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CuI-catalysed coupling of arylboronate esters with aryl and heteroaryl iodides and bromides is 

described. The transformation affords products in good yields using 5  10 mol % catalyst loadings. The 

described reaction requires a P,N-based bidentate ligand in combination with CuI for aryl-aryl coupling, 

but it proceeds without external ligands for aryl-heteroaryl coupling to afford the products. The reaction 

protocol can also be applied to achieve biarylation of diiodoarenes in reasonable yields . 

 

 

Over the last three decades, Pd-catalysed Suzuki-Miyaura 

coupling has developed into a key synthetic tool that is capable 

of combining a wide variety of organoboron reagents with 

organohalides and pseudohalides to construct carbon-carbon 

(C−C) bonds.1 As a result, the cross-coupling process has been 

applied to the synthesis of a wide array of molecular targets, 

from materials and pharmaceuticals to organic building blocks 

and natural products.2 Despite the maturity of the 

transformation with regard to its substrate scope, catalytic 

turnover, and varied applications, current desire remains high to 

achieve the reaction using inexpensive, less toxic, and 

sustainable transition metal (TM) catalysts. Towards this end, 

catalysts based on earth-abundant, 1st row late TMs are 

emerging as viable alternatives to palladium.3 In particular, Cu 

has demonstrated a tremendous potential4 in catalysing such 

couplings for carbon-carbon (C−C) bond formation.5  

In 2002, Rothenberg et al. revealed that a copper nanocluster 

enabled the coupling of phenylboronic acid with iodobenzene.6 

Despite this seminal work from more than a decade ago and 

subsequent reports,7 Cu-catalysed coupling was typically 

limited to the reaction of arylboronic acids with aryl iodides8 

and in most cases required 10-20 mol % catalyst7b-f and 

stoichiometric amounts in others.7b In 2011, Liu et al. 

demonstrated that the reaction could be extended to the 

coupling of organoboronate esters, ArB(OR)2.
9 However, the 

reaction was only suitable for coupling with primary alkyl 

halides and pseudohalides, proceeding via an SN2 mechanism. 

Recently, we have shown that a variety of organoboron 

reagents, such ArB(OR)2, ArB(OH)2, Ar3B, (ArBO)3, Ar4BCs 

and ArBF4K, can undergo cross-coupling with aryl and 

heteroaryl iodides when CuI was utilized as a catalyst with or 

without the addition of the ligand o-(di-tert-butylphosphino)-N,

N-dimethylaniline) (PN) (Scheme 1).10 Brown et al. also 

demonstrated that a similar reaction of ArB(OR)2 with aryl 

iodides could be achieved with the application of a bidentate 

xantphos ligand with CuCl, further attesting to the generality of 

Cu-based catalytic systems for Suzuki-Miyaura type cross-

couplings.11  

 
Scheme 1 CuI-Catalysed Coupling of Organoboron Reagents with Aryl Iodides 

  
Scheme 2 Proposed Catalytic Cycle 

We further conducted detailed mechanistic studies and 

proposed a catalytic cycle based on the synthesis and 

characterisation of reaction intermediates, as well as following 

the progress of the reaction in situ by 1H, 11B, 19F and 31P NMR 

spectroscopies (Scheme 2).10 Based on our studies, the cross-

coupling proceeds via three elementary steps - exchange of 
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fluoride with the iodide in (PN)CuI, transmetallation of 

arylboron reagents12 with (PN)CuF13, and the reaction of ArI 

with (PN)CuAr.14 In this article, we demonstrate that the 

reaction protocol can be extended to a variety of other mono- 

and di-iodoarenes and iodoheteroarenes to afford mono- and di-

arylated products. In addition, we also show for the first time 

that these reaction conditions can be easily extended to the 

couplings of arylboronate esters with electron-deficient and 

heteroaryl bromides. 

