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We present a theory of dynamic orientation and propulsion of superparamagnetic nano-screws, both 
showing universal dependence on scaled frequency of actuating magnetic field.  
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Externally powered magnetic nanomotors are of particular interest due to the potential use for in vivo biomedical
applications. Here we develop a theory for dynamics and polarization of recently fabricated superparamagnetic chiral
nanomotors powered by a rotating magnetic field. We study in detail various experimentally observed regimes of the
nanomotor dynamic orientation and propulsion and establish the dependence of these properties on polarization and
geometry of the propellers. Based on the proposed theory we introduce a novel “steerability” parameter γ that can
be used to rank polarizable nanomotors by their propulsive capability. The theoretical predictions of the nanomotor
orientation and propulsion speed are in excellent agreement with available experimental results. Finally, we apply
slender-body approximation to estimate polarization anisotropy and orientation of the easy-axis of superparamagnetic
helical propellers.

Introduction

The emergent interest in artificial ”nature-inspired”
micro- and nano-structures that can be remotely actu-
ated, navigated and delivered to a specific location in-
vivo is largely driven by the immense potential this tech-
nology offers to biomedical applications. Several ap-
proaches are currently of interest ranging from catalyti-
cally driven (chemical-fuel-driven) nanowires1 and tubu-
lar microengines2 to thermally, light and ultrasound-
driven colloids (see3 for state-of-the-art review of the sub-
ject). An alternative approach relies on externally pow-
ered nanomotors, where the particle is propelled through
media by an external magnetic field. This allows contact-
free and fuel-free propulsion in biologically active systems
without chemical modification of the environment. In
particular, it was shown4–6 that a weak rotating mag-
netic field can be used efficiently to propel chiral ferro-
magnetic nanomotors. These nanohelices are magnetized
by a strong magnetic field and retain remanent magneti-
zation when stirred by a relatively weak (of the order of
a few milli Tesla) rotating uniform magnetic field. The
typical propulsion speeds offered by this technique are
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efficients of a helix, demagnetizing factors of long elliptic cylinder.
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32000, Israel. E-mail: lisha@technion.ac.il
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four-five orders of magnitude higher than these offered
by the traditional techniques based on gradient of mag-
netic field, e.g.7. In the past few years the new tech-
nique has attracted considerable attention8–13. Various
methods, such as “top-down” approach5, delamination of
magnetic stripes8, glancing angle deposition4 and direct
laser writing (DLW) combined with vapor deposition9,
have been developed toward fabrication of ferromagnetic
micron-size and, most recently, sub-micron-size10 pro-
pellers. Experiments11,13 showed that at low frequency
of the rotating magnetic field nanomotors tumble in the
plane of the field rotation without propulsion. However,
upon increasing the field frequency, the tumbling switches
to wobbling and the precession angle (between the axis of
the field rotation and the helical axis) gradually dimin-
ishes resulting in a corkscrew-like propulsion.

Most recently an alternative method for microfabrica-
tion of superparamagnetic nanomotors was reported14,15.
The method relies on DLW and two-photon polymeriza-
tion of a curable superparamagnetic polymer compos-
ite. These helices do not possess remanent magnetiza-
tion, but are magnetized by the applied magnetic field.
The advantages of using superpamagnetic polymer com-
posite are the ease of microfabrication as magnetic ma-
terial is already incorporated into the polymer (no need
for thin film deposition), low toxicity15 and the lack of
magnetically-driven agglomeration of adjacent nanomo-
tors in the absence of an applied field. Qualitatively, the
dynamics of superparamagnetic helices resembles that of
ferromagnetic nanomotors, i.e. they exhibit tumbling,
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wobbling and propulsion upon increasing frequency of
the driving field. The magnetic properties of superpara-
magnetic nanohelices are characterized by their effective
magnetic susceptibility and orientation of the magnetic
easy-axis, generally dominated by the geometric effects16.
Orientation of the easy-axis plays a central role in con-
trolling the dynamics of superparamagnetic nanomotors
in a way similar to orientation of the magnetic moment
of permanently magnetized nanohelices. It was recently
shown that orientation of the magnetic easy-axis in poly-
mer composites can be manipulated in order to minimize
tumbling/wobbling and maximize propulsion by align-
ing (otherwise randomly dispersed) superparamagnetic
nanoparticles prior to crosslinking the polymer matrix17.

Physically, the dynamics of the magnetic nanomotors is
governed by the interplay of magnetic and viscous forces.
Despite the high interest, the theory for the dynamics of
magnetically driven nanomotors is quite limited. A re-
cent study18 addressed optimization of the chirality that
maximizes the propulsion speed at a prescribed driving
field assuming perfect alignment of the helix along the
axis of the field rotation. In Refs.19,20 the hydrodynamic
aspects of wobbling-to-swimming transition for a helix
with purely transverse permanent magnetization were
studied asymptotically and numerically showing a quali-
tative agreement with experiments. Ghosh et al.13 found
the formal mathematical solution for the orientation of
permanently magnetized nanomotors. In21 we studied in
detail the dynamics of ferromagnetic chiral nanomotors
and established the relation between their orientation and
propulsion with the actuation frequency, remanent mag-
netization and the geometry. The theoretical predictions
for the transition threshold between regimes and nanomo-
tor alignment and propulsion speed in21 showed excellent
agreement with available experimental results.

