Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

cepted Manu on rganic

Synthesis of L-Rhamnose derived chiral bicyclic triazoles as novel sodium-glucose transporter (SGLT) inhibitors

Siddamal Reddy Putapatri,^a Abhinav Kanwal,^b Balasubramanian Sridhar,^c Sanjay K Banerjee,^b Srinivas Kantevari*,^a

5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Herein we described synthesis of a series of novel fused bicyclic 1,2,3-triazoles from commercially available, natural deoxy sugar, L-rhamnose. The key reactions involved are i)

- 10 Zn(OTf)₂ catalyzed enantioselective alkynylation of Lrhamnose derived azidoaldehyde and ii) deprotection of acid sensitive 1,2-isopropylidene group followed by in situ intramolecular click-cycloaddition of azidoalkynols. Some compounds exhibit excellent sodium-glucose transporter
- 15 (SGLT1 and SGLT2) inhibition activity.

Introduction

Compounds containing fused triazoles have become increasingly important in recent years as chemotherapeutic and cardiovascular

- 20 agents.¹ In particular, sugar derived fused 1,2,3-triazoles have gained interest as candidates to treat variety of carbohydratemediated diseases, such as diabetes, viral infections including HIV, and cancer metastasis (Compounds 1-6; Figure 1).² Moreover these fused triazole based bioactive heterocycles have
- 25 proved to be valuable as genuine amide surrogates due to their physiochemical properties (peptide isosters) and remarkable metabolic stability.3

Although several efforts were made for synthesis of aromatic fused bicyclic triazoles^{1a,4} their application for the synthesis of

- 30 carbohydrate derived triazole-fused bicyclic heterocycles was scarce.² Most of the early reported methods used D-glucose as the starting material.⁵ L-Rhamnose, a naturally occurring and easily available 6-deoxysugar⁶ without any mammalian toxicity, was used as the starting material replacing glucose. For example,
- 35 George *et al*⁷ reported total synthesis of bioactive (-)-salicylihalamides using L-rhamnose as the starting substrate replacing

^aOrganic Chemistry Division-II (CP C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, INDIA. Fax: 91-40-27198933; Tel:

40 91-40-27191438; E-mail: kantevari@yahoo.com; kantevari@gmail.com ^bMedicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, INDIA. Email:banerjees74@hotmail.com

^cLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical 45 Technology, Hyderabad, INDIA

- † Electronic Supplementary Information (ESI) available: Experimental data for 12c-q, 13c-q, and copies of ¹H & ¹³C NMR, HRMS spectra of 8, 9, 10, 12a-r, and 13a-r, Cif files of single crystal X-ray diffraction data CCDC 944748 (for 13a) and CCDC 944749 (for 13b). for
- 50 crystallographic data. See DOI: 10.1039/ b00000x/

Figure 1. Examples of Fused bicyclic 1,2,3-triazoles as potential drug candidates

Scheme 1. Synthesis of azidoaldehyde 10.

Reagents and conditions: a) NaBH4, MeOH; b) 2,2-dimethoxypropane, acetone, Conc.H₂SO₄; c) TPP, DIAD, DPPA, THF, 0°-RT; d) 50% aq. AcOH; e) CH₃OH-H₂O, NaIO₄.

glucose. As a part of our ongoing research⁸ on development of rhamnose derived heterocycles, we herein describe synthesis of novel fused chiral bicyclic triazoles from readily available 6deoxymannose (L-rhamnose) and their evaluation as potent SGLT inhibitors.

Results and Discussions

Initiating the study, the required azidoaldehyde 10 [(4R,5S)-5-((*R*)-1-azidoethyl)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde] 85 was synthesized from commercially available L-rhamnose (Scheme 1). Alcohol **7** synthesized previously in our lab,⁸ was converted to the respective azido analogue **8** in 90% yield under Mitsunobu reaction conditions. Selective deprotection of primary acetonide in **8** was achieved in 85% yield by stirring the mixture

- ⁵ in 50% aqueous acetic acid. The required building block **10** was obtained after oxidative cleavage of 1,2-diol **9** with NaIO₄ in methanol: water (4:1) at room temperature. All the compounds described in scheme 1 were fully characterized by their ¹H, ¹³C NMR and mass spectral analysis.
- ¹⁰ Having azidoaldehyde **10** in hand, the selective addition of phenyl acetylene (**11a**) was examined under various reaction conditions. The diastereomeric ratio of products **12a** & **12b** was assessed using ¹H NMR spectra of reaction mixture. Initially, addition of **11a** to **10** using *n*-butyl lithium (n-BuLi) as the base
- ¹⁵ in dry THF at -78 °C gave both diastereomeric products **12a** & **12b** in equal ratio (entry 1, Table 1). Use of hexamethyl phosphoramide (HMPA) as an additive in combination with n-BuLi increased ratio of diastereoselectivity to 79:21 respectively (entry 2, Table 1). Later experiments revealed that addition of
- ²⁰ phenyl acetylene in presence of S-Binol ligand L₁, diethyl zinc and HMPA as additive to 10 yielded 12a and 12b in 83:17 diastereomeric ratio. Use of titanium isopropoxide in the place of HMPA further increased the ratio to 93:7. After series of experiments varying reaction conditions, catalysts and additives,
- ²⁵ **12a** was obtained in >97 diastereomeric ratio, after enantioselective addition of phenyl acetylene to **10** in the presence of ligand L_2 in combination with zinc triflate and triethylamine in dry toluene at room temperature. The ligand L_2 required here was synthesized from the (1*S*,2*S*)-(+)-2-Amino-1-
- ³⁰ (4-nitrophenyl)-1,3-propanediol in two steps using literature procedure.⁹ The general scope and versatility of the reaction was further investigated using a series of alkynes **11b-q**. All these reactions proceed smoothly to give diastereoselective azidoalkynols **12b-q** in excellent yields (Scheme 2). The products
- ³⁵ **12a-q** was fully characterized by their IR, ¹H & ¹³C NMR and Mass spectral data.

