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Text 

Eight breath biomarkers of T2DM were discovered by a newly SPME-GC-MS based 

metabolic profiling tool. 
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Abstract  

The aim of the study was to apply the gas chromatography-mass spectrometry 

(GC-MS) combined with metabolomics approach to identify distinct metabolic 

signatures of type 2 diabetes mellitus (T2DM) and healthy controls from exhaled 

breath, which are characterized by a number of differentially expressed breath 

metabolites. In this study, breath samples of patients with type 2 diabetes mellitus 

(T2DM, n = 48) and healthy subjects (n = 39) were analyzed by GC-MS. Multivariate 

data analysis including principal component analysis (PCA) and orthogonal partial 

least squares discriminant analysis (OPLS-DA) was successfully applied to 

discriminate the T2DM and healthy controls. Eight specific metabolites were 

identified and may be used as potential biomarkers for diagnosis of T2DM. 

Isopropanol and 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane and 

undecane in combination might be the best biomarkers for the clinical diagnosis of 

T2DM with a sensitivity of 97.9% and a specificity of 100%. The study indicated that 

this breath metabolite profiling approach may be a promising non-invasive diagnostic 

tool for T2DM. 

Keywords: Biomarkers, Breath analysis, Non-invasive diagnosis, Metabolomics, 

Type 2 diabetes mellitus 

Abbreviations: T2DM, type 2 diabetes mellitus; GC-MS, gas chromatography-mass 

spectrometry; TIC, total ion chromatogram; NIST, National Institute of Standards and 

Technology; SPME, solid phase micro extraction; MVA, multivariate statistical 
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analysis; PCA, principal component analysis; PLS-DA, partial least square 

discriminant analysis; OPLS-DA, orthogonal partial least squares discriminant 

analysis; VIP, variable importance in the projection; ROC, receiver operator 

characteristic curves; AUC, areas under curve; VOCs, volatile organic compounds; 

NADH, nicotinamide adenine dinucleotide.  
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1. Introduction 

Non-invasive breath diagnosis with metabolomics and metabolic profiling add an important 

scientific value to established biomarkers
1, 2

. Furthermore, it is known that volatile breath compounds 

have important relationships with metabolism and pathological states, such as acetone response to 

glucose and fat metabolism in uncontrolled diabetes3-6. Therefore, metabolic monitoring of volatile 

target compounds in exhaled breath is quite a considerable tool for the investigation of some diseases.  

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that is characterized by high blood glucose 

in the context of insulin resistance and relative insulin deficiency
7
. Rates of T2DM have increased 

markedly since 1960 in parallel with obesity: As of 2010 there are approximately 285 million people 

with the disease compared to around 30 million in 19858, 9. Traditional diagnosis and management of 

T2DM hinges on blood tests (for plasma glucose and glycated hemoglobin), which may be expensive, 

unpractical, and even painful. Frequent blood testing is especially necessary for patients undergoing 

insulin treatment. Therefore large resources have been invested worldwide in developing non-invasive 

devices for diabetes diagnosis and management. Breath analysis, as is one of the most promising 

approaches for clinical routine, is increasingly being exploited for clinical diagnosis10. Breath testing is 

non-invasive offering an attractive, inexpensive, and patient-friendly evaluation. Furthermore, sample 

collection is easy and can even be obtained from unconscious patients. Diabetes and its related 

dysmetabolic states could clearly greatly benefit from the introduction of similar non-invasive tests for 

diagnostic, preventive and monitoring purposes too. This study investigated breath analysis as a 

diagnostic tool for T2DM and identified the biomarkers in the breath volatile organic compounds 

(VOCs). 

Due to its higher consistency, robustness, and sensitivity, gas chromatography coupled with mass 
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spectrometry (GC-MS) is one of the most frequently used analytical techniques for profiling primary 

metabolites
11

. Combined with public databases, the application of GC-MS for compound identification 

makes it of great value for metabolomics12. It has been widely applied in disease biomarker discovery. 

As a metabolite profiling technique, GC-MS has been used to detect and discriminate various diseases, 

such as diabetic kidney disease
13

, colon cancer
14

, type 2 diabetes mellitus
15

, cirrhosis and hepatic 

encephalopathy
2
. For the GC-MS experiments, we performed a solid phase micro extraction (SPME) 

coupled with GC-MS in metabolic profiling for analysis of T2DM. SPME is a simple, rapid and 

solvent- free sample preparation technique that can be directly coupled to GC-MS16. It has several 

advantages including, faster extraction and desorption, direct compatibility with the GC inlet, and less 

required sample. The breath compounds were identified as many as possible by the use of SPME.  