The dynamics of superparamagnetic nanomotors is still
poorly understood. Rotation of paramagnetic ellipsoids
in a precessing magnetic field was studied in Ref.22. Ori-
entation of the ellipsoid with respect to the axis of the
rotating field was fixed and determined by the permanent
component of the driving magnetic field. It was demon-
strated that the dynamics of paramagnetic ellipsoid re-
sembles that of the magnetized spherical particle23. In
particular, depending on the driving field frequency the
ellipsoid undergo either synchronous or asynchronous ro-
tation. In contrast to the paramagnetic sphere, the vari-
ation of particle eccentricity and modulation of the fixed
component of the applied magnetic field admit certain
changes in the step-out frequency of transition between
the two regimes22. However, the occurrence of high-
frequency synchronous regime accompanied by the dy-
namic re-orientation of the particle with respect to the

rotating field observed in experiments14–17 was not con-
sidered. This regime is of particular importance for ar-
tificial chiral nanomotors, as upon increasing the driving
frequency the precession angle (i.e. the angle between
the particle long axis and the axis of the field rotation)
diminishes, allowing efficient corkscrew-like locomotion.
In the present paper we study in detail different regimes

of the superparamagnetic nanomotor actuation in a ro-
tating magnetic field and the conditions for transition
between them. It should be emphasized that there is
a fundamental difference between dynamics of perma-
nently magnetized (ferromagnetic)21 and magnetizable
(superparamagnetic) nanomotors studied here. In par-
ticular, the dynamic regimes for the superparamagnetic
nanomotors cannot be obtained by simple substitution
of terms linear in magnetic field amplitude, ∝ H, by
the corresponding quadratic terms, ∝ H2. Moreover,
the tumbling-to-wobbling transition of the magnetizable
nano-motor depends not only on the frequency of actu-
ated field as in21, but also on the “steerability” parameter
γ controlled by the geometry and easy axis orientation of
the propeller. We also propose an approximate theory of
polarization of superparamagnetic helical propellers and
compare the theoretical predictions with available exper-
imental results.

Polarizable helix in rotating magnetic
field: problem formulation

Let us consider the dynamics of polarizable helix in the
external rotating magnetic field. We use two different
coordinate frames – the laboratory coordinate system
(LCS) fixed in space and the body-fixed coordinate sys-
tem (BCS) attached to the cylinder enclosing the helix
(see Fig. 1). The coordinate axes of the two frames are
XY Z and x1x2x3, respectively. We denote by H the
externally imposed rotating homogeneous magnetic field.
We also assume that in the LCS the field rotates in the
XY -plane

HLCS = H(cosωt, sinωt, 0) , (1)

where H and ω are, correspondingly, the field amplitude
and angular frequency.
Once the external field (1) is turned on, the helix po-

larizes. Owing to the magnetic anisotropy of the helix,
the polarization vector M is not generally aligned with
H. We assume uniaxial magnetic anisotropy of the helix
with director n. The general form of the uniaxial mag-
netic susceptibility tensor χ is24

χik = χ0δik +∆χ(nink − 1
3δik) , (2)

2 | 1–11
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where χ0 is the isotropic part of the magnetic suscepti-
bility, δik is the delta-symbol, ∆χ = χ∥−χ⊥ is the scalar
parameter of magnetic anisotropy with χ∥ and χ⊥ being
the main components of the tensor χ along the anisotropy
axis and in the transverse direction, respectively. In this
paper we assume easy-axis anisotropy, i.e., the positive
values of parameter ∆χ. As we will see below, the case
of an easy-plane anisotropy characterized by the negative
values of ∆χ is less relevant towards the present study
since the helix cannot propel. We assume an arbitrary
angle Φ between the director n and the helical x3-axis.
In the BCS n can be written in the form

nBCS = (sinΦ, 0, cosΦ) , (3)

The orientation of the BCS with respect to the LCS is
determined by three Euler angles φ, θ and ψ 28, as shown
schematically in Fig. 1.

Y

Z

x1

x2

x3

Fig. 1 The laboratory and body-fixed (attached to a helix)
coordinate systems with the corresponding axes XY Z and
x1x2x3 and the definition of the Euler angles φ, θ and ψ.
The cylindrical envelope of a helix is shown too.

The rotational magnetic field (1) polarizes the helix
producing the magnetic moment M = MV = χ · HV
(with V being the helix volume), and also the magnetic
torque Lm = M × H. Substituting the expression for
susceptibility, we find that

Lm = ∆χH2V [n× h](n · h) , (4)

where h = H/H is the unit vector of the external field.
This torque is a source of both rotational and trans-

lational movements of the particle. In the Stokes ap-
proximation, the helix motion is governed by the balance
of external and viscous forces and torques acting on the
particle25

0 = ξ ·U +B ·Ω , (5)

Lm = BT ·U + κ ·Ω , (6)

where U and Ω are the translational and angular veloci-
ties of helix, ξ, κ and B are the translation, rotation and
coupling viscous resistance tensors, respectively25. We
have also assumed in Eq. (5) that no external force is
exerted on the helix.
The formal solution of the problem can be readily ob-

tained from Eqs. (5), (6):

U = −ξ−1 ·B ·Ω , Ω = κ−1
eff ·Lm , (7)

where κeff = κ−BT ·ξ−1 ·B is the re-normalized viscous
rotation tensor.
The problem of the helix dynamics can be decomposed

into two separate problems: (i) rotational motion of an
achiral slender particle i.e. B = 0 and diagonal κ with
components κ11 = κ22 = κ⊥, e.g. axially symmetric slen-
der particle, such as cylinder or prolate spheroid enclosing
the helix (see Fig. 1), and (ii) translation of a chiral par-
ticle rotating with a prescribed angular velocity (see21

for detailed justification of such decomposition.
In the following sections we consider both problems.