The results of our ongoing studies on the substrate scope for 

aryl-aryl and aryl-heteroaryl couplings in the presence of 5 mol 

% each of CuI and PN are summarized in Table 1. While the 

reactions of arylboronate esters with non-heteroaryl iodides 

required the PN ligand, the couplings of heteroaryl iodides 

were conducted with 5 mol % CuI in the absence of PN ligands 

(entries 1, 4).15 Without PN, the heteroaryl substrates and 

products could function as ligands for Cu. Cross-couplings 

involving heteroaryl coupling partners are generally 

challenging for Pd-catalysts because the heteroarenes bind to 

Pd competitively over the ligands, thus resulting in reaction 

inhibition and catalyst deactivation. Therefore, Pd-based cross-

couplings with heteroaryl coupling partners typically require 

highly sterically hindered phosphine- and N-heterocyclic 

carbene (NHC)-based ligands.16 Therefore, our reaction 

protocol provides an excellent complementary approach to Pd-

catalysis for the synthesis of heterobiaryl molecules. In 

addition, the reaction tolerates halide substituents, such as 

chloride on the heteroaryl iodides (entry 1) and fluoride on 

arylboronate esters (entries 1, 2, 5-8), affording cross-coupled 

products in good to excellent yields. We further demonstrated 

that the current reaction protocol can also be applied to the 

synthesis of terphenyl derivatives in reasonable yields either by 

mono-arylation of iodobiaryls (entries 2-4) or diarylation of di-

iodoarenes (entries 5-8) that were not reported previously. 

Terphenyl derivatives are industrially important molecules that 

are widely utilized as preservatives, sunscreens, liquid crystals 

and proteomimics.17 As shown in entries 6-8, arylboronate 

esters containing multiple fluorinated and 3,5-bis-

trifluoromethylated aryl groups were coupled with 1,4-

diiodobenzene to afford the corresponding diarylated products 

in 47-73% yields.  

We also have found that the current combination of CuI with 

sterically hindered and electron-rich PN ligand as a catalyst has 

enabled us to conduct cross-couplings of activated aryl and 

heteroaryl bromides to afford the coupled products in 

reasonable yields (Table 2).18 Since the Cu-catalysed cross-

coupling of aryl bromides, which are less expensive and more 

readily available than aryl iodides, are rare5j,7e-f and generally 

require stoichiometric quantities of Cu-catalysts,5k the current 

reaction protocol provides an excellent opportunity to 

synthesize biaryl molecules using catalytic amounts of Cu-salts. 

The reaction proceeds well with both the electron deficient and 

electron rich arylboronate esters, affording the products in good 

yields. The reaction tolerates very sensitive and synthetically 

useful functional groups, including nitrile (entries 1-7).19 In 

addition, the coupling with heteroaryl bromides does not 

require the addition of any ancillary ligands (entries 8-12), an 

observation that is analogous to the coupling with heteroaryl 

iodides.  This Cu-catalysed process provides a very cost-

effective alternative to Pd-based systems for the synthesis of 

heterobiaryl molecules. 

Table 1. Cross-coupling with mono- and diiodoarenesa 

  

a1.0 mmol scale. 5 mL DMF/dioxane (1:1), 48 h for aryl-aryl coupling, and 5 

mL DMF, 24 h for aryl-heteroaryl coupling. PN was used for aryl-aryl 

coupling, and no ligand was used for aryl-heteroaryl coupling CuI (99.999%) 

and CsF (99.9%) were used. bIsolated yields. c20 mol % PN and CuI used. 
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Table 2. Cross-coupling with electron deficient bromoarenes and hetero-

bromoarenes 

 

a1.0 mmol scale. 5 mL DMF/dioxane (1:1), 48 h for aryl-aryl coupling, and 5 
mL DMF, 36 h for aryl-heteroaryl coupling. PN was used for aryl-aryl 

coupling, and no ligand was used for aryl-heteroaryl coupling CuI (99.999%) 

and CsF (99.9%) were used. bIsolated yields. c2-Phenyl-1,3,2-dioxaborolane 

was used. 

Taking advantages of the differential reaction rates of aryl 

iodides and bromides, we have further demonstrated that the 

current protocol can be extended to sequential arylations of 

haloarenes containing both iodo- and bromo-substituents. As 

outlined in Scheme 3, 5-bromo-2-iodopyrimidine was 

successively arylated with 3,5-bis(trifluoromethyl)phenyl- and 

phenylboronic acid neopentyl glycol esters under the standard 

reaction condition to afford the mono- and diarylated products 

21 and 22 in 55% and 61% yields, respectively.      

 
Scheme 3: Sequential arylation of 5-bromo-2-iodopyrimidine 

Conclusions 

We have demonstrated a broad substrate scope of the CuI-

catalyzed Suzuki Miyaura-type couplings. The reactions of 

arylboronate esters proceed well with aryl- and heteroaryl 

iodides and activated aryl and heteroaryl bromides. In general, 

the reaction requires a bidentate PN ligand for aryl-aryl 

couplings; however, no ligand is required for aryl-heteroaryl 

couplings. The current reaction protocol can also be applied to 

biarylation of diiodoarenes, affording the doubly cross-coupled 

products in reasonable yields. 
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