RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

COMMUNICATION

Enhanced visible photocatalytic activity of $BiVO_4@\beta$ -AgVO₃ composite synthesized by an in-situ growth method

Yanmei Yang,^a Yuanyuan Liu,^{*a} Baibiao Huang,^{*a} Rui Zhang,^b Ying Dai,^b Xiaoyan Qin^a and Xiaoyang Zhang^a

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

β-AgVO₃ nanowires were synthesized by a simple hydrothermal process. With β-AgVO₃ providing V resource, BiVO₄@β-AgVO₃ composites were obtained through an in-¹⁰ situ growth process. BiVO₄@β-AgVO₃ composites exhibited enhanced photocatalytic properties. We discussed the possible mechanism of enhanced photocatalytic activities. The effect of content and size of BiVO₄ was also studied specifically.

- ¹⁵ It is well known that photocatalysis is becoming an effective technology to solve the energy shortage and environmental problems. ¹⁻³ Besides traditional TiO₂, hundreds of photocatalysts were developed over the past decades. ⁴⁻⁷ However, limited absorption in visible light range and high rate of charge carriers
- ²⁰ recombination are still two basic problems existing in photocatalytic research. To overcome these limitations, lots of methods have been developed, including noble metals modification, semiconductor coupling, element doping, dye sensitization, *etc.*^{2,8-10} And among these methods, composited
- $_{25}$ photocatalysts exhibit excellent advantages in improving the separation efficiency of photoinduced electrons and holes due to the interface electric field. Therefore, various composites were prepared and well studied, such as Bi_2S_3/BiOCl, Bi_2S_3/BiVO_4 and AgI/BiOI etc. $^{1,\,11-12}$
- ³⁰ β-AgVO₃ is a widely used material in cathode for lithium batteries, bacterial inactivation and H₂S sensor.¹³⁻¹⁵ Also, it is a semiconductor with excellent optical absorption in visible light region. However, its studies in photocatalytic property are very limited. Only several reports are focused on the degradation of
- ³⁵ organic pollutants over β -AgVO₃,¹⁶⁻¹⁷ compared to other famous Ag-based materials such as AgCl, Ag₃PO₄¹⁸⁻¹⁹. The main reason can be attributed to the rapid recombination of photoinduced charge carriers. Therefore, researches on enhancing the separation of charge carriers for β -AgVO₃ are of great importance and value ⁴⁰ to break through its limited application in photocatalysis.

BiVO₄ is a good choice to form heterojunction structure with β -AgVO₃. The matched energy band levels between the two materials can enhance the separation of photoinduced electrons and holes. Moreover, as β -AgVO₃ can be used as V resource, in-

⁴⁵ situ growth of BiVO₄ at β -AgVO₃ can be realized. And via in-situ growth, BiVO₄ nanoparticles can be distributed and fixed on the surface of β -AgVO₃, which would suppress the easy aggregation of BiVO₄. In addition, the closely touched interfaces between BiVO₄ and β -AgVO₃ are favorable for charge carries separation. BiVO₄ materials are chemical stable, low cost and non-toxicity, and are extensively applied as an environmentally friendly photocatalyst to produce O₂ from water and decompose organic pollutants.²⁰⁻²¹ However, its photocatalytic activity is still limited by the low quantum yield, even though BiVO₄ possesses good
 absorption in visible light range. Thus, several methods are developed to improve its photocatalytic activity. And coupling with other semiconductors was proved to be an effective way and various BiVO₄ based composites were developed, such as Bi₂S₃/BiVO₄, BiVO₄/WO₃.^{11, 22} However, to the best of our 60 knowledge, no report was found on BiVO₄@β-AgVO₃ composite and its photocatalytic activity.

Herein, we prepared BiVO₄@β-AgVO₃ composite by an insitu growth process. β-AgVO₃ can not only provide V resource but also immobilize the generated BiVO₄ nanoparticles. The ⁶⁵ composite displayed enhanced photocatalytic activity when compared with single BiVO₄ or β-AgVO₃ under visible light irradiation. We discussed the mechanism of enhanced properties from aspects of morphology, optical absorption property, BET surface area and energy band levels between the two materials. ⁷⁰ Morphology and matched energy band levels are the major factors for improved photocatalytic activity of BiVO₄@β-AgVO₃ composite.