Polarizable cylinder in a rotating magnetic
field

It is convenient to write down the equation of the rota-
tional motion (the second equation in Eqs. (7)) in the
BCS in which the tensor κ takes a diagonal form26.
The vector h of the magnetic field (1) in the BCS is
hBCS = R · h, where R is the rotation matrix27 (see
ESI†). Substituting components of the angular velocity
Ω 28 into the second equation in (7), the torque balance
takes the form:

A(n ·R · h)[n× (R · h)]x1 = φ̇sθsψ + θ̇cψ , (8)

A(n ·R · h)[n× (R · h)]x2 = φ̇sθcψ − θ̇sψ , (9)

pA(n ·R · h)[n× (R · h)]x3 = φ̇cθ + ψ̇ . (10)

Here A = ∆χH2V/κ⊥ is the characteristic frequency of
the problem. We also use the compact notation through-
out the paper, i.e. sψ = sinψ, cθ = cos θ, etc. and the
dot stands for the time derivative. The rotational friction
coefficient ratio p = κ⊥/κ∥ & 1 depends on the aspect ra-
tio of the cylinder: it is p ≃ 1 for a short cylinder (i.e.
disk), for which κ∥ ≃ κ⊥ and increases with the aspect
ratio25.
Generally, overdamped dynamics of a magnetic par-

ticle in a rotating magnetic field can be realized via
synchronous and asynchronous regimes23,29. The syn-
chronous regime is observed when there is a constant
phase-lag between the Euler angle φ of the particle body
and the external magnetic field H, i.e., φ ∝ ωt, while the
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angles θ and ψ are not varying with time. As we show
in the next section, the solution to the problem in the
synchronous regime can be found analytically.

Synchronous regime: low-frequency tumbling so-
lution

The low-frequency tumbling solution can be obtained by
using the following ansatz for the Euler angles: ψ = 0,
θ = π/2, φ = ωt − φ0, where φ0 is a constant. With
these values, the components of unit vector h in the BCS
become

(R ·h)x1 = cφ0 , (R ·h)x2 = 0 , (R ·h)x3 = −sφ0 . (11)

As a result, Eqs. (8) and (10) are satisfied identically,
whereas Eq. (9) determines the constant φ0:

As2(Φ−φ0) = 2ω . (12)

H

n

Fig. 2 The low-frequency synchronous regime. Both the
helical axis and axis of magnetic anisotropy lie in the field
rotation plane. The anisotropy axis n inclined at an angle Φ
to the helical axis. The rotating magnetic field outruns n by
the angle α.

The solution describes a tumbling regime, e.g., helix
rotation about its short axis. The main feature of this
regime is the fact that the easy-axis n and the x3-axis
of the cylinder both lie in the field plane, as shown in
Fig. 2. Physically, this regime can be understood from
the next qualitative argument. In the constant magnetic
field, the helix magnetic moment M and easy-axis n are
oriented along the field direction; the orientation of the
x3-axis is arbitrary, while it forms a solid angle Φ with n.
In the weakly (quasi-statically) rotating magnetic field,
M and n rotate with a small lag behind the external
field H. Thus, vectors M and n both prove to be in
the plane of the field rotation. The degeneracy in the
orientation of the propeller, however, is removed: the
viscous friction causes the x3 axis to align in the plane of
the field rotation. The difference α = Φ− φ0 in Eq. (12)
determines the outrunning angle of the rotating field H

relatively to the easy-axis n (see Fig. 2). In the static
magnetic field, ω = 0, and both vectors coincide, i.e.
α = 0. As seen from Eq. (12), the solution exists within
the limiting interval of field frequencies, from ω = 0, up
to the maximal value ωI = A/2. When ω = ωI, the angle
α = 45◦ and the magnetic torque Lm reaches its maximal
value (see Eq. (4) and left-hand side of Eqs. (8) and (12)),
i.e., a further increase of the field frequency leads to the
breakdown of the synchronous rotation and transition to
the asynchronous regime.

There is, however, an additional synchronous solution
that branches from the tumbling solution one at the fi-
nite value of the driving frequency ω∗ prior to transi-
tion to the asynchronous regime. The transition to this
additional high-frequency (wobbling) solution can be ex-
pected by the following reasoning applicable for slender
(rod-like) particles. The low-frequency tumbling solution
illustrated in Fig. 2 is characterized by high viscous fric-
tion owing to the propeller rotation about its short axis.
The rotation around the longer x3-axis would be accom-
panied by a significant reduction of the viscous friction,
but at the same time, by higher value of magnetic energy
Em = −(H · χ ·H)V/230. Therefore, there is a compe-
tition between the magnetic and viscous torques. In the
low-frequency/tumbling regime, the viscous friction is of
secondary importance – it is only responsible for remov-
ing the orientational degeneracy of the propeller, as any
orientation with θ ̸= 0 (i.e. precession) would result in
viscous torques acting to bring the x3-axis back to the
plane of field rotation.

Upon increasing the driving frequency, ω, however,
the role of the viscous forces increases and their inter-
play with the magnetic forces results into the new high-
frequency wobbling regime.

