ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

http://rsc.li/frontiers-organic

1 2 3

4

5

6 7 8

9 10

11 12

13 14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

60

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

A Metal-free Synthesis of Diaryl-1,2-diketones by C–C Triple Bond Cleavage of Alkynones[†]

Xuesong Wang, Guolin Cheng, Jinhai Shen, Xifa Yang, Ming-e Wei, Yadong Feng and Xiuling Cui*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel and environmentally benign protocol to diaryl-1,2-diketones has been developed. Various diaryl-1,2-diketones were afforded in moderate to excellent yields by C-C triple bond cleavage of alkynones using molecular oxygen as an oxidant. A plausible reaction no mechanism was proposed that accounts for all the experimental results. The products are important building block in organic synthesis and could be converted to various synthons *via* diverse transformations.

Diaryl-1,2-diketones represent an important structural moiety that 15 appears in numerous bioactive compounds¹ and is broadly utilized for constructing various complex and highly valuable molecules.² Therefore, substantial efforts for the development of efficient synthetic strategies towards such a structure have been undertaken. The direct oxidation of internal alkynes, which could 20 be accessible via Sonogashira coupling reaction, appears to be the most straightforward method to synthesize the diaryl-1,2diketones.³ The oxidation of benzoins or hydrobenzoins in the presence of metal catalyst, such as gold,⁴ palladium,⁵ nickel,⁶ vanadium,⁷ ruthenium,⁸ thymine iron(III),⁹ molybdenum,¹⁰ and 25 chromium trioxide¹¹ have also been reported. Recently, building diaryl-1,2-diketones from 1,3-diaryldiketones through the C-C bond cleavage has been explored as an alternative strategy.¹² However, the drawbacks associated with these procedures, such as requirement of transition metal and toxic and/or expensive 30 starting materials, low chemo-selectivity, and harsh reaction conditions, limit their wide application in chemical industries.

During the past few years, alkynones have emerged as versatile building blocks for the construction of complicated heterocyclic rings, such as triazoles,¹³ indoles,¹⁴ quinolines,¹⁵ chromones¹⁶, ³⁵ furans,¹⁷ and isoxazoles.¹⁸ Recently, we have developed a tandem condensation of *o*-halo/methoxyarylynones with allylic alcohols to build 3-allyl-chromones catalyzed by PBu₃ under metal-free conditions.²⁰ However, the cleavage of C-C triple bond¹⁹ in alkynone, one of the most challenging subjects in synthetic ⁴⁰ organic chemistry, has not been reported in literature. Herein, we present a novel and environmentally friendly method for the preparation of diaryl-1,2-diketones by oxidative C-C triple bond cleavage of alkynones using molecular oxygen as an oxidant (Scheme 1).

Scheme 1 Oxidative cleavage of alkynones.

The reaction of 1,3-diphenylprop-2-yn-1-one **1a** with allyl alcohol was initially conducted at 90 °C in the presence of 50 K₂CO₃ as base in DMSO under O₂ (1 atm) atmosphere. The expected product **3a** was not observed, but diphenyl-1,2-diketone **2a** was obtained in 63% yield (Scheme 1 and Table 1, entry 1). Further studies focused on screening of the additives (entries 2–6). 1-Butanol, benzyl alcohol, and H₂O gave similar results.

- ⁵⁵ H₂O was chosen as additives because of its advantages in terms of economy and environment (entry 6). Increasing or decreasing the ratio of H₂O/DMSO resulted in decreasing the yield of benzil **2a** (entries 7–10). The bases were also screened (entries 11–22). Cs₂CO₃, Na₂CO₃, and K₃PO₄ provided 63%, 48%, and 50%
- ⁶⁰ yields, respectively (entries 11–13). While weaker bases showed low efficiency (entries 14, 15) and stronger bases did not exhibit reactivity (entries 16–22). The solvent also played a crucial role in this transformation (entries 6 and 23–30). DMSO, DMF, and NMP afforded the desired product **2a** in 65%, 55%, and 48%
- ⁶⁵ yields, respectively. Only a trace amount of **2a** was observed for other solvents, such as THF, 1,4-dioxane, DCE, toluene, EtOH, and water (entries 25–30). Further optimization of the reaction parameters revealed that the combination of DMSO as solvent and O₂ as an oxidant were necessary to get successfully diaryl-70 1,2-diketone derivatives. On the basis of the screening reactions above, the optimal reaction conditions were identified as follows: K₂CO₃ as a base, DMSO/H₂O (50:1) as the solvent under oxygen

