6th power 
relationship in equation (2).25, 26 However the large number of dye molecules 
attached to these larger dots appears to change this situation significantly, since the 
FRET efficiency (E) is dependent on the number of dye molecules (n) as given by 
equation (2).27 20 

 

𝐸 =   
!!!!

!!!!!!!
       (2) 

 
Thus it would appear that the more populous “antenna” of fluorophores surrounding 
the dot is able to increase the FRET efficiency to allow for energy transfer despite 25 

the sub-optimal donor-acceptor distance and spectroscopic overlap. 
 A question remained: why did the PL of the QD remain unchanged through the 
addition of the dye? That the dot-to-dye transfer is not accompanied by a quenching 
in QD PL implies that fluorescence enhancement is competing (perfectly) with 
fluorescence quenching, leaving the QD signal unchanged – a net zero change of 30 

energy transfer at the particle.  
 From these studies of all three dot-dye conjugates we conclude that attachment of 
dye 1 to QD-570 (the medium sized particle previously reported) leads to a system 
involving mutual energy transfer (i.e., dot-to-dye and dye-to-dot). Conjugates based 
on smaller QDs give instead the expected dot-to-dye FRET because the reverse 35 

process is energetically disfavoured. Large QD conjugates only give clear FRET 
from dot to dye but the dye to dot transfer is assumed from the lack of any observed 
QD quenching when the dot transfers energy to the dye, and this may be a feature of 
FRET efficiency being enhanced by the larger number of dye molecules attached to 
the core. 40 

2) Raman Spectroscopy can Probe the Nature of Dye-dot Linkage 

The QDs employed in these studies are core shell QDs covered with a capping layer, 
surrounded by a layer of amphiphilic polymer, functionalised with carboxylic acids. 
The assumption was made in our previous work that the conjugate is assembled via 
sulfide exchange between 1 and the “inner” inorganic surface of the dot, requiring 45 

the disulfide to diffuse into the particle (through the polymer, without reacting with 
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it) for such exchange to occur. We had previously performed an experiment in which 
a model compound 2, lacking disulfide functionality, was added to solutions 
containing QD-570 (Figure 6A).17  No apparent modification of the QD PL, and 
certainly no enhancement of the QD fluorescence output, was observed, strongly 
suggesting that covalent attachment of the dye was necessary for the optical effects 5 

we had observed in the conjugate. Additionally, attempts to isolate a potential QD-2 
conjugate failed, while 1 formed such an isolable conjugate (Figure 6B). 

Figure 5 Emission spectra of QD-570 showing attempts to isolate a QD-conjugate with 
the model compound 2. a) Emission spectra of QD-570 (black line), QD + 2 (red line) 10 

and deconvoluted PL spectrum of QD after substraction of fluorophore component (blue 
line) in HEPES-buffer, b) pictures of attempted isolation of the conjugates with 2 and 1 
and c) structure of 2. This figure adapted from our previous work and reproduced here 

for clarity.17 
 15 

 It remained possible that the disulfide was engaging in an exchange reaction with 
the outer polymer layer of the particle, even though such a reaction would not prima 
facie lead to any PL effects based on FRET due to the inevitably larger distances 
between donor and acceptor. Nevertheless we had no direct evidence of the 
formation of new bonds on the particle. We therefore measured Raman spectra of 20 

the QD, dye and conjugate to attempt to observe changes in the relevant regions of 
the spectra. The disulfide S-S stretching vibration occurs in the range of 500–530 
cm-1 while the C-S stretching is typically found between 715 and 579 cm-1.28 
 The individual Raman spectra (overlay, Figure 6) were acquired from solid 
samples, using a MultiRAM FT-Raman-spectrometer irradiating at 1064 nm. The 25 