Concluding this section, we point out that the higher
the particle slenderness, the more pronounced is the com-
petition between the magnetic and viscous forces. In con-
trast, in the case of disk-like platelets (see, e.g., Ref.31),
the anisotropy of rotational friction coefficient is negligi-
ble, p ≈ 1, and orientation of such platelets is determined
solely by the magnetic forces. As a result, platelets rotate
in such a way that the plane formed by their two major
eigenvectors of the susceptibility tensor align with the
plane of the rotating magnetic field for all field frequen-
cies. There are also two potential cases with polarizable
helices (with p > 1) where the competition between the
magnetic and viscous forces cancels out. (i) The case of
positive magnetic anisotropy, ∆χ > 0, when easy-axis n
is strictly perpendicular to the helix axis x3. This po-
larization is optimal for the helix propulsion: the mag-
netic field enforces the helix to spin around its longer axis
with minimal rotational friction, i.e. the tumbling is pre-
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vented for all driving frequencies. The recently fabricated
superparamagnetic micro-helices with adjusted magnetic
anisotropy in17 possess this type of polarization. (ii) For
the case of the easy-plane anisotropy, ∆χ < 0, the rotat-
ing magnetic field drives the helix to align its easy-plane
with the plane of the field rotation. However, since both
principal polarization axes in the easy-plane are equiv-
alent, the lack of magnetic anisotropy in the field plane
would yield no corkscrew-like rotation and propulsion.

Synchronous regime: High-frequency wobbling
solution

The high-frequency wobbling solution can be found by
using the following ansatz for the φ-Euler angle: φ = ωt.
Thus the projections of the unit vector h in the BCS are

(R · h)x1
= cψ , (R · h)x2

= −sψ , (R · h)x3
= 0 . (13)

The system of three equations (8)-(10) reduces to the
following system of two equations governing the two re-
maining Euler angles, ψ and θ:

ω∗cψ = ωsθ , (14)

−γω∗s2ψ = 2ωcθ , (15)

where we introduced the critical frequency ω∗ =
(A/2)s2Φ and the “steerability” parameter γ = p tanΦ
(see the Discussion Sec. for details). There is a non-
trivial solution of (14–15) provided that γ = p tanΦ ≥ 1,

cψ =
(1 + γ2)1/2

γ
√
2

(
1 +

√
1− ω2/ω2

II

)1/2

, (16)

sθ =

√
2

(1 + γ2)1/2
ωII

ω

(
1 +

√
1− ω2/ω2

II

)1/2

. (17)

Here we used the notation

ωII = ω∗
1 + γ2

2γ
=

∆χH2V

κ⊥

1 + γ2

4γ
sin 2Φ . (18)

The high-frequency solution (16–17) branches from the
low-frequency solution (12) at frequency ω = ω∗ where
θ = π/2 and persists in the limiting frequency interval
ω ∈ [ω∗, ωII].

The high-frequency solution corresponds to wobbling
dynamics where the increase in driving frequency from
ω∗ up to ωII yields the gradual decrease in the angle θ
between the propeller’s x3-axis and the Z-axis of the field
rotation, or the precession angle. The minimal precession
angle θmin is attained at ω = ωII

(sθ)min =

√
2

(1 + γ2)1/2
. (19)

The maximal frequency, ωII, is usually termed as step-
out frequency ωs−o ≡ ωII. At frequencies ω > ωs−o the
high-frequency solution breaks down and the synchronous
regime switches to the asynchronous one.
Finally, note that the high-frequency solution (16–17)

requires γ > 1, i.e. helices that fail to fulfil this con-
ditions would exhibit the low-frequency tumbling, i.e.,
non-propulsive dynamics followed by the asynchronous
tumbling for frequencies ω > ωI. Both regimes of tum-
bling motion take place in plane of the field rotation (see
Fig. 2), they are characterized by a single angular variable
α and have been studied in detail, e.g. see Refs.23,29.

Comparison to the experiment

Let us now compare the experimental results with our
theoretical predictions. The experimental results16 for
the precession angle as a function of the frequency of the
rotating magnetic field are depicted in the inset of Fig. 3.
The data was obtained for three prototypes or ‘agents‘
(shown here as squares, triangles, and circles), having
similar characteristics, i.e. microhelices with 3 full turns,
helical radius R = 2.25 µm, filament width d = 1.8 µm,
helical angle Θ = 70◦, fabricated from polymer composite
with 2% (vol) magnetite nanoparticles ∼ 11 nm in diam-
eter. The empty and filled symbols correspond to two
different strengths of the applied external field, equal to
3 mT and 6 mT, respectively. Since the magnetic and
geometric properties of the helices are similar, their cor-
responding precession angles found at given field ampli-
tude prove to be rather close. Nevertheless, the helices
in Ref.16 were not absolutely identical and there is a mi-
nor scattering of the values of the angle Φ, steerability
parameter γ and the step-out frequency νs−o = ωII/2π.
The step-out frequency exhibits maximal (∼ 20%) scat-
tering at higher value of the magnetic field, H = 6 mT,
with νs−o = 4 Hz, 4.6 Hz and 5.1 Hz.
As follows from Eq. (17), the precession angle is a func-

tion of the steerability parameter γ and the frequency
ratio ν/νs−o. The re-scaled data shown in Fig. 3 falls
on the master curve (17) with the single best-fitted pa-
rameter γ = 9.3. For γ = 9.3 we find that ν∗/νs−o =
2γ/(1 + γ2) = 0.21. This prediction is in an excellent
agreement with the experimental values ν∗/νs−o = 0.20,
0.22 and 0.25, found in Ref.16 for the three agents. These
results correspond to the values of γ = 9.9, 9.0 and 8.0,
meaning ∼ 10 % variation of γ around its mean value.
Let us next estimate the limiting (minimal) value of

the precession angle, θmin, corresponding to the step-
out frequency νs−o. Using Eq. (19) it is θmin =
arcsin

√
2/(1 + γ2). For γ = 9.3 we find θmin = 8.7◦

which is quite close to the experimental measurement
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Fig. 3 Precession angle as a function of the frequency ratio
ν/νs−o. The symbols stand for the experimental results of16

for three prototypes. The empty and filled symbols
correspond to the applied field of 3 mT and 6 mT,
respectively. Thick solid line is the theoretical prediction in
Eq. (17) with γ = 9.3. Thin dashed lines mark the deviation
due to 10% variance of γ. The inset depicts the precession
angle in16 as a function of frequency ν (Hz).