Metabolomics is the scientific study of chemical processes involving metabolites. The metabolome 

represents the collection of all metabolites in a biological cell, tissue, organ or organism, which are the 

end products of cellular processes17. The idea that biological fluids and tissues have important 

relationships with the health of an individual has existed for a long time
18

. Even in ancient times, 

physicians recognized that certain breath odors were associated with specific pathological states, such 

as a ‘fishy’ smell in response to renal failure and a ‘fruity’ smell will associate with diabetes
19

. Ancient 

Chinese doctors used ants to detect whether the urine of patients contained high levels of glucose, and 

hence detect diabetes20. Recently, many scientists have studied metabolic diseases using metabolomics 

as a main technique. For example, the Wang-Sattler group have used statistical and bioinformatical 

methods for analyzing metabolite concentration profiles for the identification of candidate biomarkers 

of T2DM
21, 22

. It was demonstrated that GC-MS could be used to measure compounds present in human 

urine and tissue extracts by Horning et al. in 1971
23

. Followed, the Horning group, along with that of 
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Linus Pauling and Arthur B Robinson led the development of GC-MS methods to monitor the 

metabolites present in urine through the 1970s
24

. The role of metabolomics and metabolic profiling 

coupled with GC-MS is a rapidly growing field in disease diagnosis15, 25, therapeutics26, 27, functional 

genomic
28, 29

 and toxicology studies
30, 31

. In this study, the GC-MS data would then be coupled with 

chemometric methods to develop models to identify the biomarkers of T2DM. Data obtained from 

metabolomics studies are complex and diverse
32

. Therefore, the common statistical approach used in 

metabolomics data analysis is based on multivariate statistical analysis (MVA) for biomarker discovery 

including principal component analysis (PCA)33, 34, partial least square discriminant analysis 

(PLS-DA)
35, 36

 and orthogonal partial least squares discriminant analysis (OPLS-DA)
37

. The method is 

the simplest of the true eigenvector-based multivariate analyses, which is mostly used as a tool in 

exploratory data analysis and for making predictive models. PCA can supply the user with an overview 

of the clustering trend in the data by compressing the multidimensional data into a few principal 

components. PLS-DA and OPLS-DA calculate principal components in cooperation with the 

classification information and are more powerful to deal with complex multidimensional data
32

. Using 

this protocol, large amounts of information can be acquired, with high reproducibility, on the breath 

metabolome.  

This article discusses the breath metabolic changes of T2DM by coupling GC-MS with multivariate 

data analysis that included PCA, OPLS-DA. By clearly revealing the biomarkers (retention time), 

OPLS-DA can be successfully applied to separate the T2DM and healthy controls groups. In addition, 

nonparametric testing and receiver operator characteristic curves (ROC) analysis were performed to 

validate the robustness of OPLS-DA model. With these analyses, we identified and selected the 

potential biomarkers and discussed their biological functions.  
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2. Materials and methods 

2.1. Breath sample collection 

The breath samples were collected by 3L Delin-Inert Multi-Layer Foil bag (Dalian Delin Gas 

Packing Company, China). After cleaning the bag four times with pure nitrogen, we collected the 

exhaled breath of a single exhalation from total lung capacity to residual volume at a constant flow 

(10-11 L/min) over a period of 20 to 30s against a mild resistance. It was reported that the volume of 

exhaled breath collected did not influence the VOCs concentration in the reservoir, and as described 

previously, the collected exhaled breath at a controlled flow of 10-11 L/min without any dead space air 

is good for the exhaled breath measurements
38

. 

In this study, 48 T2DM patients and 39 healthy controls were recruited for this study. All the breath 

samples of patients (22 males and 26 females, aged 14-85 years) were from the Second Affiliated 

Hospital of Jilin University, Jilin, China. The T2DM patients were diagnosed according to the criteria 

of WHO (World Health Organization) 1999. The inclusion criteria defined that the patients of 14-90 

years old had no histories of receiving medication and none of them had been suffering from the other 

known chronic disease, while the patients receiving long-term medication or suffering from the other 

known chronic disease, or lung ventilation dysfunction were all excluded based on the exclusion 

criteria. Each participant wrote informed consent prior to the study. All study procedures were 

approved by the Ethic Committee of Chinese People’s Liberation Army 208 Hospital, China. The 39 

health controls (15 males and 24 females, aged 21-71 years) were from Sichuan University, Chengdu, 

China, without receiving long-term medication and suffering from known chronic disease. All samples 

were collected at a stable state without recent dietary intake and exercise.  