 Table 1. Optimization of reaction conditions for addition of 11a to 10^a

S.No	Reagent/ additive	Ligand/ catalyst	Temp (°C)	Yield (%) ^b	Dr (12a : 12b) ^c
1	BuLi	-	-78	75	50:50
2	BuLi/ HMPA	-	-78	78	79:21
3	HMPA	L_1	RT	73	83:17
4	-	$L_1/Ti(i-OPr)_4$	RT	80	93:7
5	-	$L_2/Zn(OTf)_2$	RT	92	>97:3

^a*Reaction conditions*: **10** (1 mmol), **11a** (1.2 mmol), BuLi (1.1 mmol), HMPA (1.1 mmol), L₁ (30 mol%), Ti(i-OPr)₄ (30 mol%), L₂ (1.1 mmol), and Zn(OTf)₂ (1.1 50 mmol). ^bIsolated yields. ^cThe diastereomeric ratio was determined using ¹H NMR spectra of diasteromeric products **12a** and **12b**. Dr = Diastereomeric ratio.

Now with series of azidoalkynols **12a-q** in hand, we next examined various reaction conditions for the preparation of fused chiral bicyclic triazoles. Initial attempts using standard click ⁵⁵ reaction conditions [Na-ascorbate, CuSO₄.5H₂O, ^tBuOH:H₂O (1:1), RT] did not give fruitful results. Further increase in temperature and time did not help in the progress of reaction; instead, it led to decomposition of reaction mixture. In next set of experiments, deprotection of acid sensitive 1,2-isopropylidene ⁶⁰ group was planned before azide-alkyne cycloaddition reaction.

Scheme 2. Synthesis of azidoalkynols 12a-q

Compound **12a** when treated with 3N HCl in THF at 80°C, surprisingly resulted fused chiral bicyclic triazole **13a** in 80% yield, in addition to the deprotection of acid sensitive 1,2-⁵ isopropylidene group (Scheme 3). The product **13a** was fully characterized by its IR, ¹H & ¹³C NMR and Mass (ESI and HRMS) spectral data. Single crystal X-ray analysis unambiguously confirmed the structure for **13a** (Figure 2).

10 Figure 2: ORTEP diagram of 13a. Displacement ellipsoids are drawn at 30% probability level.

Scheme 4: Synthesis of bis-fused bicyclic triazole 13r

²⁵ Table 2: Evaluation of SGLT1 and SGLT2 activity¹⁶ for 13a-r

Entry	Product	SGLT1	SGLT2	SGLT1/
		$(IC_{50} nM)$	$(IC_{50} nM)$	SGLT2
1.	13a	135.3	381.4	0.3549
2.	13b	174.8	114.5	1.5269
3.	13c	187.3	554.3	0.3380
4.	13d	100.3	204.1	0.4914
5.	13e	230.8	96.9	2.3818
6.	13f	290.6	102.0	2.8481
7.	13g	102.1	134.2	0.7614
8.	13h	218.5	169.1	1.2916
9.	13i	256.0	260.4	0.9832
10.	13j	68.3	132.1	0.4494
11.	13k	229.8	110.5	2.0796
12.	131	265.5	185.2	1.4335
13.	13m	344.4	186.6	1.8459
14.	13n	136.2	157.6	0.8645
15.	130	82.9	143.5	0.5774
16.	13p	125.7	409.5	0.3069
17.	13q	118.3	545.03	0.2170
18.	13r	154.8	223.4	0.6926
19.	Phlorizin	65.5	77.9	0.8408

To generalize the protocol, all other azidoalkynols, **12b-q** were reacted with 3N HCl in THF for 1.5 h at 80°C. Fused bicyclic triazoles **13b-q**, were indeed formed in 72-93% yields. All the

Mechanistically, soon after deprotection of acid sensitive 1,2isopropylidene group, the transition intermediate may be 40 attaining conformational flexibility in its architecture, and triggering *in situ* intramolecular Huisgen [3+2] cycloaddition to yield required fused chiral bicyclic triazoles **13a-r** (Scheme 3 & 4).