QD-dye conjugate was prepared as described previously,17 by precipitation and 
washing of the pellet and subsequent drying under a stream of nitrogen. The 
spectrum of the dye 1 (black line) shows distinct peaks indicative of the disulfide 
bond as well as the aromatic core of the amino-naphthalimide. The spectrum of the 
QD itself (red) shows less resolved peaks and vibrations originating from the 30 

nanoparticle and the encapsulating polymer. The QD-1 conjugate represents the 
linear combination of the two spectra, except for the disulfide region, which lacks 
the disulfide vibration peaks at 500 and 660 cm-1. Though not conclusive proof of 
the attachment of the dye via sulfide exchange on the inner surface of the particle, 
these results do suggest the expected covalent attachment to the QD in the isolated 35 

conjugate. 
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Figure 6 Overlay of the Raman spectra of the dye 1 alone (black), QD-570 (red) and the 
isolated conjugate QD-570-1 (blue). a) Whole range from 2300 to 300 cm-1 

(representative of the disulfide and aromatic vibrations) and b) region from 1900 to 1000 
cm-1 (representative of the aromatic region). 5 

3) Titration Experiments Permit Calculation of the “Loading” of the Dye on the 
Particle 

The concentration and dimensions of the QDs used in the present experiments are of 
interest, for the purpose of understanding the loading calculations described above, 
i.e. to answer the question: How many dye molecules are installed on each particle? 10 

The concentration of each QD solution, as provided by the supplier, Ocean 
NanoTech, was equal to 8 µM. The default volume of QD solution used in each 
experiment (8 µL, mixed with 3 mL HEPES buffer) implies approximately 3.9 × 
1013 particles per experiment, though without weighing the sample this does not 
permit an estimation of molecular weight of each particle (and we are unaware of 15 

any reports of mass spectrometry applied to quantum dot solutions that might give 
empirical measures of molecular weights, though this is not an unreasonable 
experiment). These aqueous-compatible QDs are covered with a layer of polymer 
that significantly enhances their hydrodynamic radii and which presents a 
presumably porous barrier between the bulk medium and the covalently 20 

functionalised surface of the core particle. The supplier-provided hydrodynamic 
radii (Table 1) are clearly far larger than the radii normally associated with QDs 
without the polymer layer encapsulating the particle (1–5 nm), though the 
hydrodynamic radius may be the value for a polymeric particle encapsulating more 
than one QD core.29 25 

 The experiments described above (Figures 2–4) combined with these data provide 
a means to establish an approximate surface density or loading of the dye on the 
surface of the conjugate. For each of the three dots a maximum signal is reached at a 
certain concentration, where this maximum is taken as evidence that the surface of 
the dot has accepted as many copies of the dye as it is able – though it is unclear 30 

whether this limit arises from i) addition to “vacant” sites on the particle surface, ii) 
exchange with a limited number of labile ligands on the surface or iii) a genuine 
limit that arises from e.g. coulombic repulsion between the polar/charged dye 
molecules installed. From the concentration at the maximal signal change in the 
sample volume the molarity was calculated, which then allowed for the 35 

determination of the number of dye particles.  
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Table 1: Physical parameters and loading of the QDs with disulfide dye 1. 

 QD-460 QD-570 QD-670 
Hydro. rad. / nm 4.8 6.85 8.75 

Surface area / nm2 290 590 962 
moles in exp / mola,b 1.25-1.5×10-9 2.5-3.0×10-9 5.5-6.5×10-9 

Number of part. in expc 7.5-9.0×1014 1.5-1.8×1015 3.3-3.9×1015 
Ratio of dye 1:QDd 19.5-23.4 40-46.9 85.9-101.5 
No. dye per part.e 40-47 80-94 172-203 

a) 1 mM stock solution in DMSO, b) 1 (0.5 µL ) was added to 8 µL QD stepwise into 3 mL aqueous 
buffer, c) obtained with Avogadro number, d) particle number of dye over particle number of QD, e) 
size of the dye over surface area. 