Page 8 of 34RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

2.2. Solid phase micro extraction GC-MS analysis 

All GC-MS experiments were performed by Agilent GC (7890A)-MS (220 ion trap) (Agilent 

Technologies, USA). A solid phase micro extraction (SPME) fiber holder----85-µm 

carboxen/polydimethylsiloxane(CAR/PDMS) (Sigma-Aldrich, USA)----was exposed in the sample bag, 

which was full of breath samples, at constant room temperature for breath compounds extraction. In the 

GC system, a 60 m (0.32 mm ID, 1.8 µm phase thickness) DB-624 polysiloxane capillary column 

(Agilent Technologies, USA) was used. The column temperature was programed at 40 ºC for 5 min, 

from 40 ºC to 160 ºC at the rate of 10 ºC/min, 160 ºC-200 ºC at the rate of 5 ºC/min, then hold 15 min 

at 200 ºC. The injection temperature was kept at 250 ºC. The split ratio was 10:1. Helium carrier gas 

was used at a constant flow rate of 1.0 ml/min. The full scanning mode was used for monitoring at 

20-300 m/z with a scan speed of 0.5 s /scan velocity.  

2.3. Sample preparation 

The bag was sealed immediately after the exhaled air was collected, then the SPME fiber was 

introduced and maintained into the bag during the extraction at a constant room temperature (16 ºC). 

After a measured extraction time (35 min, as optimized), the fiber was removed and immediately 

introduced into the GC injection port and volatiles extracted were desorbed for 5 min at 250 ºC.  

2.4. Standards and reagents 

Acetone (> 99.5% purity), ethanol (> 99.7% purity), were purchased from Kelong Chemical 

(Chengdu, China) in analytical grade. HPLC grade isopropanol (>99.9% purity) was purchased from 

Tianjin Kermel Chemical (Tianjin, China). m-Xylene (> 99.0% purity) was purchased from Sangon 
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Biotech (Shanghai, China) in reagent grade.  

2.5. Data handling and statistics 

Chromatogram acquisition, automated peak deconvolution and library searches were performed 

using the MS Workstation (Version 6.9.3, Varian, Inc., CA, USA) in combination with the automated 

mass spectrometry deconvolution and identification system (AMDIS, Version 2.66). The intensity of all 

peaks for all breath samples were studied by multivariate statistical methods. After acquisition of 

chromatographic raw data, and the baseline noise subtracted with representative MS spectra selected, 

we extracted components utilizing exact mass chromatograms and listed detected peaks as their mass 

and retention time along with their associated intensities. Each chromatogram with the total ion 

chromatogram (TIC) signal was exported as a CSV format to Excel. Normalization of peak intensities 

helps to reduce the systematic variation of GC-MS data. The peak intensities were normalized by 

equation 1. Where ��
�  is the normalized peak intensity of metabolite (peak i) in each breath sample, 

��  is the peak intensity of metabolite (peak i), ∑ ���
���  is the sum of all peak intensities of metabolites 

in the breath sample. We provided two Excel files as an example in the supplement. One is the 

chromatography raw data of a breath sample, while the other one is the normalized data of the same 

breath sample. 

1

i
i

N n
i

i

P
P

P
=

=

∑
 (1) 

A matrix table consisting of the peak number (based on the retention time and m/z), sample name, 

and the normalized peak intensity, was produced in the batch job by a computer program which was 

coded in MATLAB R2013a (Mathworks, Natick, MA, USA). The program was performed as following 
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two steps: 

1) An average retention time list (ARTL) which is associated with the metabolites in each 

chromatogram was established. Firstly, we choose a chromatographic peak list as a reference list 

(ARTL1). Then, the average retention time list was produced by comparison of the other peak 

lists (PL) as is referenced in equation 2. 

1
1 , 1, 2,3...

1

i i
i n n
n

ART n RT
ART n k

n

+

+

× +
= =

+
 (2) 

Where ART

�  is the average retention time of the peak i after n times of calibration; RT
��

�  is the 

retention time of the peak i in the n+1 peak list (PL
��).  

2) Chromatographic peaks in the raw data files are detected according to the average retention time 

and tracking the apex of the peaks in the chromatograms. The track peak parameters were as 

following retention time window of 0.05 min.  

