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Photonic hypercrystals – the recently introduced concept of artificial optical me-

dia that combines the properties of hyperbolic metamaterials and photonic crys-

tals [E. Narimanov, Phys. Rev. X 4, 041014 (2014)] – can support Dirac cone

dispersion at a finite frequency.

1 Introduction

The cornucopia of new physical phenomena in graphene1,2 arising from Dirac

cone dispersion of its free carriers, lead to the search for similar behavior in opti-

cal systems.3–6 Dirac cones were found in coupled waveguide arrays7 as well as

in photonic crystals3–6,8,9 and metamaterials,8 thus opening the way to the study

of such non-trivial phenomena as Klein tunneling paradox10 and Shrödinger’s

“zitterbewegung”11 that were so far believed to lie entirely within the realm of

quantum physics and quantum electrodynamics, and even to possible practical

applications of this behavior in actual photonic devices. However, optical sys-

tems that are currently known to support Dirac cone dispersion, generally rely on

spatial variations in at least two or even in all three dimensions – which severely

limits their applicability to practical applications.

In the present paper, we demonstrate that planar optical composites can also

support propagating waves with Dirac dispersion. This behavior however cannot

be found in the “regular” planar optical media, but relies on the new physics in-

troduced by the recently discovered photonic hypercrystals.12 These novel com-

posite media are essentially hyperbolic metamaterials13 with a periodic variation

of electromagnetic response properties on a subwavelength scale, and combine

the properties of metamaterials and photonic crystals. The resulting effect on the

wave propagation and dispersion by bandgap formation in what is essentially the

metamaterial limit, offers an unprecedented degree of control of light propaga-

tion in photonic hypercrystals – and allows for the formation of Dirac dispersion

cones in the hypercrystal phase space.

As photonic hypercrystals can be assembled entirely within the restrictions

of planar fabrication technology, this offers a unique opportunity to bring the ex-

citing physics offered by Dirac cone dispersion, such as e.g. Klein tunneling or

Shrödinger’s zitterbewegung, to the realm of practical applications in nanopho-

tonics.
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where εi is the dielectric permittivity of the isotropic medium (see Fig. 1),

εh =





ετ 0 0

0 ετ 0

0 0 εn



 (4)

is the dielectric permittivity tensor of the hyperbolic medium, kh the wavenumber

in the hyperbolic layers

kh =

√

ετ

(

ω2

c2
− k2

τ

εn

)

, (5)

and ki is the wavenumber in the layers formed by the isotropic medium

ki =

√

εi

ω2

c2
− k2

τ . (6)

Here kτ is the tangential component of the wavevector (B ∼ exp(ikτx)), while dh

and di are the thicknesses of the hyperbolic and isotropic layers.
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Fig. 3 The dielectric permittivity tensor of sapphire monocrystal in the Restrahlen

band. 16 Red and blue lines correspond respectively to the permittivities parallel and

perpendicular to the C-axis of the sapphire crystal. Real and imaginary parts of the

permittivity are represented by solid and dotted lines. The inset shows the range near the

free-space wavelength of 24 µm (≈ 417 cm−1) that supports one of the low-loss

hyperbolic bands in sapphire.

As follows from Eqn. (3), the “even” (parity p = 1) and “odd” (p = −1)

“guided” modes propagating parallel to the layers of the hypercrystal, are degen-

erate when

ετ

εi

ki

kh

= 1, (7)

corresponding to the in-plane momentum

kτ = kB ≡ ω

c

√

εi

1− εi/ετ

1− ε2
i /(εnετ)

(8)
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which for a lossless system corresponds to the Brewser’s angle at the interface

of the isotropic dielectric (εi > 0) and the hyperbolic medium25. The frequency

corresponding to this accidental degeneracy point, is then given by

ω0 =
2πc m

ετdh + εidi

√

ετ
1− ε2

i /(εnετ)

1− εi/εn

, (9)

where m is a (positive) integer. Note that strong dispersion of the dielectric per-

mittivity common in hyperbolic media, makes Eqn. (9) a nontrivial equation for

ω0. Furthermore, losses inevitable in the hyperbolic media, lead to a nonzero

imaginary part of ω0.

(a)                                                                             (b)
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Fig. 4 The frequency ω (panel (a)) and the “Q-factor” (panel (b)) vs. in-plane

wavenumber kτ for m = 1 even (green line ) and odd (blue line) modes propagating

parallel to the layers of silicon-sapphire hypercrystal, for dh = 3.55 µm and

di = 0.676 µm.