45 Pharmacology

Inhibition of sodium-glucose co-transporters (SGLTs) was considered as one of the therapeutic options to reduce blood glucose level independent of insulin.¹⁰ Over the past 10 years, a ⁵⁰ series of O-glucosides and C-glucosides has been reported as SGLT2 inhibitors.¹¹ T-1095 is the first structural derivative of Phlorizin, a natural non selective SGLT inhibitor.¹² Sergliflozin and remogliflozin are representatives of the O-glucoside class of SGLT2 inhibitors.¹³ Meanwhile, dapagliflozin, followed by ⁵⁵ canagliflozin and empagliflozin have emerged as C-ary1 glucoside class of SGLT2 inhibitors.¹⁴ Besides this, C-glucosides with indole, benzisothiazole, thiophene and triazole aglycon were also investigated as inhibitors of SGLT2 (Figure 3).¹⁵

65 Figure 3: Examples of SGLT2 inhibitors having triazole(I), indole(II) benzisothiazole(III), and thiophene(IV) aglycons.

In our efforts to find new and potent acyclic C-nucleosides⁸ as novel SGLT inhibitors, new chiral fused triazoles **13a-r** was ⁷⁰ screened for sodium glucose co-transporters SGLT1 and SGLT2 inhibitory activity using cell-based nonradioactive fluorescent glucose uptake assay.¹⁶ The IC₅₀ values (concentration to inhibit 50% D-glucose uptake in cells) of **13a-r** were determined from the glucose uptake inhibition curves with reference to phlorizin. ⁷⁵ The determined IC₅₀ values of **13a-r** and the reference drug phlorizin (for comparison purpose) are depicted in Table 2. All eighteen compounds **13a-r** showed SGLT1 and SGLT2 inhibition activity with IC₅₀ ranging from 68.3-545.0 nM. Among all these derivatives, **13e**, **13f**, and **13k** are found to be the most potent ⁸⁰ SGLT2 inhibitors with IC₅₀: 96.9, 102.0, and 110.5 nM, respectively. Other analogues **13d** (100.3 nM), **13g** (102.1 nM), and **13j** (68.3 nM) are found to be the most potent SGLT1 inhibitors. Alkyl chain residue analogs **13p** and **13q** are selective SGLT1 inhibitors with IC₅₀: 125.7, and 118.3 nM respectively.

5 Conclusions

In conclusion, we have synthesized a series of novel fused bicyclic heterocycles **13a-r** from L-rhamnose and evaluated them as SGLT inhibitors. The key reaction of azidoalkynols **12a-r** with 3N HCl in THF at 80 $^{\circ}$ C resulted 3+2 cycloaddition along with

¹⁰ deprotection of 1,2-isopropylidene to give fused chiral bicyclic 1,2,3-triazoles **13a-r** in high yields. All the compounds synthesized and screened, exhibited potent sodium-glucose cotransporter (SGLT1 and SGLT2) inhibitory activity.

15 Acknowledgements

Thanks to Department of biotechnology (DBT) for Indo-Australia biotechnology fund (BT/Indo-Aus/07/06/2013) to SK, Ramalingaswami Fellowship to SKB, and CSIR fellowship to SRP & AK.

20 Experimental

General Remarks

All the solvents were dried according to standard procedures. The reactions were carried out under nitrogen atmosphere. All the compounds were purified by column chromatography on 60-120

- ²⁵ mesh silica gel using hexanes-ethyl acetate as eluent. All the reactions were monitored by TLC analysis. ¹H NMR spectra were recorded on 500 MHz or 300 MHz instruments using CDCl₃ or DMSO-d₆ as solvent and TMS as an internal standard. ¹³C NMR spectra were recorded at 75 MHz or 125 MHz using CDCl₃ or
- ³⁰ DM SO-d₆ as solvent and reference. Optical rotation was recorded on DIGIPOL DP 786-M6U Polarimeter. Absolute configuration of the product was determined by single crystal X-ray analysis. Based on the stereochemistry of **13a** and **13b**, the relative configurations of all the products were determined.
- 35

(4R,4'S,5S)-5-((R)-1-Azidoethyl)-2,2,2',2'-tetramethyl-4,4'-

bi(1,3-dioxolane) (8). To a solution of alcohol **7** (4.0 g, 16.2 mmol) and triphenylphospine (5.1g, 19.5 mmol) in dry THF was added diisopropylazadicarboxylate (4 mL, 20 mmol) slowly at

- ⁴⁰ 0°C. After 10 minutes diphenylphosponic azide (4.2 mL, 19.5 mmol) was added at 0°C and stirred at room temperature over night. After completion, THF was evaporated under vacuo and the crude product was thus obtained purified by silica gel column chromatography eluted with hexane: ethyl acetate (98:2) to give
- ⁴⁵ azido compound **8** (4.1 g, 90%) as light yellow liquid. $[α]_D^{29}$ 1.7(c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 4.13-4.03(m, 1H), 3.98-3.80(m, 4H), 3.38(dq, J=6.7 Hz, 1.7, 1H), 1.48(d, J=7.0 Hz, 3H), 1.44(s, 3H), 1.37(s, 3H), 1.35(s, 3H), 1.30(s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 109.9, 109.7, 96.1, 83.7, 77.7,
- ⁵⁰ 77.4, 67.9, 55.9, 27.3, 26.7, 25.3, 16.3. IR (neat) 2986, 2935, 2101, 1456, 1378, 1247, 1055, 875 cm⁻¹. MS (ESI) m/z 272[M+H]⁺, HRMS (ESI) Calcd for $C_{12}H_{21}N_3O_4Na[M+Na]^+$: 294.1429, found: 294.1440.