Therefore, a matrix of data with one column per sample (include all the samples of the metabolomics 

experiment) and one row per mass signal was generated. This process also leads to peak missing, which 

may be the severer drift of peak or the quantity is too low to be detected. If so, we should check the 

chromatogram to ensure the correct result.  

Followed, the resulting multivariate dataset was imported into SIMCA-P 11.0 software (Umetrics, 

Umeå, Sweden) as variables for the principal components analysis (PCA), and the orthogonal 

projection to latent structures with discriminant analysis (OPLS-DA). In addition, nonparametric 

Mann-Whitney U testing was used to assess whether the potential biomarkers is significantly different 

between the T2DM and healthy control group. The results were considered significant if the estimated 

p< 0.05. Receiver operator characteristic curves (ROC) analysis was performed to validate the 

robustness of OPLS-DA model, and the areas under curve (AUC) value, specificity, sensitivity were 
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calculated to evaluate the diagnostic value of the potential biomarkers from the differential metabolites 

of the disease. All additional statistical analysis was conducted using IBM SPSS Statistics 19.0 (SPSS 

Inc., Chicago, Illinois, USA).  

Metabolite derivatives were identified by matching retention time as well as mass spectra compared 

with the National Institute of Standards and Technology (NIST) mass spectra library (NIST 08, NIST 

Mass Spectral Search Program, Version 2.0f, USA). Additionally, on-line mass spectra searches in the 

Human Metabolome Database (http://www.hmdb.ca), KEGG (http://www.genome.jp/kegg/ligand.html) 

and the MASS Bank (http://www.massbank.jp) were performed. Commercial standard reagents were 

used to support identification of metabolites. 

3. Results and discussion 

3.1. Results 

Representative GC-MS TIC chromatograms of breath samples from the T2DM group and healthy 

control group were displayed in Fig. 1. A number of raw GC-MS data files were selected as 

representative examples by automated peak deconvolution using MS Workstation and AMDIS. Specific 

ion characteristics of each metabolite were selected after subtracting the baseline noise in MS 

Workstation. A matrix table mentioned above in section 2.5 with the signals selected was produced by 

the computer program. The signals represent the concentration of each selected metabolite in each 

sample. We focused on 254 signals obtained using the method. The mass spectral data were then 

processed by multivariate statistical analysis. The data consisting of 254 variables were firstly analyzed 

by PCA. The score plot of PCA was shown in Fig. 2a. In PCA three principle components were 

calculated, R�X was 0.336. 
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Following PCA the data sets were processed using more powerful supervised statistical method, 

OPLS-DA. Firstly, we applied the permutation test with 200 iterations to assess whether the PLS-DA 

model is valid and well-fit. In our study, the R2 intercepts were 0.359 and the Q2 was below 0 using 

the supervised projection method PLS-DA (Fig 2b). In OPLS-DA, The model resulted in one predictive 

and four orthogonal (1+4) components (R�X = 0.788, R�Y = 0.908, Q� (cum) = 0.823), revealing the 

high discriminative and predictive ability, shown in Fig. 2c.  

Fig 2d showed the S-plot of OPLS-DA. The potential biomarkers from S-plot in our study were 

selected according to the parameters of VIP. In the S-plot, fifteen metabolites were highlighted. For 

each selected metabolites biomarkers, a nonparametric Mann-Whitney U test was performed to assess 

the univariate importance of the metabolite and a value of p < 0.05 was considered significant. A total 

of 15 differentially expressed metabolites were measured. Only eight metabolites most strongly 

influencing the differentiation were listed in Table 1 with the VIP > 1 and p < 0.05. The identification 

of compounds considered as potential biomarkers in the model was made using NIST Mass Spectral 

Search Program, the HMDB (http://www.hmdb.ca), and the MASS Bank (http://www.massbank.jp). 

The detailed method for the verification and validation of the potential biomarkers has been mentioned 

in the following work. 

Among these metabolites, three potential biomarkers (acetone, isopropanol, and m-xylene) were 

confirmed using standard samples. A series stock solution of acetone, isopropanol, and m-xylene with 

the concentration of 10 µmol/mL was prepared with ethanol. We injected 10 µL stock solutions into a 3 

L bag, respectively, before introducing pure nitrogen into the bag. And the samples were stored at room 

temperature to fully evaporate in the bags for more than two hours. The fragmentations of all samples 

obtained were shown in Fig. 3. Three standard samples were matched with the results as mentioned 
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previously by the comparison of retention time and the electron ionization mass spectra. 