We will illustrate this behavior using the example of a hypercrystal formed by

alternating layers of silicon and sapphire – two complimentary materials which

form the backbone of the silicon-on-sapphire hetero-epitaxial process26. In mid-

IR range, sapphire offers several low-loss hyperbolic bands (see Fig. 3), while

silicon behaves as a transparent dielectric with the permittivity of εSi ≈ 11.7. In

Fig. 4 we plot the dispersion ω(kτ) of the guided modes for the silicon-sapphire

hypercrystal, with the unit cell formed by 676 nm of silicon and 3.55 µm of

sapphire.

Expanding Eqn. (3) near the degeneracy point (kB,ω0), we obtain

A0
ω−ω0

ω0
= (B0 + p C0)

kτ − kB

kB

+O

[

(

ω−ω0

ω0

)2

,

(

kτ − kB

kB

)2
]

(10)

where p =±1 is the mode parity, and

A0 = 1+
πmc

ω0

ετdh

(ετdh + εidi)
2

√

ετ
1− ε2

i /εnετ

1− εi/εn

×
(

εi

ετ

d (ετ/εi)

dω
+

ε2
i

εnετ

ετ − εi

εn − εi

d (εn/εi)

dω

)

, (11)

B0 =
2πmc

ω0

εidh + εndi

(ετdh + εidi)
2

ε
3/2
τ

εn

√
εi

1− ε2
i /εnετ

(1− εi/εn)
3/2

√

1− εi/ετ (12)
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C0 =
2c

ω0

1

ετdh + εidi

(

ετ

εi

)3/2
(

1− ε2
i /εnετ

)2

(1− εi/εn)
3/2

√

1− εi/ετ

× sin

(

πm

1+ ετ
εi

dh
di

)

cos

(

πm

1+ εi
ετ

di
dh

)

(13)

For a dielectric photonic crystal, we find that B0 ±C0 > 0, and the accidental de-

generacy point at (kB,ω0) corresponds to the standard Brewser angle collapse of

the photonic crystal bandgap.15,27 In a hypercrystal however one finds the possi-

bility of (B0 +C0)(B0 −C0) < 0, with the opposite signs of the group velocities

of the even and odd guided modes. Furthermore, for Re [εn] < 0 the magnitude

of B0 can be dramatically reduced – all the way to zero in the lossless limit, at

εn (ω0)

εi (ω0)
= −dh

di

, (14)

in which case Eqn. (10) can be expressed as

A0
ω−ω0

ω0
=± C0

kτ − kB

kB

+O

[

(

ω−ω0

ω0

)2

,

(

kτ − kB

kB

)2
]

(15)

For a lossy system, Eqns. (9) and (14) cannot be simultaneously satisfied even

for a complex ω0. However, for the modes with Re [ω]≫ Im [ω] (or equivalently

Q ≡ Re [ω]/Im [ω]≫ 1), as in the case of the silicon-sapphire hypercrystal (see

Fig. 4(b)), we can choose

di

dh

= − Re

[

εn (ω0)

εi (ω0)

]

, (16)

which yields

A0
ω−ω0

ω0
= ± C0

kτ − kB

kB

+ O

[

(

ω−ω0

ω0

)2

,

(

kτ − kB

kB

)2

,
kτ − kB

kB

Im [ε]

Re [ε]

]

(17)

Eqns. (9) and (16) define the geometry of the hypercrystal unit cell and the

“operational frequency” for the Dirac dispersion point.

For the calculation of the propagating waves in a planar hypercrystal for kn 6=
0, we use the standard T -matrix approach27 that can be generalized to the case

of anisotropic material components.12 This yields the unit cell transfer matrix

T ≡
(

T11 T12

T21 T22

)

(18)

where

T11 =

[

cos(khdh)+
i

2

(

kh

ki

εi

ετ
+

ki

kh

ετ

εi

)

sin(khdh)

]

exp(ikidi) (19)

T12 =
i

2

(

kh

ki

εi

ετ
− ki

kh

ετ

εi

)

sin(khdh)exp(−ikidi) (20)
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T21 = − i

2

(

kh

ki

εi

ετ
− ki

kh

ετ

εi

)

sin(khdh)exp(ikidi) (21)

T22 =

[

cos(khdh)−
i

2

(

kh

ki

εi

ετ
+

ki

kh

ετ

εi

)

sin(khdh)

]

exp(−ikidi) (22)

In this approach, the magnetic field in the dielectric layer of the unit cell n (so

that (di +dh)(n−1)< z < (di +dh)(n−1)+di), is given by

B(ω,x,z;kτ,kn) = ŷ exp(ikτx+ iknz)

× {αexp [kn (z− (di +dh)(n−1))]

+ βexp [kn (z− (di +dh)(n−1))]} (23)

where {α,β} is the eigenvector of the transfer matrix

T

(

α
β

)

= exp [ikn (dh +di)]

(

α
β

)

(24)

Fig. 5 The dispersion diagram for the silicon-sapphire hypercrystal, introduced in Fig.