θmin ≈ 8◦ 16.
Now the angle Φ between the easy vector n and the

axis x3 of the helix corresponding to the best-fitted value
of γ = 9.3 can be determined. From the definition of γ
we have Φ = arctan (γ/p), where p = κ⊥/κ∥. We ap-
proximate the helical propeller by the enclosing prolate
spheroid and use the explicit expressions for κ⊥ and κ∥
available for ellipsoidal particles (see ESI†). This ratio
depends only on the aspect ratio a/b of the spheroid. For
a 3-turn helix this ratio is a/b ≈ 3π/ tanΘ. For the he-
lix angle Θ = 70◦, we find a/b ≃ 3.4. The aspect ratio
can be alternatively estimated using the micrograph of
the helix given in Fig. 2 in Ref.16. The micrograph gives
a slightly lower value, a/b ≈ 3. Therefore, the corre-
sponding values of the parameter p = κ⊥/κ∥ are 3.8 and
3.1, what finally determines the angle Φ of inclination of
the easy-axis of magnetization n to the helical x3-axis as
Φ = 68◦ − 72◦. These estimates are confirmed by the
rigorous particle-based calculations based on multipole
expansion algorithm (see ESI†for details). For example,
for a helix with Θ = 70◦ (a/b ≃ 2.61) we found p ≃ 3.07
resulting in Φ ≃ 71.7◦. For a slightly less slender helix
with Θ = 67◦ (with a/b ≃ 3.05) we obtained p ≃ 3.95
resulting in Φ ≃ 67◦.

The propulsion velocity of the helical propeller along
the axis of the field rotation, UZ , can be determined from
Eq. (7). Following the same arguments as in21, we as-
sume helices with chirality along the x3-axis, i.e., that in
the body-fixed coordinate frame the only non-zero com-

ponent of B is B∥. Thus, in the low-frequency tumbling
regime we have UZ = 0, whereas in the high-frequency
regime it is UZ = −ωc2θB∥/ξ∥ (see21 for details), where
B∥ and ξ∥ are the longitudinal (along the helix axis) com-
ponents of the coupling and the translation viscous resis-
tance tensors, respectively. Substituting the value of pre-
cession angle from Eq. (17) and normalizing the velocity
with Rωs−o, with R being the helix radius, yields

UZ
Rωs−o

= Ch
ω

ωs−o

[
1− 2

1 + γ2
ω2
s−o
ω2

(
1 +

√
1− ω2

ω2
s−o

)]
,

(20)
where Ch = −B∥/(ξ∥R) is the chirality coefficient de-
pending on the helix geometry only21. Thus, similarly to
the precession angle, the propulsion velocity is a a func-
tion of the helix geometry (via parameters γ and Ch) and
the frequency ratio ν/νs−o.
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Fig. 4 Dimensionless propulsion velocity vs. frequency of
the rotating magnetic field normalized by the step-out
frequency. The experimental data (symbols) is from16 for
two different prototypes/agents. The solid line is the
theoretical prediction by Eq. (20) with parameters γ = 9.3
and Ch = 0.075. Thin dashed lines mark the deviation due
to 10% variance of γ and Ch. The thick dotted line stands
for the velocity in the asynchronous regime21. The inset
shows the dimensional experimental results.

In the inset to Fig. 4, the experimental results16 for
the propulsion velocity as a function of the frequency of
the rotating magnetic field are shown. The same notation
is used as in Fig. 3 and a new data for the applied field
strength of 9 mT was added. The shown data (about
30 point) corresponds to ‘agents’ #1 and #3. The lim-
ited data (5 points) reported for ‘agent’ #2 is omitted,
as it shows a considerable deviation from the other re-
sults probably due to experimental inconsistency. Similar
to the precession angle, the re-scaled velocity measured
for three different values of the magnetic field follow the
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master curve (20) computed for the previously best-fitted
values of γ = 9.3 and Ch = 0.075. Dashed lines in Fig. 4
correspond to 10% variance of both parameters – γ and
Ch. We note that the propulsion velocity is sensitive
to the variation of γ and Ch , correspondingly, at low
(ν/νs−o ∼ 0.2) and high (ν/νs−o ∼ 1) value of the fre-
quency ratio.

To verify the parameter fitting, we computed Ch nu-
merically by the multipole expansion method (see ESI†).
Following16, we take the 3-turn helix with Θ = 70◦

and R/r = 2.5 (corresponding to a/b ≃ 2.61), where
r stands for the filament radius. For such geometry we
find Ch = 0.056. However for a slightly more slender he-
lix with Θ = 67◦ (corresponding to a/b ≈ 3.05, in accord
with the micrograph in Fig. 2 in16), we obtain Ch = 0.072
in a very good agreement with the best-fitted value of
0.075.