We also performed the ROC analysis to characterize these potential biomarkers of T2DM. All 

potential biomarkers could be divided into two groups, in which seven potential biomarkers were 

up-regulated in T2DM patients, and one potential biomarker was down-regulated. Fig. 4 displayed the 

ROC curve analysis of the eight biomarkers including acetone, isopropanol, toluene, m-xylene, 

2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane, and undecane. Acetone, isopropanol, tridecane, 

2,6,8-trimethyldecane, undecane, 2,3,4-trimethylhexane and toluene were shown higher levels in 

T2DM (Fig. 4a), while m-xylene were shown lower levels in T2DM (Fig. 4b). The detailed statistics of 

the value of area under the ROC curves (AUC), and the corresponding sensitivities and specificities for 

each of the potential biomarkers of T2DM were listed in Table 2. Such as the isopropanol had a 

sensitivity of 79.2% and a specificity of 92.3%, the calculated area under the ROC curve was 0.876(95% 

confidence intervals, 0.795-0.956). To demonstrate the utility of breath metabolites for the 

discrimination between T2DM and healthy controls, a logistic regression model was built based on five 

validated biomarkers with AUC > 0.8 (isopropanol, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, 

tridecane, and undecane). The ROC curve was computed for the logistic regression (LR) model. As a 

result, we obtained a sensitivity of 97.9% and a specificity of 100% of LR model. The calculated area 

under the ROC curve was 1.00 (95% confidence intervals, 1.000-1.000), as shown in Fig. 5a. We also 

displayed the box plots of these five potential biomarkers in distinguishing T2DM from healthy 

controls (Fig. 5b,c,d,e,f). 

3.2. Discussion 

PCA is a pattern recognition method that reduces the dimensionality of data to a number of summary 
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variables, principal compounds. It can be used to describe the relationship among groups without 

artificial intervention. Fig 2a showed the score plot of PCA. Each point represents a single breath 

sample. This score plot display any natural clustering or separation with a dataset, but the T2DM group 

and healthy control group in our study cannot be well separated. 

PCA analysis did not identify any particular similarity or large differences between sample profiles. 

Therefore, we used more powerful supervised statistical method, OPLS-DA. OPLS-DA is the extension 

orthogonal projections of the PLS-DA, while PLS-DA is a classification method based on the 

regression extension of PCA. In PLS-DA, generally, the original model is considered well-fit when the 

R2 intercepts are <0.4 and the Q2 is <0.05 in the permutation test with 200 iterations
39, 40

. In our study, 

the results (R2 = 0.359, Q2 < 0) indicated that the models were statistically valid and well-fit. The 

OPLS-DA method was used to test the differences in metabolite between T2DM and healthy controls, 

and to identify the potential biomarkers of T2DM. As shown in Fig. 2c, the results demonstrated that 

the OPLS-DA models were well-fit and highly discriminative and predictive, which was conclusive for 

supporting the presented separation between the metabolite profiles of the T2DM group and healthy 

controls. It was observed that healthy controls were well separated from the T2DM.  

The S-plot visualizes the covariance and correlation among variables, thus it is used to identify 

discriminating variables
37

. And the variable importance in the projection (VIP) value of OPLS-DA 

models is a major parameter for the detection of potential biomarkers. As shown in Fig. 2d, the 15 

potential biomarkers which were highlighted from S-plot were selected with VIP > 1. Nonparametric 

Mann-Whitney U test was performed to assess the univariate importance of the metabolite and a value 

of p<0.05 was considered significant. The results demonstrated that only eight metabolites were 

strongly differential with the VIP >1 and p<0.05 (Table 1).  
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All metabolites could be divided into two groups, up-regulated metabolites and down-regulated 

metabolites. The results indicated that acetone, isopropanol, tridecane, 2,6,8-trimethyldecane, undecane, 

2,3,4-trimethylhexane and toluene were shown higher levels in T2DM, while m-xylene were shown 

lower levels in T2DM. Furthermore, it has been reported that ROC analysis is able to determine easily 

ability for identifying disease at any cutoff. AUC value from ROC is usually between 0.5 and 1.0. The 

AUC value is more close to 1, the higher the accuracy test is, and the bigger the diagnostic value is. 

Furthermore, the logistic regression model was built to demonstrate the utility of breath metabolites for 

the discrimination between T2DM and healthy controls. Five validated biomarkers with AUC > 0.8 

were used to build the LR model. As a result, the LR model with a sensitivity of 97.9% and a 

specificity of 100% demonstrated that isopropanol, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, 

tridecane, and undecane in combination provided better prediction in T2DM.  