atmosphere at 90 °C for 8h.

Ĺ	°	conditions	→ ()	
]	la		2a	
Entry	Additive	Solvent	Base	Yield (%) ^b
1	allyl alcohol	DMSO	K_2CO_3	63
2	methanol	DMSO	K ₂ CO ₃	25
3	ethanol	DMSO	K_2CO_3	30
4 5	1-butanol benzyl alcohol	DMSO DMSO	K_2CO_3 K_2CO_3	62 50
6	H_2O	DMSO	K_2CO_3 K_2CO_3	65
7	H_2O H_2O	DMSO	K_2CO_3 K_2CO_3	55°
8	H_2O H_2O	DMSO	K_2CO_3	50 ^d
9	H ₂ O	DMSO	K ₂ CO ₃	58°
10	H_2O	DMSO	K ₂ CO ₃	53 ^f
11	H_2O	DMSO	Cs_2CO_3	63
12	H_2O	DMSO	Na_2CO_3	48
13	H_2O	DMSO	K_3PO_4	50
14	H_2O	DMSO	Et ₃ N	15
15	H ₂ O	DMSO	Li ₂ CO ₃	20
16	H ₂ O	DMSO	EtONa N-11	none
17	H ₂ O	DMSO	NaH KOtBu	none
18 19	H_2O H_2O	DMSO DMSO	NaOtBu	none
20	H ₂ O H ₂ O	DMSO	LiOtBu	none
21	H ₂ O H ₂ O	DMSO	NaOH	none
22	H ₂ O	DMSO	КОН	none
23	H_2O	DMF	K_2CO_3	55
24	H_2O	NMP	K_2CO_3	48
25	H_2O	THF	K_2CO_3	trace ^g
26	H_2O	dioxane	K_2CO_3	trace
27	H ₂ O	DCE	K_2CO_3	trace
28	H ₂ O	toluene	K_2CO_3	trace
29 30	H_2O	EtOH	K_2CO_3	trace ^h
50	_	H_2O	K_2CO_3	trace
^a Reactio	on conditions: 1a (0	.5 mmol), addit	ive/DMSO (4	0 μl : 2 ml), ba
(0.5 mm	ol), under O2 atmo	sphere at 90 °C	for 8h. ^b Isola	ted yield based
	D/DMSO (50 μl : 2			
	$^{\rm f}$ 2 ml). ^f H ₂ O/DMS			
				70 C. DM30
dimetny	lsulfoxide, NMP =	1-metnyipyrrol	lidin-2-one.	
and sco Table 2 (OMe, produc withdra substra and 10	a the optimized re- ope for the subs 2. Generally, alky Me, <i>t</i> Bu) (ent ts in higher awing groups (F, tes, alkynones w) could be transfi- te products in sir	trates were in nones with el ries 2–6) p yields than Cl) (entries) ith substituer ormed into th	nvestigated ectron-dona rovided the those bea 7–10). As for the correspon	as illustrated ting substituen correspondin aring electro or regioisomer (entries 3, 5, ding diaryl-1,

Table 2 Generality and scope of alkynones to diaryl-1,2-diketones^a

^aReaction conditions: **1** (0.5 mmol), H₂O/DMSO (40 μ l : 2 ml), K₂CO₃ 35 (0.5 mmol), under O₂ atmosphere for 8h. ^bIsolated yield on **1**.