Magnetic properties of helices

In this section we study the magnetic properties of he-
lices. We assume that helices are superparamagnetic:
they do not possess remanent spontaneous magnetiza-
tion and become magnetized only upon in an external
field. In practice, such helices are microfabricated by the
solidification (photopolymerization) of a polymer matrix
comprising the embedded superparamagnetic nanoparti-
cles of typical size ∼ 10 nm15,16. The matrix crosslinking
can take place both in the absence of external magnetic
field14,15,35 as well as with applied static uniform mag-
netic field17. In the former case the magnetic particles
are randomly distributed (reference helices), whereas in
the latter case there is an anisotropic particle distribution
(helices with adjusted anisotropy). Here we investigate
the case of helices with random spatial distribution of
superparamagnetic inclusions. Therefore, the magnetic
susceptibility of the helix bulk material is an isotropic
property characterized by the scalar parameter χ0 de-
termined by the values of concentration and magnetic
moments of nanoparticles33.

Our aim is determining the effective magnetic suscepti-
bility χ of the helix as a whole. We define χ as the coeffi-
cient of proportionality between the helix magnetization
M = M/V (M is magnetic moment of helix acquired
in the external field magnetic field H and V is the helix
volume) and the value of this field: M = χ ·H. Let us
comment on this relation. Typically, magnetic suscepti-
bility is defined as a coefficient of proportionality between
magnetization M and internal magnetic field Hin. In-
ternal magnetic field is a sum of the external field, H,
and the demagnetizing magnetic field, Hd, owing to the
magnetic material itself, Hin = H + Hd

30. For mag-

netic objects the demagnetizing field Hd depends on the
body geometry, whereas the susceptibility χ is a property
of a magnetic material only, i.e. geometry independent.
For the helical geometry, the internal field Hin proves to
be fundamentally inhomogeneous one, and, therefore it is
advantageous to characterize the apparent, or, effective
susceptibility of the helix as a whole with geometry de-
pendent tensor χ. For sufficiently slender helices one can
estimate the effective susceptibility tensor χ as a function
of magnetic susceptibility χ0 of the helix material and
helix geometry in the framework of slender body (SB)
approximation.

Slender body approximation

The SB approximation assumes that locally a helical fil-
ament can be considered as a thin straight cylinder. We
study the case of an elliptical cross-section of the fila-
ment with semi-axis a having a fixed component along
the helical axis and semi-axis b oriented normally to the
helical axis. Assumption of slenderness applies to he-
lices with typical dimensions, i.e. the radius R and the
pitch P , satisfying R, P ≫ max (a, b). In the experi-
ments the helices are typically not slender (e.g.16,17,35),
however, SB approximation allows the derivation of the
closed-form formulae for the effective susceptibility and
explains qualitatively the experimentally observed phe-
nomena.

Here we consider two types of helices: normal helices
with the cross-section elongated in the direction trans-
verse to the helical axis (b > a), and binormal helices
with longer cross-sectional axis having a fixed component
along the helical axis (a > b). In what follows, we shall
consider the normal helix.

In the body-fixed coordinate frame x1x2x3 with the
helix axis oriented along x3, the equation for the helix
centerline can be written in the following parametric rep-
resentation32

X(s) =
[ κ
λ2

cos(λs),
κ

λ2
sin(λs),

τ

λ
s
]
. (21)

Here s is the arc length and λ = 1/
√
R2 + P 2

4π2 . Curva-

ture κ and torsion τ are defined via helix radius R and
pitch P as κ = Rλ2, τ = P

2πλ
2.

Let {d1,d2,d3} be the right-handed director basis de-
fined at each position s along the axis of the filament32:

d1(s) =
[ τ
λ
sin(λs),− τ

λ
cos(λs),

κ

λ

]
,

d2(s) = [cos(λs), sin(λs), 0] , (22)

d3(s) =
[
−κ
λ
sin(λs),

κ

λ
cos(λs),

τ

λ

]
.
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d3 = ∂X(s)/∂s is the vector tangent to the centreline of
the filament. Vectors d1 (binormal) and d2 (normal) are
assumed to be parallel, correspondingly, to the semi-axes
of the filament cross-section (e.g. for the normal helix d1

and d2 are parallel to the short and the long semi-axis,
respectively).

The magnetic susceptibilities of a cylinder along the
three principal axes read30

χ1 =
χ0

1 + 4πχ0N1
, χ2 =

χ0

1 + 4πχ0N2
, χ3 = χ0 .

(23)
Here N1 and N2 = 1−N1 are the demagnetizing factors
along the axis d1 and d2, respectively, and we also as-
sumed the zero value of the demagnetizing factor along
the long axis of cylinder, N3 = 0. The explicit expressions
for the demagnetizing factors are given in the ESI†.

Eqs. 23 imply that in the external magnetic field heli-
cal segments are polarized differently along the principal
axes: the easy direction is along the centerline, and the
hard one is along the shorter cross-section. This property
leads to the apparent anisotropy of magnetic susceptibil-
ity χ of the helix as a whole.

