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Highly efficient and practical resolution of 2,3:6,7-
dibenzobicyclo[3.3.1]nona-2,6-diene-4,8-dione by the 
inclusion complexation with commercially available 
enantiopure 1,1’-bi-2-naphthol is reported. The structure of 10 

the 1: 1 inclusion complex of the diketone and BINOL was 
confirmed by single crystal X-ray crystallography. 

The rigid cleftlike molecules have attracted considerable attention 
in the area of molecular recongnition. One of the most prominent 
molecules is Tröger base 1 (Figure 1), which was first 15 

synthesized more than one hundred and twenty years ago.1 The 
molecule has a dihedral angle of around 90º and the two phenyl 
rings are fused to the bicylic [3.3.1] framework to form a rigid V-
shaped scaffold.2 The Tröger base contains two chiral centers at 
nitrogen and it could be resolved by an optically active chiral 20 

acid.3 However, in most of the host-guest studies with Tröger 
base,4 enantiopure Tröger base has rarely been involved to 
discriminate chiral substrates.5 One of the reasons is that Tröger 
base undergoes partial racemization under acidic conditions via 
ring-opening and ring-closing processes.6,7 Studies were also 25 

carried out on a series of related systems, including the Kagan’s 
ether 2,8 dibenzobicyclo[3.3.1]nona-2,6-diene 3,9 and 2,3:6,7-
dibenzobicyclo[3.3.1]nona-2,6-diene-4,8-dione 4 (Figure 1).10  
We are insterested in this class of cleftlike molecules not only 
because of their utility in molecular recognition and self-30 

assembly studies, but their potential applications in organic 
synthesis.11   

 
Fig. 1 Chiral Cleftlike Molecules 

Our intial studies were focused on diketone 4 as the target 35 

molecule, which has the following two merits: 1) in comparison 
to Tröger base, the chirality of 4 is stable under either acidic or 
basic conditions; and 2) the carbonyl group in 4 provides 
opportunities for further functionalization of this V-shaped 
molecule. However, it has been difficult to obtain gram quantities 40 

of enantiopure 4 by the known procedures. For example, multiple 

recrystallizations of isomeric mixtures of diacids (±)-5 and meso-
5 were required to isolate pure (±)-5 in a previous synthesis 
(Scheme 1).10a, 12 Resolution of the (±)-5 with 1.0 equiv of 
quinine afforded only moderate levels of enantioselectivity. 45 

Furthermore, the solid salt (+)-5·quinine salt thus obtained was  
found to be thermally unstable under the conditions required for 
fractional recrystallization.10a, 12 Double Friedel-Craft acylation of 
(+)-5 or (–)-5 provided 4 in good yield, for which the optical 
purity could be improved further by recrystallization. 50 

 
Scheme 1 Previous Synthesis of Enantiopure 410a, 12 

The direct resolution of (±)-4 has advantages over the previous 
procedures for resolving diacid since the need for fractional 
recrystallization of 4 would be entirely bypassed. Ideally, 4 could 55 

be synthesized on multi-gram scale from 2-phenylacetonitrile in 
three steps without chromatography or recystallization (see 
Supporting Infromation for details).  

The idea for direct resolution of the diketone by 1,1’-bi-2-
naphthol (BINOL) came from an unexpected observation. Mixing 60 

a solution of (±)-4 in toluene and a solution of (R)-BINOL in 
toluene resulted in the immediate formation of a white 
precipitate.13,14 Thus, after stirring a mixture of (±)-4 and 0.60 
equiv of (R)-BINOL in toluene at rt for 5 min, a solid was 
collected by filtration and (S)-4 was obtained in 91% ee by 65 

decomposition of the complex with aqueous NaOH (Table 1, 
entry 1). Both the yield and enantioselectivity were increased 
with the prolonged stirring time (entries 2 and 3). Various ratios 
of (±)-4 and (R)-BINOL were investigated and it was found that 
the efficiency of the resolution gradually decreased when the 70 
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(DIBAL-H) was used, the reaction delivered exo-product 8 
exclusively in excellent yield. This observation can possibly be 
explained by model 9 involving a tetrahedral aluminium complex. 
The sterically bulky isobutyl groups preferred to be at the convex 
side due to steric hindrance, and as a result the hydride was 5 

pushed to be at the concave position to give the exo-product. The 
related stereochemistry of both diamines 7a17 and 8 was 
unambiguously confirmed by X-ray crystallographic analysis 
(Figures 4 and 5).18 The benzyl groups in 7a and 8 could be de-
protected under standard hydrogenation conditions with high 10 

selectivity. For the convenience of purification, the diamines 
were advanced to 10 and 11 in high overall yields.19 

 
Table 2. Resolution of diketone (±)-4 with (R)-BINOL in 
different solvents a 15 

entry solvent 
Conc. 

(mol/L) 

precipitation 

(S)-4 

mother liquid 

(R)-4 

yield/
%b ee% yield/

%b 
ee
% 

1 CH2Cl2 0.20 31 94 67 56 

2 EtOAc 0.20 33 90 56 48 

3 Toluene/Et
OAc(1:1) 0.20 40 92 49 58 

4 THF 0.50 22 88 77 -c

5 t-BuOMe 0.07 44 89 54 -c

a The reactions were conducted in 1.0 mmol scale of (±)-4. b Yields refer 
to the isolated yields after the decomposition with aqueous NaOH. cThe 
ee% was not determined. 
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Scheme 2 Synthesis of diamines 7a and 8 

 

 

 25 

 
Fig. 4 ORTEP drawing of complex 7a (up: top view; down: side view) 
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Fig. 5 ORTEP drawing of complex 11 (up: top view; down: side view) 

 5 

In conclusion, we described a practical and efficient method for 
enantiomeric resolution of 2,3:6,7-dibenzobicyclo[3.3.1]nona-
2,6-diene-4,8-dione (±)-4. Multi-gram quantities of both 
enantiopure (S)- and (R)-4 could be synthesized from 2-
phenylacetonitrile without a need for column chromatography. 10 

Further transformations of enantiopure 4 to its diamine 
derivatives 7a and 8 were also performed. Synthetic applications, 
molecular recognition, and self-assembly studies of these V-
shaped molecules are underway in our laboratory. 
 15 
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