4. The thickness of sapphire layers dh is 3.55 µm and the width of the silicon layers di is

0.676 µm.

The dispersion of the propagating waves can then be obtained from the equa-

tion

Tr [T ] = 2 cos [ikn (dh +di)] (25)
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In Fig. 5 we show the dispersion diagram for the example of the silicon-sapphire

hypercrystal that we introduced earlier. Note two Dirac cones in the phase space

of the system at (kτ,kn) = (±kB,0), as predicted by our earlier analysis.

The new physics introduced by the presence of the Dirac dispersion cones in

the phase space of the system, can only be explored if the corresponding states

represent an example of “good” quasi-particles, with the lifetimes substantially

exceeding the period of a single oscillation, Q ≡ ωτ ≫ 1. With the mode lifetime

defined by

τ =
1

|Im [ω]| , (26)

for the mode Q-factor we obtain

Q =

∣

∣

∣

∣

Re [ω]

Im [ω]

∣

∣

∣

∣

. (27)

In Fig. 6 we plot the Q-factor of the propagating modes for the frequency range in

the proximity of the Dirac point. With Q-factors on the order of several hundred,

the corresponding states should be easily accessible in experiment.

Fig. 6 The mode Q-factors for the silicon-sapphire hypercrystal in Figs. 4 and 5.

In addition to the Dirac points at kn = 0 (see Fig. 5), planar hypercrystals

also have similar singularities at the edge of the Brillouin zone (kn = ± π
dh+di

).

These can be analyzed in a similar manner, starting from the “guided modes”

that satisfy the boundary condition B(z+dh +di) = ± i B(z), and one finds the

behavior similar to the that of Dirac states near kn = 0.
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4 The Effective Hamiltonian near the Dirac point of a hyper-

crystal

Focusing on the Dirac point at (kτ,kn,ω) = (kB,0,ω0), we expand Eqn. (25) in

kn, kτ − kB and ω−ω0. The resulting straightforward calculation leads to the

effective Hamiltonian

Heff =

(

0 vτ (kτ − kB)− ivnkn

vτ (kτ − kB)+ ivnkn 0

)

(28)

such that

Heff

(

ψ1

ψ2

)

= (ω−ω0)

(

ψ1

ψ2

)

(29)

In terms of the Pauli matrices σx and σy, the effective Hamiltonian (28) can be

expressed as

Heff = σxvτ (kτ − kB)+σyvnkn (30)

Fig. 7 The comparison of the exact dispersion diagram near the Dirac dispersion point

of a silicon-sapphire hypercrystal (a) with the effective Hamiltonian approximation (b).

Note small shift along the frequency axis that results from the losses in the material that

are not fully accounted for in the analytical approximation of Eqns. (28) - (32).

Here,

vτ = c Re

[

C0

A0

]

, (31)

vn = Re

[

ω0 (dh +di)

2πm A0

]

, (32)
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where A0 and C0 are respectively defined by Eqns. (11) and (13).

In Fig. 7 we present the comparison of the exact dispersion diagram of the

silicon-sapphire hypercrystal introduced earlier, to the effective Hamiltonian ap-

proximation of Eqns. (28) - (32). Note that, aside from the small frequency

offset resulting from neglecting second-order cross-terms related to the loss in

the hyperbolic media (∼ O ((kτ − kB) Im [ε]/Re [ε]) – see Eqn. (17)), one finds

excellent agreement between the anisotropic Dirac-Weyl Hamiltonian (28) and

the exact solution.

!3 !2 !1 0 1 2 3

414

416

418

420

kΤ ! k0

Ω,

cm!1

!0.2 !0.1 0.0 0.1 0.2
415.0

415.5

416.0

416.5

417.0

417.5

418.0

kn ! k0

Ω,

cm!1

(a)                                                             (b)

Fig. 8 The cross-sections of the silicon-sapphire hypercrystal dispersion diagram (Figs.

5, 7), through the Dirac points kτ =± kB, kn = 0, ω = ω0, in kτ (panel (a)) and kn (panel

(b)) directions. The blue curves correspond to the exact solution, while the red lines

represent the effective Hamilatonian approximaion.