The SB approximation is the local theory: the mag-
netization of each segment is determined only by its ge-
ometry and by the applied magnetic field (see Eq. (2)).
In other words, in the framework of SB approximation
different parts of the helix do not interact, i.e. magnetize
independently from each other. Therefore, the effective
susceptibility χ of helix proves to be an additive property
and can be determined by integration

χ = L−1

∫ L

0

(χ1d1d1 + χ2d2d2 + χ3d3d3) ds , (24)

where L is the helix length along the centerline.
Let us denote the eigenvalues of matrix χ in the as-

cending order as χI ≤ χII ≤ χIII . Generally, all three
eigenvalues are different and helix possesses bi-axial mag-
netization. However, for the integer number of turns in
the framework of SB approximation, the susceptibility
tensor becomes uniaxial : two out of three eigenvalues
coincide. In present study we shall consider this simple
and practically relevant situation. The direct integration
in Eq. (24) using Eqs. (23)-(22) demonstrates that the
eigenvectors of χ are aligned with the BCS axes x1x2x3;
the magnetic anisotropy parameter ∆χ, defined as the
difference of eigenvalues along the anisotropy (i.e. he-
lical) axis and in transverse direction, ∆χ = χ∥ − χ⊥,
reads

∆χ = 1
2 [(χ3 − χ1)(3 cos

2 Θ− 1) + χ1 − χ2] . (25)

Particularly simple form of magnetic anisotropy param-
eter can be obtained for the case when 4πχ0 ≪ 1. The

polymer composite used for nanomotor fabrication in
Ref.14,15,35 fits this condition. Indeed, taking the volume
fraction of superparamagnetic inclusions ϕ = 0.02, their
mean diameter dp = 11 nm15 and the saturation mag-
netization of magnetite Ms = 281 Gs35, at T = 300 K
we can estimate 4πχ0 = (2π2/9)ϕM2

s d
3
p/(kBT ) ≈ 0.133.

Then taking the asymptotic small-χ0 limit of susceptibil-
ities in Eqs. (23), ∆χ in Eq. (25) can be further simplified
into

∆χ

2πχ2
0

= N1(3 cos
2 Θ− 1) + 1− 2N1 . (26)

The analogous result for the binormal helix is readily ob-
tained from Eqs. (25) and (26) by interchanging indices
1 ↔ 2.

The obtained result (26) indicates that magnetically,
integer-number-of-turns helix is equivalent to a polar-
ized spheroid with its easy-axis aligned along the heli-
cal x3-axis. The slender helices with a small pitch an-
gle Θ < Θ∗ are characterized by the positive value of
the anisotropy parameter ∆χ (i.e. equivalent to prolate
spheroid), whereas for the tight helices with high values
of Θ > Θ∗ the anisotropy parameter becomes negative
(i.e. equivalent to oblate spheroid or disk). The critical
helix angle Θ∗ at which ∆χ changes sign is found from
the relation cos2 Θ∗ = 1− 1/(3N1). It is depicted in the

a/b

Fig. 5 Inclination angle Φ of the easy-axis as a function of
the helix angle Θ for regular (red), normal (blue) and
binormal (green) helices with integer number of turns. The
aspect ratio of the filament cross-section for normal and
binormal helices is a/b = 2. The orange curve, corresponding
to a regular helix with 3.3 full turns, illustrates the effect of
imperfectness on Φ; the helices and corresponding arrows
illustrate the orientation of the easy-axis depending on their
slenderness. The inset depicts the critical helix angle Θ∗ vs.
the filament cross-section aspect ratio a/b.

inset to Fig. 5 as a function of the aspect ratio a/b of
the filament cross-section. For regular helix with a cir-
cular cross-section, a = b, Θr∗ = 54.7◦. The values of
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the critical angle Θ∗ for the normal and binormal helices
prove to be strongly asymmetric relatively to its value for
regular helix. For example, for a/b = 2, Θn∗ = 45.8◦ and
Θbn∗ = 76.6◦ for the normal and binormal helices, respec-
tively. The minimal value of this critical angle for the
normal helix with infinitely thin filament cross-section
(a/b → 0) is Θn∗ = 35.3◦, whereas for the binormal helix
it reaches it maximal value Θbn∗ = 90◦ already for aspect
ratio a/b ≃ 2.2. The angle Φ formed by the main eigen-
vector (corresponding to the maximal eigenvalue χIII) of
the susceptibility tensor and the helix axis is depicted in
Fig. 5 as a function of the helix angle Θ for regular (red),
normal (blue) and binormal (green) helices. As seen, all
dependencies are step-like functions: Φ = H(Θ − Θ∗),
where H(x) is the Heaviside function. This idealized so-
lution relies on three simplifying assumptions: (i) local
magnetization, (ii) integer number of helical turns and
(iii) homogeneity of the geometric and magnetic proper-
ties of helices. Any violation of (i)–(iii) or imperfectness
should lead to deviation from the ideal dependence and
to smoothing out of the step-like profile as illustrated in
Fig. 5 by the orange line corresponding to a helix with
non-integer number turns. The detailed analysis of mag-
netization of superparamagnetic helices requires numeri-
cal computations that are beyond the scope of the present
study and will be subject of a separate paper.

The idealized SB approximation allows to understand
qualitatively the difference in the dynamics of slender
(Θ < Θ∗) and tight (Θ > Θ∗) helices. In the former
case, the easy-axis inclination angle Φ = 0 so that the
condition p tanΦ > 1 (obligatory for transition to wob-
bling, see the details above) is violated. That means that
helices with pitch angles Θ < Θ∗ would only tumble and
not propel. In contrast, for Θ > Θ∗, the inclination an-
gle is at maximum, Φ = 90◦, i.e. the optimal orientation
for propulsion. These findings are in accord with recent
experimental observations in16, where helices with with
pitch angles Θ = 40◦, 50◦ and 60◦ showed tumbling for
any driving frequencies, while only the helices with the
pitch angle Θ = 70◦ exhibited corkscrew-like propulsion.
We should mention, however, that within the SB approx-
imation framework, the anisotropy is always uniaxial,
meaning that tight helices possess easy-plane of magne-
tization (disk-like polarization with ∆χ < 0), while effec-
tive propulsion requires, besides alignment along the axis
of field rotation (i.e. Φ ∼ 90◦) also magnetic anisotropy
in the transverse plane. We anticipate that aforemen-
tioned imperfectness should yield deviation from the uni-
axial anisotropy, e.g. two distinct non-zero anisotropy
parameters, ∆χ1 = χIII − χII and ∆χ2 = χII − χI .