 5 

 Assuming perfect correspondence between the empirical limit of fluorescence 
increase and covalent attachment to a surface (i.e., rather than an equilibrium 
process of disulfide exchange), the number of dye molecules per dot was calculated: 
approximately 40-50 dye molecules for QD-460, 80-100 for QD-570 and 170-200 
for QD-670. These numbers match well the comparative surface area of the dots 10 

derived from the hydrodynamic radii (Table 1), i.e. with QD-570 having double the 
surface area, it is able to accommodate twice as many dye molecules. The 
hydrodynamic radius is, however, likely to represent the overall particle size that 
includes the polymeric outer layer, rather than the radius of the core QD, which 
should be much lower. Literature values for estimates of the number of added 15 

ligands assembling on the surface of QDs are around the same order of magnitude as 
those shown above;27, 30 these values, derived from QDs without an outer polymeric 
layer, suggest that the exchange processes occurring in the present work are indeed 
those taking place on this inner QD surface, rather than the far larger outer 
polymeric structure, not least because covalent addition to the outer polymeric 20 

structure would be expected to give a value for number of dye molecules per particle 
that is much higher than that calculated here. 
 If we take an estimated radius for the inner core (CdSe/ZnS) of the QD-570 
particle as 2.5 nm,31 we would expect the 100 fluorophore molecules to be spread 
over an area of 80 nm2. If we (crudely) estimate the cross-sectional area of the dye 25 

molecule to be 0.9 nm long by 0.5 nm wide (the approximate dimensions of the 
naphthalimide dye), each fluorophore would occupy a static cross-sectional area of 
about 0.5 nm2 meaning this value of loading seems reasonable (coverage of 50 nm2 
of the available 80 nm2). If one assumes that each molecule is moving and is 
solvated, this may imply that the surface of the core has become completely covered 30 

with the added dye, which may explain the fairly sharp saturation limit observed 
above upon addition of the disulfide. 

4) The Conjugate is Moderately Robust with Respect to Time and pH Change  

In our previous work we were able to show that the QD emission signal varies with 
pH when the dye is attached. These signal changes were measured as the relative 35 

fluorescence signal increase with respect to the QD alone and gave a sigmoidal 
relationship when plotted as a function of pH. The present studies aimed to address 
several features of the conjugate performance. 
a) pH sweeping:  
 Fluorescence output was measured in two separate experiments, screening the 40 

response of QD-570 and its conjugate with 1 to pH changes starting at neutral pH 
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(7.4) but moving to either acidic or alkaline values through the addition of HCl (0.5 
M) or NaOH (0.5 M). For the conjugate, the QD:dye ratio was employed that had 
been found (above) to provide a fully covered nanoparticle. 
 The measurements for the acidic pH region (Figure 7) show that the intensity of 
the QD signal itself is significantly affected by the presence of protons, reducing in 5 

intensity towards lower pH values (Figure 7a, black to grey). The emission signals 
of the conjugate also decrease as the pH decreases. At the lowest pH value assessed, 
4.5 (Figure 7a, blue line), the conjugate’s signal intensity has dropped below the 
intensity of the initial QD emission (Figure 7a, black line). These effects could be 
attributed to protonation of the polymer surrounding the dot. Plotting the 10 

fluorescence intensity at the signal maximum vs. pH (Figure 7b) strongly indicates 
that the conjugate experiences the same effects as the QD.  This becomes even more 
apparent when looking at the fluorophore emission at 517 nm in the conjugate 
(Figure 7b, blue), which follows the same trend as the QD (Figure 7b, black). 

15 

Figure 7 pH-sensitivity of QD-570 and its conjugate with dye 1 in the pH range 4.6 to 
7.4. a) Normalised PL spectra of QD 570 (black and grey lines) and of QD-570-1 

conjugate (red, then cyan lines) and b) plot of normalised intensity at 570 nm vs. pH, 
sweeping from 7.5 to 4.6. 