3.3. Biological context of the new candidate biomarkers 

It has been reported that more than 3000 volatile organic compounds (VOCs) had been detected in 

the breath of humans
41, 42， including ketones, alcohols, alkanes, substituted benzenes, etc. The VOCs 

were derived from metabolic pathways as reported previously, such as acetone from glucose 

metabolism
43

, alkanes from OFR-mediated lipid peroxidation of fatty acids
44, 45

. Since acetone was 

identified in human breath in 1857, it was regarded as a characteristic feature of diabetic coma3. 

Acetone is one of the ketone bodies produced during the acute complication of ketoacidosis. In diabetic 

ketosis, ketone body production (b-hydroxy-butyrate, acetoacetate) provides fuel for vital organs (heart, 

brain) raising the chance of survival of the metabolic catastrophe. For this point of view, acetone 

metabolism is associated with diabetes mellitus, and acetone is regarded as a promising biomarker of 
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diabetes. In our study, the actual concentration of acetone in exhaled breath is different depending on 

each individual. Therefore, further researches about the actual concentration in the exhaled breath to 

distinguish the T2DM from healthy controls should be done in the future. 

Isopropanol belongs to the family of alcohols and polyols compounds. The previous report indicated 

that isopropanol is one of the product from propanoate metabolism, and the substrate for synthesizing 

acetone catalyzed by the enzyme isopropanol dehydrogenase
46

. It can be detected and quantified from 

blood, urine and cerebrospinal fluid (CSF). Isopropanol was shown higher level in T2DM patients 

relative to the healthy controls in our work, and we found that it followed the increased level of acetone. 

Moreover, as reported, Through the detection of isopropanol in a patient with diabetic ketoacidosis, it 

has been proved that isopropanol may be a byproduct of acetone metabolism in certain disease states
47

. 

Thus, we suggested that the isopropanol is associated with acetone metabolism, which is believed to be 

a significant differential metabolite in T2DM.  

2,3,4-Trimethylhexane, 2,6,8-trimethyldecane, tridecane, and undecane are the acyclic alkanes. The 

experimental data indicated that T2DM patients had higher levels of 2,3,4-trimethylhexane, 

2,6,8-trimethyldecane, tridecane, and undecane than healthy controls. Tridecane and undecane belong 

to the family of fatty acyls, and might be the product of polyunsaturated fatty acids metabolism, which 

are considered as a group in terms of their roles in fatty acids metabolism. They are found in allspice. 

Tridecane is also one of the major chemicals secreted by some insects as a defense against predators, 

while undecane is used as a mild sex attractant for various types of moths and cockroaches, and an alert 

signal for a variety of ants. As reported, undecane had been detected in human urine as one of the 

metabolic products
48

. 2,3,4-Trimethylhexane and 2,6,8-trimethyldecane belong to the family of 

endogenous metabolite which is a metabolite that are synthesized by the enzymes encoded by the 
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genome or the microfloral genomes in HMDB. However, their metabolic pathways and the reason with 

the higher level in T2DM are not yet known.  

m-Xylene belonging to the family of Toluenes. As reported in KEGG database, in metabolism, 

m-xylene is involved in redox reaction with nicotinamide adenine dinucleotide (NADH), carrying 

electrons from one reaction to another. This reaction forms NADH, which can then be used as a 

reducing agent to donate electrons. These electron transfer reactions play an important role of beta 

oxidation, glycolysis, and the citric acid cycle. The first step in glycolysis is phosphorylation of glucose 

by a family of enzymes called hexokinases to form glucose 6-phsphate (G6P). In animals, an isozyme 

of hexokinase called glucokinase is also used in the liver, which has a much lower affinity for glucose, 

and differs in regulatory properties
49

. The different substrate affinity and alternate regulation of this 

enzyme are a reflection of the role of the liver in maintaining blood sugar levels. Glucokinase activity 

serves as a principal control for the secretion of insulin in response to rising levels of blood glucose
50-53

. 

As G6P is consumed, increasing amounts of ATP initiate a series of processes that result in release of 

insulin. One of the immediate consequences of increased cellular respiration is a rise in the NADH 

concentrations. As is known, T2DM is a metabolic disorder that is characterized by high blood glucose 

without enough insulin, resulting in reduced glucokinase. G6P converted by the glucose decreased 

because of the low concentration of glucokinase. Therefore, the concentration of m-xylene in exhaled 

breath might be shown lower level in T2DM due to a decreased glycolysis, as demonstrated by the 

experimental data in our study.  