Discussion and concluding remarks

We developed the theory for dynamics and polarization
of superparamagnetic chiral nanomotors powered by a ro-
tating magnetic field. Depending on their geometry, mag-
netic properties and the parameters of actuating mag-
netic field (i.e. frequency and amplitude), the nanomo-
tors are involved into synchronous motion (tumbling or
wobbling) or twirl asynchronously. The effective nanomo-
tor propulsion is enabled as a combined effect of two dif-
ferent factors. First factor is the “steerability” of the
nanomotor, i.e. its ability to undergo synchronous preces-
sive motion and propulsion. Mathematically, steerability
can be characterized by the parameter γ = p tanΦ that
depends on both geometric and magnetic properties of
the nanomotor. The nanomotors with γ < 1 are not
propulsive and undergo tumbling for all driving frequen-
cies. This situation was considered in22 where the easy
axis of superparamagnetic ellipsoids coincides with their
long axis, i.e. Φ = 0. As a result, switching to high-
frequency wobbling regime was prohibited. The condition
γ = 1 determines the critical frequency of tumbling-to-
wobbling transition, ω∗ = (A/2) sin 2Φ and the minimal
value of the wobbling angle θmin ∼ γ−1 (see Eq. 19).
Increasing slenderness of the propeller (i.e. increasing
p = κ⊥/κ∥) and/or the inclination of the easy-axis of
magnetic anisotropy relatively to the helix axis Φ, re-
sults in narrowing of the interval of tumbling frequencies,
[0, ω∗] and better alignment via lowering of θmin, i.e. im-
proved steerability. The maximal steerability is attained
as γ → ∞ when the easy-axis is oriented transverse to
the helix axis, i.e. Φ ≈ 90◦. In this case the propulsion
is tumbling- and wobbling-free as the nanomotor aligns
parallel to the axis of the field rotation for all frequen-
cies. This situation corresponds to, e.g., nanohelices with
“adjusted” easy-axis anisotropy17.We point out that the
above concept of “steerability” pertains only to super-
paramagnetic helices. As it was shown in Ref.21, for a
non-zero angle between the magnetization and the he-
lical axis, the ferromagnetic propellers always undergo
tumbling-to-wobbling transition at some critical actua-
tion frequency.

The second factor is the anisotropy parameter of the
effective susceptibility in the plane of field rotation, ∆χ⊥.
This anisotropy parameter defines the maximal value of
the step-out frequency ωs−o = ∆χ⊥H

2V/2κ∥ at the best
possible orientation, Φ → π/2 (see Eq. 18). In the syn-
chronous wobbling regime the propulsion is geometric, as
the propulsion speed UZ ≈ ChωR for sufficiently large γ
(see Eq. (20)), i.e. it is the same for all values of ∆χ⊥ ̸= 0.
The step-out frequency, however, determines the upper
limit for the propulsion speed, UZmax = Chωs−oR.
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The predictions of our theory for the dynamic orienta-
tion and propulsion speed are in excellent agreement with
available experimental results (see Figs. 3–4). Note that
γ could not be estimated directly from the experiments
in16 since the easy-axis orientation, i.e. Φ, was not re-
ported, and it was treated as fitting parameter. The chi-
rality coefficient, Ch, determined self-consistently agrees
with the corresponding estimated experimental value.

The developed slender body (SB) theory provides a
qualitative description of the effective polarization of
the nanomotors. In particular, it predicts the uniax-
ial magnetic anisotropy of helices with integer num-
ber of turns. Orientation of the easy-axis is a step-
function of the helix pitch angle, i.e. slender helices pos-
sess an easy-axis aligned along the helical axis (Φ = 0,
∆χ > 0), while tight helices possess (disk-like) easy-plane
anisotropy (Φ = 90◦, ∆χ < 0). Thus, within the SB
approximation framework slender helices are not steer-
able (γ = 0), while tight helices are shown to be op-
timally oriented for propulsion by the rotating field in
agreement with experimental observations16. However,
it is impossible to estimate the propulsion velocity of the
tight helices in the SB framework, as ∆χ⊥ = 0 due to
magnetization isotropy in the transverse plane. In prac-
tice, however, transverse magnetization of nanomotors
with non-adjusted easy-axis is anisotropic owing to po-
tential shape effects, non-slenderness, fluctuations in the
spatial distribution of superparamagnetic inclusions, etc.
In17 non-adjusted helices exhibited nearly optimal orien-
tation, Φ ≈ 90◦, while the propulsion velocity of adjusted
and non-adjusted helices under similar conditions felt on
the same straight line when plotted vs. driving frequency
in accord with our arguments above. The difference in
the step-out frequency, νs−o ≈ 5 Hz and νs−o ≈ 18 Hz for
non-adjusted and adjusted helices, respectively, indicates
that ∆χadjusted⊥ /∆χnon−adjusted⊥ ≈ 3.6. The detailed the-
oretical study of the apparent polarization of superpara-
magnetic helical nanomotors will be subject of the future
work.
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