55 (S)-1-((4S,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethane-1,2-diol (9).

The azide **8** (4.0 g,14.7 mmol) in 50% acetic acid (30 mL) was stirred at room temperature overnight, poured in water (30 mL), extracted with ethyl acetate (2 x 70 mL) and washed with aq.

- ⁶⁰ NaHCO₃. The organic extract was washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The crude residue thus obtained was purified over silica gel column chromatography (ethyl acetate/hexane, 1:1) to give **9** (2.9 g, 85%) as a thick syrup. $[\alpha]_D^{29}$ 14.7 (c 1.0, CHCl₃). ¹H NMR (300 MHz,
- ⁶⁵ CDCl₃) δ 4.03-3.96(m, 2H), 3.88-3.80(m, 1H), 3.76-3.68(m, 2H), 3.50(dq, J=6.7 Hz, 1.5, 1H), 1.47(s, 3H), 1.45(d, J=6.7 Hz, 3H), 1.40(s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 109.9, 82.7, 77.0, 73.0, 63.8, 56.4, 27.1, 26.7, 16.0. IR (neat) 3416, 2988, 2937, 2108, 1456, 1379, 1246, 1057, 874 cm⁻¹. MS (ESI) m/z 70 232[M+H]⁺, HRMS (ESI) Calcd for C₉H₁₇N₃O₄Na[M+Na]⁺: 254.1116, found: 254.1130.

(4R,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (10).

- ⁷⁵ To a solution of diol **9** (1.0 g, 4.3 mmol) in methanol: water (8:2, 10 mL), NaIO₄ (1.1 g, 5.1 mmol) was added and stirred at RT for 1.5 h. Water (40 mL) was added to reaction mixture and extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄,
- ⁸⁰ concentrated under reduced pressure. The crude residue of **10** (0.86 g, 100 %) thus obtained was used as such for further reaction. For analytical purpose small amount of crude residue was purified over silica gel flash chromatography (ethyl acetate /hexane, 1:1) to result **10** as thick syrup. $[\alpha]_D^{29}$ -6.2 (c 1.0,
- ⁸⁵ CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 9.81(d, J=1.2 Hz, 1H),
 4.32(dd, J=1.2, 6.2 Hz, 1H), 4.10(dd, J=4.7, 6.1 Hz, 1H), 3.80(dq, J=1.6, 6.5 Hz, 1H), 1.55(s, 3H), 1.37(s, 3H), 1.26(d, J=6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 111.7, 81.5, 79.9, 58.2, 26.4, 25.7, 15.7. IR (neat) 2987, 2936, 2121, 1733, 1456, 1379,
- ⁹⁰ 1254, 1069, 871 cm⁻¹. MS (ESI) m/z 200[M+H]⁺, HRMS (ESI) Calcd for C₈H₁₄N₃O₃[M+H]⁺: 200.1035, found: 200.1040.

General procedure for the enantioselective alkynylation of 10.

To a solution of $Zn(OTf)_2$ (399 mg, 1.1 mmol) and chiral ligand ⁹⁵ L₂ (389 mg, 1.1 mmol) in dry toluene was added triethylamine (0.15 mL, 1.1 mmol) and alkyne **11a-r** (1.2 mmol) under N₂ atmosphere. After 15 min, the azidoaldehyde **10** (200 mg, 1mmol) was introduced by syringe. The reaction mixture was stirred for 4h at 25°C. After the reaction was completed, the ¹⁰⁰ propargylic alcohol was separated from the ligand by washing with aq. HCl. The crude product was purified through a short flash chromatography column to give the propargylic alcohols **12a-r** as syrupy liquids.