(entries 19, 20). The transformation of alkynones with aliphatic group was also attempted, but no desired products were observed. The initially proposed mechanism was suspected that 1,3diaryldiketone might serve as an intermediate in this 40 transformation. Unexpectedly, no desired product 2a was detected when 1,3-diphenyldiketone was subjected under the optimal reaction conditions (Scheme 2, eq (1)). To gain more insight of the reaction mechanism, 1,3-diphenylprop-2-yn-1-one and 1,3-bis(4-methoxyphenyl)prop-2-yn-1-one were treated in ⁴⁵ one pot under the standard reaction conditions (Scheme 2, eq (2)). The potential crossover products were not detected by GC-MS, which indicated that this transformation probably occurred through an intramolecular process. In order to confirm the source of the oxygen atom of diaryl-1,2-diketone, the controlled 50 experiments were conducted involving H₂O¹⁸ and O₂¹⁸ respectively. The results showed that the oxygen atom of the diaryl-1,2-diketone derived from O_2 , but not from H_2O . Furthermore, CO₂ was generated and caused the clear limewater to become cloudy (Scheme 2, eq (3) and eq (4)).

standard reaction conditions. The corresponding diaryl-1,2-

diketones were obtained in moderate to excellent yields

regardless of electron-donating or electron-withdrawing groups at

benzene rings (entries 11-15). It is worth noting that alkynone

the strong electron-donating effect (entry 11). However, when the

25 with two methoxyl groups provided an excellent yield because of

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Scheme 2 The controlled experiments for exploring the reaction mechanism.

According to the results obtained and literatures²¹, the mechanistic pathways of this oxidative cleavage metathesis were proposed and presented in Scheme 3. The initial step of the reaction involved the formation of 1,2-dioxetene **A** from the alkynone **1** with molecular oxygen. Then thermally inducing the transformation of intermediate **A** gave 1,2,3-tricarbonyl compound **B**. Subsequently, activation of the β-keto or α-keto moiety of compound **B** in the presence of K₂CO₃ led to intermediates **C**, **D**, and **D'**, followed by C-C bond cleavage and the carbon immigration to intermediates **E**, **F** and **F'**, respectively. Is Finally, the elimination of carbon monoxide (CO) from intermediate **E**, **F** and **F'** provided the desired diaryl-1,2-diketone **2** and **2'**. Simultaneously, the gas carbon dioxide (CO₂) was formed by the oxidation of CO with molecular oxygen.

In conclusion, we have developed a novel and environmentally benign method for the synthesis of diaryl-1,2-diketones with high chemo-selectivity by C-C triple bond cleavage of alkynones. The 25 oxidation of triple bond, cleavage of C-C bond and carbon immigration were involved in this procedure.

Acknowledgment

Financial support was provided by NSF of China (21202048), Program for Minjiang Scholar program (10BS216), Xiamen ³⁰ Southern Oceanographic Center (13GYY003NF16), NSF of Fujian Province, China (2013J01050) and Fundamental Research Funds of Huaqiao University.

Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of 35 Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen, 361021 E-mail: cuixl@hqu.edu.cn

† Electronic Supplementary Information (ESI) available: Experimental 40 details. See DOI:10.1039/b000000x