Toluene is an aromatic hydrocarbon. It has been shown to exhibit beta-oxidant, depressant, 

hepatoprotective, anesthetic and neurotransmitter functions
54-57

. Toluene can be synthesized from 

benzylalcohol with the oxidized ferredoxin, reported in KEGG database. Adrenal ferredoxin 
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(adrenodoxin) is expressed in mammals including humans. The human variant of adrenodoxin is 

referred to as ferredoxin-1
58

. Ferredoxin-1 in humans participates in the synthesis of thyroid hormones. 

It also transfers electrons from adrenodoxin reductase to the cholesterol side chain cleavage 

cytochrome P450
59, 60

. The reason that increased level of toluene in T2DM remains to be unknown. 

Nevertheless, we suggested that there is a significant involvement in adrenodoxin metabolism. Efforts 

should be done for the relationships of toluene and T2DM. Toluene had also been detected in the urine 

of breast cancer patients and normal controls
61

. It was reported that toluene may influence the 

glutamate and taurine neurotransmitter levels to control the actions62.  

T2DM is a complex disease, caused by a combination of lifestyle and genetic factors, results a 

number of complications, including ischemic heart disease, stroke, even non-traumatic blindness and 

kidney failure. Therefore, T2DM is associated with numerous metabolites, which will improve the 

sensitivity and specificity for T2DM detection. In our study, several potential biomarkers showed their 

strong predictive power for distinguishing T2DM from healthy controls. Nevertheless, the actual 

metabolic pathways of them are not yet known. Therefore, efforts should be made to find out their 

metabolic pathways and interaction with protein, enzymes, or other small molecules. It will be very 

helpful for pathogenesis research of T2DM. The discovered candidate biomarkers also need to be 

extensively validated before they can be translated into real world diagnostic and screen application.  

4. Conclusions 

In summary, we investigated an effective comprehensive GC-MS based metabolic profiling tool to 

identify distinct breath biomarkers of T2DM and healthy controls. The study demonstrates that this 

sufficiently robust and non-invasive profiling approach can be a promising screening tool for the 
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clinical diagnosis of T2DM. We discovered eight potential biomarkers including acetone, isopropanol, 

toluene, m-xylene, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane, and undecane. These 

results suggested that isopropanol, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane, and 

undecane in combination might be the best biomarkers for the clinical diagnosis of T2DM. Moreover, 

the method coupled with GC-MS and all the results provide some useful information for the 

understanding and monitoring of T2DM.  
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Table 1 Summary of the differential metabolites from VIP values and p-values of OPLS-DA models 

accountable for variations among T2DM and healthy controls.  

No. RT (min) Metabolites VIP p-value 

1 8.497  Acetone 9.30  0.004  

2 8.720  Isopropanol 7.79  <0.001 

3 15.875  Toluene 1.66  <0.001 

4 18.265  m-Xylene 1.89  0.005  

5 19.699  2,3,4-Trimethylhexane 2.02  <0.001 

6 21.009  2,6,8-Trimethyldecane 3.64  <0.001 

7 21.540  Tridecane 6.53  <0.001 

8 21.995  Undecane 3.32 <0.001 
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Table 2 ROC curve analysis of the total differential breath metabolites for T2DM prediction from 

healthy controls.  

Metabolites AUC (95% CIs) Sensitivity (%) Specificity (%) 

Acetone 0.679 (0.567,0.791) 45.8  87.2  

Isopropanol 0.876 (0.795,0.956) 79.2  92.3  

Toluene 0.737 (0.627,0.847) 66.7  82.1  

m-Xylene 0.677 (0.556,0.798 69.2  72.9  

2,3,4-Trimethylhexane 0.910 (0.835,0.985) 89.6  94.9  

2,6,8-Trimethyldecane 0.949 (0.903,0.995) 89.6  94.9  

Tridecane 0.870 (0.779,0.962) 89.6  84.6  

Undecane 0.911 (0.847,0.976) 89.6  82.1  
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Figure Captions 

Fig. 1 Typical GC-MS spectra obtained for breath from T2DM and healthy controls, highlighting the 

peaks corresponding to the 8-compounds model. The labels in part correspond to the labels in Table 1. 