(*S*)-1-((*4S*,*5S*)-5-((*R*)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-¹⁰⁵ 4-yl)-3-phenylprop-2-yn-1-ol (12a). Yield: 92%; $[\alpha]_D^{27}$ -27.4 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.41(m, 2H), 7.36-7.30(m, 3H), 4.80(d, J=3.6 Hz, 1H), 4.27(dd, J=3.6 Hz, 7.7 Hz, 1H), 4.17(dd, J=2.7, 7.7 Hz, 1H), 3.58(dq, J=2.8, 7.0 Hz, 1H), 1.52 (s, 3H), 1.49(s, 3H), 1.47(d, J=6.8 Hz, 3H). ¹³C NMR ¹¹⁰ (75 MHz, CDCl₃) δ 139.0, 131.5, 129.1, 118.7, 110.3, 87.2, 84.7, 80.0, 79.3, 62.3, 56.7, 27.0, 21.4, 16.1. IR (neat) 3429, 2986, 2927, 2112, 1378, 1245, 1067, 767, 694 cm⁻¹. MS (ESI) *m/z* 302[M+H]⁺, HRMS (ESI) Calcd for C₁₆H₂₀N₃O₃[M+H]⁺: 302.14992, found: 302.14838. (*S*)-1-((4*S*,*SS*)-5-((*R*)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(p-tolyl)prop-2-yn-1-ol (12b). Yield: 95%; $[\alpha]_D^{27}$ -117.8 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.32(d, J=8.3 Hz, 2H), 7.13(d, J=7.5 Hz, 2H), 4.80(d, J=3.7 Hz, 1H), 4.26(dd, 5 J=3.7, 8.3 Hz, 1H), 4.17(dd, J=3.0, 7.5 Hz, 1H), 3.57(dq, J=2.2, 6.7 Hz, 1H), 2.35(s, 3H), 1.52(s, 3H), 1.48(s, 3H), 1.46(d, J=7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.0, 131.5, 129.1, 118.7, 110.3, 87.2, 84.7, 80.0, 79.3, 62.3, 56.7, 27.1, 27.0, 21.4, 16.1. IR (neat) 3429, 2986, 2927, 2112, 1378, 1245, 1067, 767,

- ¹⁰ 694 cm⁻¹. MS (ESI) *m/z* 316[M+H]⁺, HRMS (ESI) Calcd for C₁₇H₂₂N₃O₃[M+H]⁺: 316.16557, found: 316.16373. (*S*,*S*,*R*,1*S*,1'*S*)-3,3'-(1,4-Phenylene)bis(1-((4*S*,5*S*)-5-((*R*)-1azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl) prop-2-yn-1-ol) (12r). Yield: 79%; $[\alpha]_{D}^{27}$ -72.0 (c 1.0, CHCl₃). ¹H NMR (300
- ¹⁵ MHz, CDCl₃) δ 8.19(d, J=8.8 Hz, 2H), 7.59(d, J=8.6 Hz, 2H), 4.78(d, J=3.9 Hz, 2H), 4.26(dd, J= 3.9, 7.7 Hz, 2H), 4.14(dd, J= 2.8, 7.7 Hz, 2H), 3.54(dq, J= 2.8, 6.8 Hz, 2H), 1.52(s, 6H), 1.48(s, 6H), 1.46(d, J=6.8 Hz, 6H). ¹³C NMR (75 MHz,CDCl₃) δ 131.6, 128.0, 123.3, 122.2, 110.3, 87.8, 86.2, 80.2, 79.2, 71.2,
- ²⁰ 69.0, 62.5, 56.6, 57.0, 41.6, 27.1, 26.9, 25.6, 16.0. IR (neat) 3436, 2987, 2932, 2112, 1502, 1384, 1250, 1088, 840 cm⁻¹. MS (ESI) m/z 525[M+H]⁺, HRMS (ESI) Calcd for $C_{26}H_{33}N_6O_6$ [M+H]⁺: 525.24561, found: 525.24315.

25 A typical procedure for the synthesis of triazolo pyridines (13a-r):

To a solution of 12 (100 mg) in 2 mL of THF, 3N HCl (3mL) was added and refluxed for 1.5h. After the reaction was completed, the reaction mixture cool to RT, and neutralized with aq NaHCO₃

- $_{30}$ and extracted with ethyl acetate (2 x 15 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by silica gel column chromatography (ethyl acetate/hexane, 8:2) to afford 13 as a white solid.
- ³⁵ (4*S*,5*R*,6*S*,7*R*)-7-Methyl-3-phenyl-4,5,6,7-tetrahydro-[1,2,3] triazolo[1,5-a]pyridine-4,5,6-triol (13a). Yield: 80%; MP= 243°C; $[\alpha]_D^{27}$ -8.1 (c 1.0, CH₃OH). ¹H NMR (300 MHz, CD₃OD+CDCl₃) δ 7.86(d, J=7.1 Hz, 2H), 7.46-7.29(m, 3H), 5.21(d, J=4.1 Hz, 1H), 4.88-4.81(m, 2H), 4.27(dd, J=3.7, 6.6
- ⁴⁰ Hz,1H), 4.14(dd, J=4.1, 6.6 Hz,1H), 1.70(d, J=6.7 Hz, 3H). ¹³C NMR (75 MHz, CD₃OD+CDCl₃) δ 146.0, 131.9, 131.7, 129.0, 128.6, 128.3, 70.1, 69.4, 63.1, 55.0, 15.6. IR (neat) 3549, 3447, 3201, 2979, 1495, 1368, 1267, 1226, 1098, 1038, 994, 695, 648 cm⁻¹. MS (ESI) m/z 262[M+H]⁺; HR-MS (ESI) Calcd for
- ⁴⁵ C₁₃H₁₆N₃O₃[M+H]⁺: 262.1191, found: 262.1179. (4*S*,*S*,*6*,*S*,*7R*)-7-Methyl-3-(p-tolyl)-4,*5*,6,7-tetrahydro-[1,2,3] triazolo[1,5-a]pyridine-4,5,6-triol (13b). Yield: 90%; MP= 236°C; $[α]_D^{27}$ -60.9 (c 1.0, CH₃OH). ¹H NMR (300 MHz, DMSO+CDCl₃) δ 7.77(d, J=8.1 Hz, 2H), 7.14(d, J=7.9 Hz, 2H),
- ⁵⁰ 5.49(brs, 1H), 5.22 (brs, 1H), 5.05 (brs, 2H), 4.71-4.62(m, 1H), 4.15-3.99(m, 2H), 2.31(s, 3H), 1.60(d, J=6.6 Hz, 3H). ¹³C NMR (75 MHz, DMSO+CDCl₃) δ 143.8, 136.1, 130.7, 128.5, 128.4, 126.9, 69.1, 68.2, 62.0, 52.9, 20.7, 15.0. IR (neat) 3549, 3447, 3201, 2979, 1495, 1368, 1267, 1226, 1098, 1038, 994, 695, 648