Notes and references

- R. Maurya, R. Singh, M. Deepak, S. S. Handa, P. P. Yadav and P. K. Mishra, *Phytochemistry*, 2004, 65, 915.
- 2 (a) X. Deng and N. S. Mani, *Org. Lett.*, 2006, **8**, 269; (b) A. Cabrera, ⁴⁵ P. Sharma, M. Ayala, L. Rubio-Perez and M. Amézquita-Valencia,
- Tetrahedron Lett., 2011, 52, 6758.
 3 (a) S. Baskaran, J. Das and S. Chandrasekaran, J. Org. Chem., 1989, 54, 5182; (b) Y. Ishii and Y. Sakata, J. Org. Chem., 1990, 55, 5545; (c) Y. Sawama, M. Takubo, S. Mori, Y. Monguchi and H. Sajiki, Eur. J.
- ⁵⁰ Org. Chem., 2011, 3361; (d) M. Tingoli, M. Mazzella, B. Panunzi and A. Tuzi, Eur. J. Org. Chem., 2011, 399; (e) S. Kobayashi, H. Miyamura, R. Akiyama and T. Ishida, J. Am. Chem. Soc., 2005, **127**, 9251; (f) W. Ren, Y. Xia, S. J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, **11**, 1841; (g) Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu
- ⁵⁵ and T. Y. Zhang, *J. Org. Chem.*, 2006, **71**, 826; (h) K. Sakthivel and K. Srinivasan, *Eur. J. Org. Chem.*, 2011, 2781; (i) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, *Org. Lett.*, 2011, **13**, 1556; (j) S. Trosien and S. R. Waldvogel, *Org. Lett.*, 2012, **14**, 2976; (k) C.-M. Che, W.-Y. Yu, P.-M. Chan, W.-C. Cheng, S.-M. Peng, K.-C. Lau and W.-K. Li, *J. Am. Chem. Soc.*, 2000, **122**, 11380.
- 4 B. Karimi and F. K. Esfahani, *Chem. Commun.*, 2009, 5555.
- 5 (a) B. Karimi, S. Abedi, J. H. Clark and V. Budarin, *Angew. Chem. Int. Ed.*, 2006, **45**, 4776; (b) N. Kakiuchi, Y. Maeda, T. Nishimura and S. Uemura, *J. Org. Chem.* 2001, **66**, 6620; (c) Y. Uozumi and R. Nakao,
- Angew. Chem. Int. Ed., 2003, 42, 194; (d) K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. kaneda, J. Am. Chem. Soc., 2000, 126, 10657.
- 6 B. M. Choudary, M. L. kantam, A. Rahman, Ch. V. Reddy and K. K. Rao, Angew. Chem. Int. Ed., 2001, 40, 763.
- 70 7 S. Velusamy and T. Punniyamurthy, Org. Lett., 2004, 6, 217.
- 8 (a) I. E. Mark ó, P. R. Giles, M. Tsukazaki, I. Chell éRegnaut, C. J. Urch and S. M. Brown, *J. Am. Chem. Soc.*, 1997, **119**, 12661; (b) N. Komiya, T. Nakae, H. Sato and T. Naota, *Chem. Commun.*, 2006, 4829; (c) E. Choi, C. Lee, Y. Na and S. Chang, *Org. Lett.*, 2002, **4**, 2369.
- 9 A. Al-Hunaiti, T. Niemi, A. Sibaouih, P. Pihko, M. Leskel ä and T. Repo, *Chem. Commun.*, 2010, 46, 9250.
- 10 S. Velusamy, M. Ahamed and T. punniyamurthy, Org. Lett., 2004, 6, 4821.
- 80 11 J.-D. Lou, N. Vatanian, C. Zhang and G.-Q. Wang, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2009, 39, 121.
 - (a) Y. Yuan and H. Zhu, *Eur. J. Org. Chem.*, 2012, 329; (b) L. Huang,
 K. Cheng, B. Yao, Y. Xie and Y. Zhang, *J. Org. Chem.*, 2011, 76,

5732; (c) N. Tada, M. Shomura, H. Nakayama, T. Miura and A. Itoh, *Synlett*, 2010, **13**, 1979.