Fig. 2 (a) PCA score plots based on original data. T2DM (open square) and healthy controls (closed 

triangle) are displayed. (b) Validation plot of OPLS-DA analysis on T2DM and healthy controls 

(R2=0.359, Q2=-0.0972). (c) Scores scatter plot of OPLS-DA. T2DM (open square) and healthy 

controls (closed triangle) are well separated. (d) S-plot of the OPLS-DA, fifteen metabolites are 

highlighted by open square, and the only eight selected (open triangle) were the interesting biomarkers 

with VIP >1 and p<0.05. 

Fig. 3 Ion current chromatograms of acetone (a), isopropanol (b), and m-xylene (c) compared with 

ethanol and pure nitrogen in pairs performing the electron ionization mass spectra. 

Fig. 4 Receiver operating characteristic (ROC) curve analysis for the predictive power of up-regulated 

biomarkers (a) and down-regulated biomarkers (b) for distinguishing T2DM from healthy controls.  

Fig. 5 ROC curve analysis for the predictive power of combined breath biomarkers for distinguishing 

T2DM from healthy controls (a). Box plots of the five differential metabolites including Isopropanol 

(b), 2,3,4-trimethylhexane (c), 2,6,8-trimethyldecane (d), tridecane (e), undecane (f) were displayed. 
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Typical GC-MS spectra obtained for breath from T2DM and healthy controls, highlighting the peaks 
corresponding to the 8-compounds model. The labels in part correspond to the labels in Table 1  
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(a) PCA score plots based on original data. T2DM (open square) and healthy controls (closed triangle) are 
displayed. (b) Validation plot of OPLS-DA analysis on T2DM and healthy controls (R2=0.359, Q2=-0.0972). 
(c) Scores scatter plot of OPLS-DA. T2DM (open square) and healthy controls (closed triangle) are well 

separated. (d) S-plot of the OPLS-DA, fifteen metabolites are highlighted by open square, and the only eight 
selected (open triangle) were the interesting biomarkers with VIP >1 and p<0.05  
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Ion current chromatograms of acetone (a), isopropanol (b), and m-xylene (c) compared with ethanol and 
pure nitrogen in pairs performing the electron ionization mass spectra.  
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Receiver operating characteristic (ROC) curve analysis for the predictive power of up-regulated biomarkers 
(a) and down-regulated biomarkers (b) for distinguishing T2DM from healthy controls.  
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ROC curve analysis for the predictive power of combined breath biomarkers for distinguishing T2DM from 
healthy controls (a). Box plots of the five differential metabolites including Isopropanol (b), 2,3,4-

trimethylhexane (c), 2,6,8-trimethyldecane (d), tridecane (e), undecane (f) were displayed.  
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Abstract  

The aim of this research was to apply the gas chromatography-mass spectrometry 

(GC-MS) combined with metabolomics approach to identify distinct metabolic 

signatures of type 2 diabetes mellitus (T2DM) and healthy controls from exhaled 

breath, which are characterized by a number of differentially expressed breath 

metabolites. In this study, breath samples of patients with type 2 diabetes mellitus 

(T2DM, n = 48) and healthy subjects (n = 39) were analyzed by GC-MS. Multivariate 

data analysis including principal component analysis (PCA) and orthogonal partial 

least squares discriminant analysis (OPLS-DA) was successfully applied to 

discriminate the T2DM and healthy controls (figure 1). Eight specific metabolites 

were identified and may be used as potential biomarkers for diagnosis of T2DM. 

Isopropanol and 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane and 

undecane in combination might be the best biomarkers for the clinical diagnosis of 

T2DM with a sensitivity of 97.9% and a specificity of 100%, as shown in following 

figure 2. The study indicated that this breath metabolite profiling approach may be a 

promising non-invasive diagnostic tool for T2DM. 
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Fig 1 (a) PCA score plots based on original data. T2DM (open square) and healthy controls (closed 

triangle) are displayed. (b) Validation plot of OPLS-DA analysis on T2DM and healthy controls 

(R2=0.359, Q2=-0.0972). (c) Scores scatter plot of OPLS-DA. T2DM (open square) and healthy 

controls (closed triangle) are well separated. (d) S-plot of the OPLS-DA, fifteen metabolites are 

highlighted by open square, and the only eight selected (open triangle) were the interesting biomarkers 

with VIP >1 and p<0.05. 
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Fig. 2 ROC curve analysis for the predictive power of combined breath biomarkers for distinguishing 

T2DM from healthy controls (a). Box plots of the five differential metabolites including Isopropanol 

(b), 2,3,4-trimethylhexane (c), 2,6,8-trimethyldecane (d), tridecane (e), undecane (f) were displayed. 
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