⁵⁵ cm⁻¹. MS (ESI) m/z 276[M+H]⁺; HR-MS (ESI) Calcd for C₁₄H₁₈N₃O₃M+H]⁺: 276.1348, found: 276.1360.

 $(4S,5R,6S,7R)\mbox{-}7\mbox{-}Methyl\mbox{-}3\mbox{-}(4\mbox{-}((4R,5S,6R,7S)\mbox{-}4,5,6\mbox{-}tri hydroxy\mbox{-}7\mbox{-}methyl\mbox{-}4,5,6,7\mbox{-}tetrahydro\mbox{-}[1,2,3]\mbox{triazolo}[1,5\mbox{-}a]$

pyridin-3-yl)phenyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]

⁶⁰ **pyridine-4,5,6-triol (13r).** Yield: 70%; $[\alpha]_D^{27}$ 24.2 (c 1.0, CH₃OH). ¹H NMR (500 MHz, DMSO) δ 8.22(d, J=8.8 Hz, 2H), 7.67(d, J=8.6 Hz, 2H), 5.65(d, J=4.5 Hz, 2H), 5.49(d, J=4.1 Hz, 2H), 5.40(d, J=8.6 Hz, 2H), 5.09(dd, J=3.5, 8.3 Hz, 4H), 4.66(dq, J=3.2, 6.7 Hz, 4H), 4.12-3.97(m, 6H), 1.60(d, J=6.7 Hz, 6H). ¹³C

- ⁶⁵ NMR (75 MHz, DMSO) δ 143.5, 137.5, 131.7, 130.4, 128.2, 126.9, 69.5, 68.4, 62.1, 52.8, 15.1. IR (neat) 3539, 3282, 2926, 2852, 2696, 1463, 1098, 1061, 994 cm⁻¹. MS (ESI) m/z 445 [M+H]⁺; HR-MS (ESI) Calcd for $C_{20}H_{25}N_6O_6$ [M+H]⁺: 445.1835, found: 445.1850.
- ⁷⁰ **X-ray single crystal data for 13a :** $C_{13}H_{15}N_3O_3$, M = 261.28, colorless block, $0.22 \times 0.19 \times 0.14 \text{ mm}^3$, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 7.0280(11), b = 12.5922(19), c = 14.037(2) Å, V = 1242.2(3) Å³, Z = 4, $D_c = 1.397$ g/cm³, $F_{000} = 552$, CCD Area Detector, MoKα radiation, $\lambda = 0.71073$ Å, T =
- ⁷⁵ 294(2)K, $2\theta_{\text{max}} = 50.0^{\circ}$, 11307 reflections collected, 1285 unique ($R_{\text{int}} = 0.0228$). Final *GooF* = 1.060, *RI* = 0.0277, *wR2* = 0.0720, *R* indices based on 1239 reflections with I>2 σ (I) (refinement on *F*²), 185 parameters, 0 restraints, $\mu = 0.101 \text{ mm}^{-1}$. CCDC 944748 contains supplementary Crystallographic data for the structure.
- ⁸⁰ **X-ray single crystal data for 13b** : $C_{14}H_{17}N_3O_3$, M = 275.31, colorless needle, 0.18 × 0.09 × 0.07 mm³, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 7.5550(5), b = 11.9870(8), c = 15.0918(11) Å, V = 1366.74(16) Å³, Z = 4, $D_c = 1.338$ g/cm³, $F_{000} = 584$, CCD Area Detector, MoKα radiation, $\lambda = 0.71073$ Å, T = 1000
- ss 294(2)K, $2\theta_{\text{max}} = 50.0^{\circ}$, 13098 reflections collected, 1402 unique ($R_{\text{int}} = 0.0220$). Final *GooF* = 1.083, *RI* = 0.0282, *wR2* = 0.0717, *R* indices based on 1355 reflections with I>2 σ (I) (refinement on F^2), 195 parameters, 0 restraints, $\mu = 0.096 \text{ mm}^{-1}$. CCDC 944749 contains supplementary Crystallographic data for the structure.