 This situation changes completely when sweeping from neutral to alkaline pH 20 

(Figure 8). In this range the signal from the QD remains perfectly stable while the 
emission intensity signals (at 516 and 570 nm) of the conjugate decrease towards 
higher pH values (Figure 8b). The decrease is expected: it reflects the response of 
model fluorophore 2 during pH-measurements23 and has been shown by us before 
for the QD-570-1 conjugate (Figure 1C).17 Thus, the QD signal changes measured in 25 

the alkaline region can be attributed to changes at the dye. Attempts to reverse the 
pH-sweep were less successful and also appeared to be dominated by a change in 
QD signal intensity (Figures 8c and d). Thus, in the reversed sweep, the QD signal 
of the conjugate (Figure 8c, pink) shows a trend similar to the signal of the QD 
alone (Figure 8c, blue). The signal of the fluorophore at 516 nm is affected in the 30 

reverse sweep as well (Figure 8d, red) and does not reattain its original signal 
intensity (Figure 8d, black). 
 That the fluorescence signal of the conjugate is reduced at acidic pH would 
appear to preclude its application as a switch-on probe in that region. However, the 
pKa of dye 2, reported to be 7.8,23 narrows the window of practical application down 35 

to a range between pH 7 and 10, the region where the QD-570 was found to be 
responsive and stable in the present experiments. 
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Figure 8 pH-sensitivity of QD-570 and its conjugate with dye 1 in the pH range 7.5 – 
9.6. a) Normalised PL spectra of QD-570 (black and grey lines) and of QD-570-1 

conjugate (red, then cyan lines) and b) plot of normalised intensity at 570 nm vs. pH, 
sweeping from 7.5 – 9.6, c) plot of normalised intensity at 570 nm vs. pH, back-sweep  5 

from 9.6 to 7.4 (blue and pink) and d) plot of normalised intensity at 515 nm vs. pH, 
back-sweep (red) from 9.6 to 7.4. 

 

b) Time 
The fluorescence output of the QD-570-1 conjugate has been found to be reasonably 10 

stable over the hour-long periods involved in previous experiments (data not 
shown). However, small changes in output intensity have been observed 
immediately following the combination of QD and dye. In the case of the smaller 
QD-460 particles very rapid formation of the conjugate upon addition of the 
disulfide is observed, with small subsequent changes (decrease in dot emission, 15 

increase in dye emission) as time passes (Figure 9a) that could be attributed in part 
to the disulfide exchange reaction reaching a position of equilibrium in the minutes 
following combination of dot and dye, but which may also be the result of an 
inherent decrease in fluorescence of these dots over time that may be observed in a 
sample only of the QD (Figure 9b). The QD-570-1 conjugate exhibits smaller 20 

changes immediately following combination, with a slight decrease in the QD 
emission in the 16 minutes following conjugate synthesis that may be attributed to 
chemical exchange processes completing on the QD surface, since the QD on its 
own emits with a very stable intensity over the same timescale (Figure 9d). 
 25 
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Figure 9 Normalised PL spectra of QD-460 and QD-570 and their conjugates with 1 
over time (14-16 min.). a) QD-460 and QD-460-1 conjugate, b) QD-460 alone, c) QD-

570 and QD-570-1 conjugate and d) QD-570 alone. 
 5 

 There is an obvious explanation as to why chemical exchange processes may take 
a few minutes to complete in these systems: diffusion of the dye through the 
polymeric outer layer. Indeed it should be remembered that the aqueous solubility of 
the particle arises from this charged outer layer, while the inner particle itself 
remains fairly hydrophobic. Though this was not addressed as part of the current 10 

study, measurements of pH are made on the assumption that the solvent environment 
between the QD core and the outer polymeric layer reflects that of the bulk medium, 
but this has yet to be established in the present case.  
 
c) Absorption changes with pH 15 

In our previous studies we were able to show that the QD signal intensity changes as 
a function of the excitation wavelength (around the maximum for the dye), an effect 
that led us to conclude that an energy transfer-type mechanism was operating since 
such a mechanism would be strongly dependent on the number of excited dye-
molecules. We showed that highest fluorescence intensity was realised at the 20 

wavelengths around the centre of the maximal absorption (440 nm), providing an 
emission intensity from the dot 25–30% higher than those obtained when exciting at 
400 nm.  
 To confirm this behaviour, and examine the mechanism of the energy transfer, 
absorption measurements were undertaken of the QD-570-1 conjugate at varying 25 