In Fig. 8 we present an alternative representation of this comparison, with the

“cross-sections” of the phase space through the Dirac point in kτ (Fig. 8(a)) and

kn (Fig. 8(b)) directions. Note that Fig. 8 shows a much broader frequency range

than Fig. 7.

As the Dirac-Weyl Hamiltonian (28) proves an excellent approximation for

the dynamics of the propagating waves in the hypercrystals near the accident de-

generacy points, optical experiments in these composites can be used to study

the optical equivalents of the many quantum-mechanical phenomena – from the

zitterbewegung11 to Klein tunneling10. Furthermore, the corresponding modula-

tion of the transmission and reflection properties of the hypercrystal may possibly

find applications in metamaterial devices.

5 Reflectivity near the Dirac point

Near the Dirac point frequency ω0, a lossless hypercrystal does not support prop-

agating waves anywhere except in the direct proximity of the Brewser’s mo-

mentum kB. A study of the electromagnetic reflection from such composites

would reveal a nearly 100% reflectivity anywhere aside from a narrow range

near the Brewser’s angle – see Fig. 9(a). Furthermore, when plotted in the angle-

frequency coordinates, the reflection coefficient would clearly reveal the Dirac

dispersion cone - as seen in Fig. 9(a).

The presence of material loss however substantially modifies this behavior.

While the propagating modes in hypercrystals may have high Q-factors (see e.g.

Figs. 4 and 6), the Dirac dispersion cones occupy a relatively narrow frequency
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band δωD ≪ ω0. For the silicon-sapphire hypercrystal considered earliier, we

find ∆ωD/ω0 ∼ 10−2 (see Figs. 4(a) and 5). As a result, for this material system

the imaginary part of the frequency is of the same order as the Dirac bandwidth,

Im [ω]∼ ∆ωD – and the losses lead to a substantial modification of the reflectivity

near the Dirac point.

However, while the sharp features of the Dirac dispersion cone in the re-

flectivity diagram of Fig. 9(a) are indeed washed out by the material loss, the

resulting pattern still shows the signatures of the Dirac point – see Fig. 9(b). As

a result, the non-monotonic behavior of the hypercrystal reflectivity observed in

an experiment, can be used to locate the Dirac dispersion point.

Fig. 9 The reflectivity of the interface of silicon and silicon-sapphire hypersrystal, in

false-color representation. Panel (a) shows the lossless case, while the panel (b) includes

the effects of material absorption. The angles θ and θB are respectively the incidence

angle onto the hyper-crystal, and the Brewster’s angle for the silicon-sapphire interface.

6 Motti singularity: Dirac points annihilation

While the study of the optical equivalents of both massless (Weyl-Dirac) and

massive excitations offers many exciting opportunities,3–9 in fundamental physics

research as well as with an eye for possible applications, it may be beneficial to

search for optical modes with a higher dispersion complexity. While the Lorenz

invariance limits classical elementary particles to two mutually exclusive classes

– bradyons28 (with nonzero rest mass m0), with the low kinetic energy limit

E ≃ p2

2m0
(33)

and lyxons29 (m0 = 0), with the energy

E = cp, (34)

a meta-material quasi-particle can combine both kinds of classical motion:

E =

√

(cpz)
2 +

(

p2
x

2m0

)2

(35)
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Probing such “mottion” excitations in an optical systems may offer interesting

possibilities for e.g. novel electromagnetic resonant cavities that confine such

modes, polarization control and phase matching in nonlinear-optical processes.

These “mottion” waves naturally arise in photonic hypercrystals at the Motti

singularity30 point of “annihilation” of two symmetry-related Dirac cones at kτ =
±kB. In a planar hypercrystal, this happens when the Dirac point frequency ω0

approaches the frequency ωM when the in-plane permittivity of the hyperbolic

medium matches that of the isotropic component of the hypercrystal,

ετ (ωM) = εi (ωM) (36)

Within the bounds of the silicon-sapphire hypercrystal “platform”, we can reach

the critical point of (36) by controlled doping of the silicon layers. For n+-doped

silicon, the permittivity can be accurately described by the Drude model31

εSi = ε∞

(

1−
ω2

p

ω(ω+ i Γ)

)

(37)

with ε∞ ≈ 11.7, ωp = 1012..1013 sec−1 (depending on the doping level) and Γ ≃
1011..1012 sec−1. For our example of the present section, we will choose ωp =
250 cm−1 ≡ 7.5 ·1012 sec−1, which leads to the resonance (36) at the frequency

≈ 505 cm−1, and neglect the loss in silicon compared to that in hyperbolic bands

of sapphire. This behavior is illustrated in Fig. 10, where we plot the dielectric

permittivities of both the doped silicon and sapphire, for the frequency range

corresponding to second low-loss hyperbolic band of the latter.