90 Evaluation of 13a-r for SGLT Inhibition:^{8a,16}

Cell culture: Human embryonic kidney (HEK293) cells were purchased from ATCC, USA and made two stable cell lines after expressing SGLT1 & SGLT2, respectively. Previously, we searched the selectivity of these cell lines for SGLT1 and SGLT2 ⁹⁵ inhibition study. Glucose uptake by these cell lines was only inhibited by SGLT inhibitors but not by any other GLUTs inhibitors. SGLT1 & SGLT2 transfected HEK cell lines were propagated at 37 °C in 5% CO₂ in Dulbecco's minimal essential medium (DMEM) supplemented with 1.0% of penicillin-¹⁰⁰ streptomycin and 10% heat inactivated fetal bovine serum (FBS). The cells were cultured in a 90mm dish in DMEM with 10% FBS until 70-80 % confluency was obtained for further use for SGLT1 and SGLT2 inhibition activity.

SGLT inhibition assay: SGLT1/SGLT2 transfected stable HEK
¹⁰⁵ cells were plated at 1X10⁴/well in 96-well plate and used at sub confluence after 24h pre-incubation. For measuring SGLT1-mediated glucose uptake, all culture media was removed from each well and replaced with 100 µl of culture medium with newly synthesized molecules 13a-r at different concentrations (50nm-1000nm). After half an hour, fluorescent 2-deoxy-glucose (2-NBDG) was added to the plates and incubated at 37°C with 5% CO₂ for a period of 30 min (Kanwal et al, 2012). Cells were lysed with 50 µL of 0.1 N NaOH and fluorescence of aliquots from the lysate was measured at excitation/emission maxima of ~465/540
¹¹⁵ nm. Phlorizin (non-Specific SGLT1 inhibitor) was used as a standard for this study.