pH, but these results became unclear at the higher concentrations required for such 
measurements, possibly arising from issues of solubility. Thus for the absorption 
measurements the model dye 2 was employed. A solution of 2 (3.33 × 10-5 M) was 
prepared in buffer and the pH was changed by addition of small amounts of HCl (0.5 
M) or NaOH (0.1 M). The resulting UV/vis absorption spectra (Figure 10a) show 30 
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that the lowest energy transition around 440 nm changes significantly with pH, 
leading to both intensity changes and a wavelength shift. Notably, no isosbestic 
point is found. When absorption at a particular wavelength is plotted as a function of 
pH (Figures 9b, c) it is clear that the absorption maxima change significantly 
depending on the excitation wavelength and that especially large differences are 5 

found when moving from neutral to alkaline pH. In the fluorescence studies 
described above excitation at 435 nm was chosen since the absorption at this 
wavelength varies least with pH.  
 The absorption of the model dye therefore clearly changes with pH, and if 
extrapolated to the conjugate, this could influence the eventual communication 10 

between dye and dot and therefore be a possible explanation for the pH 
responsiveness of the conjugate (as opposed to a feature of the dye’s fluorescence 
changes). However the proportional absorption change of ca. 10–15% (in Figure 9b) 
would seem unable to account for the factor of ca. 30% change observed in the 
original QD vs. QD-1 conjugate emission. Thus there is clearly communication 15 

between dye and dot that is responsive to pH, and a component of this could arise 
from absorption changes in the dye employed as the pH is altered. 
  
 

20 

Figure 10 UV/Vis absorption measurements of model dye 2 in solutions of different pH 
and plots of the absorbance vs. pH at different absorption maxima. A) absorption spectra 
in the pH-range 4.15-10.5, b) plot of the absorbance in at wavelengths between 430 and 

440 nm and b) plot of the absorbance in at wavelengths between 410 and 460 nm. 

Conclusions 25 

The photophysical measurements described here of three different QDs 
functionalised with the same naphthalimide dye demonstrate how the nature of 
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energy transfer within such conjugates depends on nanoparticle size. The QD-570 
conjugate exhibits clear, mutual energy transfer between dye and dot, an elusive and 
hitherto rarely reported phenomenon. Titration experiments between QDs and the 
dye demonstrate a saturation limit with a maximum number of dye molecules 
accommodated per particle, and dye densities that suggest complete surface 5 

coverage. The greater number of dye molecules attached to the larger dots may be 
promoting FRET that would not otherwise be expected.  
 The water-soluble QDs used in this study have hydrodynamic radii that are far 
larger than the core particle size owing to a covering of a solubilising polymer. This 
coating is assumed to be porous to the dye, and Raman spectra offer some evidence 10 

for the loading of the naphthalimide dye directly onto the core surface through 
disulfide exchange. Temporal changes following addition of the dye suggest that this 
reaction, though fast, can take several minutes to complete in some cases, consistent 
with the dye journeying through the polymer coating to reach the dot surface. When 
greater amounts of the dye are added, at levels above the saturation limit of the core, 15 

there appear to be non-specific interactions that lead to quenching of the dye signal.  
 The QD-dye conjugates (like the QDs themselves) are unstable at low pH, 
rendering these probes unsuitable for measurements at acidic pH. The conjugates 
perform well at physiological pH, and in the alkaline region around the pKa of the 
naphthalimide dye, although the fluorescence output is not perfectly reversible as pH 20 

is swept. Towards the goal of biomedical application, it will be of interest to assess 
the performance of these conjugates in more realistic (i.e. serum-based) media as a 
precursor to cell-based work, though clearly for these functionalised nanoparticles to 
be applied in such environments quantitatively, ratiometric probes would be needed. 
However of greater interest perhaps is to further characterise the nature of the 25 

energy transfer processes, using intermediate-sized dots to optimise the mutuality of 
the energy transfer, or using larger dots to explore the possibility of “antenna-like” 
FRET behaviour in more detail. 
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