500 502 504 506 508 510

!2

0

2

4

6

8

10

12

Ω, cm!1

Ε

Fig. 10 The dielectric permittvities of doped silicon (green curves) and sapphire (red

and blue curves for parallel (εn) and perpendicular (ετ) to the C-axis components

respectively), for in the low-loss hyperbolic band near the free-space wavelength of

20 µm (≈ 500 cm−1). Solid curves correspond to the real parts of the permittivities, while

dotted lines represent the imaginary parts. Note that at ω ≈ 505 cm−1 we find ετ ≈ εSi.

With the proper choice of the dimensions dh and di of the unit cell of the

hypercrystal, both Dirac points can be brought to “annihilation” at (kτ,kn) =
(0,0), ω0 = ωM , resulting in the Motti singularity30 of the photonic density of

states of the hypercrystal. The resulting dispersion diagram can be described by
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the effective Motti-Weyl Hamiltonian

HMW =





k2
τ

2m0
−ivnkn

ivnkn − k2
τ

2m0



= σz

k2
τ

2m0
+σy vnkn, (38)

where σy and σz are the corresponding Pauli matrices. In Fig. 7 we present two

orthogonal cross-sections of the exact dispersion diagram of the doped silicon-

sapphire hypercrystal that supports the Motti singular point (36), clearly showing

the mottion dispersion (35) of the effective Hamiltonian (38), E (kτ) ∼ k2
τ and

E (kn)∼ |kn|.

(a)                                                                       (b)
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Fig. 11 The cross-sections of the doped silicon-sapphire hypercrystal dispersion that

supports the Motti singularity at ω0 = ωM ≈ 504.97 cm−1, at kn = 0 (panel (a)) and

kτ = 0 (panel (b)), in the lossless limit. The unit cell of the hypercrystal is formed by

di ≈ 6.11 µm - thick layer of doped silicon and dh ≈ 550 nm-wide layer of sapphire.

Note the “mottion” dispersion E (kτ)∼ k2
τ , E (kn)∼ |kn| of the propagating waves in the

hypercrystal near the Motti singularity point.

Similar to the Dirac point, the Motti singularity in the dispersion diagram

of the hypercrystal also makes an imprint on the reflectivity of the composite.

For a lossless system, at the singularity point we expect total reflectivity for any

incidence angle θ 6= 0. Furthermore, as a function of the frequency, the reflection

coefficient would reveal the quadratic variation of the mottion dispersion (36) in

the tangential direction,

ω−ωM ∝ ± k2
τ . (39)

This behavior is clearly seen in Fig. 11(a) that shows the reflectivity of the doped

silicon-sapphire hypercrystal that supports the Motti singularity at the frequency

ωM ≈ 505 cm−1, in the lossless limit.

While the actual material loss generally reduces the “contrast” of the prop-

agating waves dispersion diagram “imprinted” onto the reflectivity of the hy-

percrystal, the calculation taking full account of the absorption in sapphire, still

reveals the the mottion dispersion (36),(39) – see Fig. 12(b). Note that the width

of the peak in reflectivity near the Motti singularity of the actual (lossy) hyper-

crystal, measured at half-maximum (when it drops from ≈ 80% to ≈ 40%), is

only 0.5 cm−1, corresponding to barely 0.1% of the center frequency. Such rela-

tively sharp features in a stronly absorbing system (Im [ε]/Re [ε]∼ 10 %) give a

further indication for the essentially singular nature of the light transmission and
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reflection in hypercrystal supporting the mottion resonance, and open the route

to actual applications of optical hypercsrytals in practical nanophotonics.

Fig. 12 The reflectivity of the interface of silicon and silicon-sapphire hypercrystal

supporting Motti singularity near the frequency of 505 cm−1, in the lossless

approximation (a) and for the sapphire absorption taken into account (b). As in Fig. 9,

here θ is the incidence angle onto the silicon-sapphire hypercrystal.

7 Conclusions

In conclusion, we have demonstrated that photonic hypercrystals allow Dirac-

Weyl dispersion, as well as the Motti singularity at the annihilation of symmetry-

related Dirac points. Despite relatively high loss in actual hypercrystals im-

posed by their hyperbolic consituents, the resulting sharp resonance structures

in light propagation and reflection allow for both the study of optical analogues

of such quantum phenomena as Shrödinger’s zitterbewegung and Klein’s tunnel-

ing, as well as for actual applications of these novel composite media in practical

nanophotonics.
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