80

85

Notes and References

- (a) K.C. Majumdar, K. Ray, Synthesis, 2011, 3767-3783; (b) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6, 75 2696-2718.
- (a) N. D. Adhikary, P. Chattopadhyay, J. Org. Chem. 2012, 77, 5399-5405; (b) S. Miriam, R-E. Carles, A.P. Miquel, Org. Lett., 2011, 13, 5044-5047; (c) R A. Brawn, M. Welzel, J.T. Lowe, J.S. Panek, Org. Lett., 2010, 12, 336-339; (d) Y. S. Reddy, A. P. J. Pal, P. Gupta, A. A. Ansari, Y. D. Vankar. J. Org. Chem. 2011, 76,
- 10 5972–5984; (e) M. L H. Yanai, S. Obara, T. Taguchi, Org. Biomol. Chem., 2008, 6, 2679-2685; (f) Mitchell, F. Tian L. V. Lee, C- H. Wong, Angew. Chem. Int. Ed. 2002, 41, 3041-3044.
- 3. J. M. Holub, K. Kirshenbaum, *Chem. Soc. Rev.*, 2010, **39**, 1325–1337.
- (a) B. Abarca, R. Ballesteros-Garrido, *Top. Heterocycl. Chem.* 2014, DOI: 10.1007/7081_2014_121; (b) J. M. Schulman, A. A. Friedman, J. Panteleev, M. Lautens *Chem. Commun.*, 2012, **48**, 55– 57; (c) R. Li, D.J. Jansen, A. Datta *Org. Biomol. Chem.*, 2009, 7, 1921-1930. (d) F. Zhou, C. Tan, J. Tang, Y-Y. Zhang, W-M. Gao, H-H. Wu, Y-H. Yu, and J. Zhou, *J. Am. Chem. Soc.*, 2013, **135**,
- 10994–10997. (a) V. S. Sudhir, N. Y. P. Kumar, R. B. N. Baig, S. Chandrasekaran.
- (a) V. S. Sudhir, N. Y. P. Kumar, R. B N. Baig, S. Chandrasekaran, J. Org. Chem. 2009, 74, 7588–7590; (b) R.I. Anegundi, V.G. Puranik, S. Hotha, Org. Biomol. Chem., 2008, 6, 779-786.
- (a) S. Singh, A. Chang, K. E. Helmich, C. A. Bingman, R. L. Wrobel, E. T. Beebe, S-i. Makino, D. J. Aceti, K. Dyer, G. L. Hura, M. Sunkara, A. J. Morris, G. N. Phillips, Jr., J. S. Thorson, *ACS Chem. Biol.* 2013, **8**, 1632-1639; (b) A.A. Ghoneim, Chemistry Central J. 2011, **5**, 1-7. doi:10.1186/1752-153X-5-7; (c) B. G.
- 30 Davis, T. W. Brandstetter, L. Hackett, B. G. Winchester, R. J. Nash, A. A. Watson, R. C. Griffiths, C. Smith, G. W.J. Fleet, *Tetrahedron*, 1999, 55, 4489-4500.
- H. Torsten, H. Kyounglang, E. Wibke, B. Blackman, S. Roy, P. Srinivas, G. George, J. Org. Chem. 2005, 70, 7592-7604.
- 35 8. (a) S. R. Putapatri, A. Kanwal, S. K. Banerjee, S. Kantevari, *Bioorg. Med. Chem. Lett.*, 2014, 24, 1528-1531; (b) S. Kantevari, S.R. Putapatri, *Synlett*, 2010, 2251-2256.
- B. Jiang, Z. Chen, W. Xiong, Chem. Commun., 2002, 48, 1524– 1525.
- 40 10. (a) A. Kanwal, S. K. Banerjee, *Pham. Pat. Analyst*, 2013, 2, 77-91.
 (b) D. Hinnen, *J. Cardiovas. Nurs.* 2013, 28(2), 157-165. (c) A. Mather, C. Pollock, *Nat. Rev. Neph.* 2010, 6(5), 307-311. (d) E. M. Wright, D. D. F. Loo, B. A. Hirayama, *Physiol. Rev.* 2011, 91(2), 733-794.
- 45 11. (a) D. Vasilakou, T. Karagiannis, E. Athanasiadou, M. Mainou, A. Liakos, E. Bekiari, M. Sarigianni, D. R. Matthews, A. Tsapas, Ann. Intem. Med. 2013, 159, 262-274. (b) J. Liu, T. W. Lee, SGLT2 Inhibitors for Type 2 Diabetes, J.E. Macor, (ed.), Book Series: Annual Reports in Medicinal Chemistry, 2011, 46, 103-115.
- 50 (c) M.Pfister, J. M. Whaley, L. Zhang, J. F. List, *Clin Pharmacol. Ther.* 2011, **89**, 621-625. (d) L-T Ho, S. S. Kulkami, J-C. Lee, *Curr. Top. Med. Chem.*, 2011, **11**, 1476-1512.
 - (a) E. C. Chao, R. R. Henry, *Nat Rev. Dnug Discov.* 2010, 9, 551-559. (b) H-Y. Hung, K. Qian, S. L. Morris-Natschke, C-S. Hsu, K-H. Lee, *Nat Prod. Rep.*, 2012, 29, 580-606.
- Hsu, K-H. Lee, Nat. Prod. Rep., 2012, 29, 580-606.
 (a) K. Katsuno, Y. Fujimori, Y. Takemura, M. Hiratochi, F. Itoh, Y. Komatsu, H. Fujikura, M. Isaji, J Phamacol Exp Ther. 2007, 320(1), 323-330. (b) R. L. Dobbins, R. O'Connor-Semmes, A. Kapur, C. Kapitza, G. Golor, I. Mikoshiba, W. Tao, E.K. Hussey, Diabetes Obes Metab. 2012, 14, 15-22. (c) Y. Fujimori, K.
- Katsuno, I. Nakashima, Y. Ishikawa-Takemura, H. Fujikura, M.J. Isaji, *Phamacol. Exp. Ther.* 2008, **327**, 268–276.
- 14. (a) Y. Ohtake, T. Sato, T. Kobayashi, M. Nishimoto, N. Taka, K. Takano, K. Yamamoto, M. Ohmori, M. Yamaguchi, K. Takami,
- 70 D.E Sharp, R.A. Bakker, M. Mark, T. Klein, P. Eickelmann, Diabetes Obes. Metab. 2012, 14, 83–90.

- (a) Y. Yamamoto, E. Kawanishi, Y. Koga, S. Sakamaki, T. Sakamoto, K. Ueta, Y. Matsushita, C. Kuriyama, M. Tsuda-Tsukimoto, S. Nomura, *Bioorg. Med, Chem. Lett.* 2013, 23, 5641–5645.
 (b) Y. Koga, S. Sakamaki, M. Hongu, E. Kawanishi, T. Sakamoto, Y. Yamamoto, H. Kimata, K. Nakayama, C. Kuriyama, Y. Matsushita, K. Ueta, M. Tsuda-Tsukimoto, S. Nomura, *Bioorg. Med. Chem.* 2013, 21, 5561-5572.
 (c) L.T. Li, L.F. Zhou, Y.J. Li, J. Huang, R.H. Liu, B. Wang, P. Wang, *Bioorg. Med. Chem. Lett.* 2012, 22, 642-644.
 (d) H. Zhou, D.P. Danger, ST. Dock, L. Hawley, S.G. Roller, C.D. Smith, A.L. Handlon, ACS Med. Chem. Lett. 2010, 1, 19–23.
- (a) H.C. Chang, S.F. Yang, C. C. Huang, T. Lin, P.H. Liang, C.J. Lin, L.C. Hsu, *Mol Biosyst.* 2013, 9, 2010-2020; (b) A. Kanwal, S. P. Singh, P. Grover, S. K. Banerjee, *Anal. Biochem.*, 2012, 429, 70-75.