13 G. Cheng, X. Zeng, J. Shen, X. Wang and X. Cui, Angew. Chem. Int. Ed., 2013, 52, 13265.

- ⁵ 14 (a) J. Shen, G. Cheng and X. Cui, *Chem. Commun.*, 2013, 49, 10641;
 (b) R. Bernini, G. Fabrizi, A. Sferrazza and S. Cacchi, *Angew. Chem. Int. Ed.*, 2009, 48, 8078; (c) S. Cacchi, G. Fabrizi and E. Filisti, *Org. Lett.*, 2008, 10, 2629.
- (a) G. Abbiati, A. Arcadi, F. Marinelli and E. Rossi, *Eur. J. Org. Chem.*, 2003, 1423; (b) R. P. Korivi and C. H. Cheng, *J. Org. Chem.*, 2006, **71**, 7079; (c) H. Zhou, L. Liu and S. Xu, *J. Org. Chem.*, 2012, **77**, 9418.
- 16 (a) M. Yoshida, Y. Fujino and T. Doi, *Org. Lett.*, 2011, **13**, 4526; (b) C. Zhou, A. V. Dubrovsky and R. C. Larock, *J. Org. Chem.*, 2006, **71**,
- 15 1626; (c) M. Yoshida, K. Saito, Y. Fujino and T. Doi, *Chem. Commun.*, 2012, **48**, 11796.
- 17 (a) J. Fu, H. Shang, Z. Wang, L. Chang, W. Shao, Z. Yang and Y. Tang, *Angew. Chem. Int. Ed.*, 2013, **52**, 4198; (b) H. Harkat, A. Blanc, J.-M. Weibel and P. Pale, *J. Org. Chem.*, 2008, **73**, 1620; (c)
- 20 H. Jiang, W. Yao, H. Cao, H. Huang and D. Cao, J. Org. Chem., 2010, 75, 5347.
- 18 (a) Z. She, D. Niu, L. Chen, M. A. Gunawan, X. Shanja, W. H. Hersh and Y. Chen, J. Org. Chem., 2012, **77**, 3627; (b) M. Ueda, S. Sugita, A. Sato, T. Miyoshi and O. Miyata, J. Org. Chem., 2012, **77**, 9344; (c)
- ²⁵ J. P. Waldo and R. C. Larock, *J. Org. Chem.*, 2007, **72**, 9643; (d) M. Ueda, A. Sato, Y. Ikeda, T. Miyoshi, T. Naito and O. Miyata, *Org. Lett.*, 2010, **12**, 2594.
- 19 (a) P. Bisseret, G. Duret and N. Blanchard, *Org. Chem. Front.*, 2014, **1**, 825; (b) Q. Liu, P. Chen and G. Liu, *ACS Catal.*, 2013, **3**, 178; (c) D.-
- Y. Lee, B.-S. Hong, E.-G. Cho, H. Lee and C.-H. Jun, J. Am. Chem. Soc., 2003, 125, 6372; (d) Y. Liu, F. Song and S. Guo, J. Am. Chem. Soc., 2006, 128, 11332; (e) A. Wang and H. Jiang, J. Am. Chem. Soc., 2008, 130, 5030; (f) J. Sun, F. Wang, H. Hu, X. Wang, H. Wu and Y. Liu, J. Org. Chem., 2014, 79, 3992; (g) Q. Jiang, A. Zhao, B. Xu, J. Jia, Y. Jia, and C. Guo, L. Org. Chem. 2014, 79, 2700
- ³⁵ Jia, X. Liu and C. Guo, *J. Org. Chem.*, 2014, **79**, 2709.
- 20 X. Wang, G. Cheng and X. Cui, *Chem. Commun.*, 2014, **50**, 652.
- 21 (a) A. Stergiou, A. Bariotaki, D. Kalaitzakis and I. Smonou, J. Org. Chem., 2013, 78, 7268; (b) W. J. Baader and E. L. Bastos, Science of Synthesis, 2009, 38, 335; (c) K. A. Zaklika, B. Kaskar and A. P.
 ⁴⁰ Schaap, J. Am. Chem. Soc., 1980, 102, 386; (d) A. Krebs, H. Schmalstieg, O. Jarchow and K.-H. Klaska, Tetrahedron Lett., 1980, 21, 3171.