Fig. 1a shows the XRD patterns of as-prepared β-AgVO₃, BiVO₄, and BiVO₄@β-AgVO₃ composites. The diffraction peak
⁷⁵ positions of the prepared β-AgVO₃ are identical to the standard cards (JCPDS 29-1154), which suggests that the prepared β-AgVO₃ has a monoclinic structure (Fig. S1). However, the peak intensity are different, and the peaks for (5 0 1) facets in the prepared β-AgVO₃ is much stronger, while that for (-2 1 1) and (⁸⁰ 4 1 1) facets are much weaker. The results indicate the preferential orientation of β-AgVO₃. BiVO₄ shows a monoclinic scheelite structure (JCPDS 14-0688) which displays the best photocatalytic activity among the three tetragonal, orthorhombic, and monoclinic phases (Fig. S2).²³ For the composite, BiVO₄@β⁸⁵ AgVO₃-5% has very weak diffraction intensity of BiVO₄ content, its

of the low content. And with increasing of BiVO₄ content, its diffraction intensity becomes stronger gradually. Meanwhile, the peaks of β -AgVO₃ do not shift, indicating that the introduction of BiVO₄ does not change the crystal structure of β -AgVO₃. In Fig. ⁹⁰ 1b, the intensity ratio of typical peak of (-1 2 1) for BiVO₄ to that of (5 0 1) for β -AgVO₃ is given. It clearly shows that with increasing BiVO₄ content from 5% to 20%, this ratio increases steadily, which further proves the increasing amounts of BiVO₄ in BiVO₄@ β -AgVO₃ composites.

Fig. 1 XRD patterns of as-prepared products (a) and the intensity ratio of typical peaks of (-1 2 1) for BiVO₄ to (5 0 1) for β -AgVO₃.

- The SEM images of pure β -AgVO₃ and BiVO₄@ β -AgVO₃ composites with different contents of BiVO₄ are presented in Fig. 2. From Fig. 2a we can see that β -AgVO₃ shows nanowire morphology with a size of about 200nm in width and more than 10 µm in length, and the surface is very smooth. In addition, the lattice fringes with interplanar spacing of 0.775 nm corresponding to the (-1 0 1) plane are measured, while the growth direction is perpendicular to plane (-1 0 1). That is to say the preferential orientation of β -AgVO₃ nanowires are along (0 1 0) direction which is experimentation.
- ¹⁵ 0) direction which is consistent with the previous research.¹⁴ For the composite (Fig. 2b-e), when BiVO₄ is 5%, several BiVO₄ nanoparticles with the size of about 80 nm are dispersed on the surface of β-AgVO₃ by the in-situ growth process (Fig.2b). With increasing of BiVO₄ content, more BiVO₄ nanoparticles are
- ²⁰ formed and the size has a small tendency to be larger (Table 1), which is in agreement with the enhanced intensity of XRD peaks. In Fig. 2e, when BiVO₄ content reaches to 20%, β -AgVO₃ nanowires are covered with BiVO₄ nanoparticles with the size of about 175 nm. The BiVO₄ prepared for comparison shows
- $_{25}$ irregular board-like morphology with a size of 1-2 μ m (Fig. S3). Therefore, the in-situ growth method is favorable for the formation of nanoparticles and prevents the aggregation of BiVO₄.

Fig. 2 SEM and HR-TEM images of β-AgVO₃ (a), SEM images of 30 BiVO₄@β-AgVO₃-5% (b), BiVO₄@β-AgVO₃-10% (c), BiVO₄@β-AgVO₃-15% (d), BiVO₄@β-AgVO₃-20% (e).

To illustrate the optical absorption properties of BiVO₄@ β -AgVO₃ composites, DRS spectra were measured, as can be seen ³⁵ in Fig. 3a. For comparison, the spectra of pure β -AgVO₃ and BiVO₄ are also given. It shows that both β -AgVO₃ and BiVO₄ have good optical absorption in visible light, with a clear absorption edge at around 551 nm and 506 nm, respectively. The composite has a small difference with a little shift of absorption ⁴⁰ edge from 551 nm to 506 nm. To obtain the band gaps of β -

AgVO₃ and BiVO₄, we cited the formular: ¹² $\alpha h \upsilon = A(h \upsilon -$

 E_g)^{*n*/2}, where α is the absorption coefficient, *h* ν is the discrete photon energy, *A* is a constant, and E_g is the band gap. The value of *n* depends on whether the transition is direct (*n* = 1) or indirect ⁴⁵ (*n* = 4) in a semiconductor. β -AgVO₃ and BiVO₄ are direct transition semiconductor, thus *n* is 1.^{16,22} The curve of $(\alpha h \nu)^2$ versus *h* ν is given in Fig. 3b. When $(\alpha h \nu)^2$ is set as 0, we can get the band gap E_g of β -AgVO₃ and BiVO₄ to be 2.25 eV and 2.45 eV, respectively.

Furthermore, the position of CB minimum and VB maximum are determined. For a semiconductor at the point of zero charge, its VB edge can be calculated by the empirical equation $E_{VB} = \chi - E^e + \frac{1}{2}E_g$, in which E_{VB} is the valence band-edge potential, χ is the electronegativity of the semiconductor, expressed as the so geometric mean of the absolute electronegativity of the constituent atoms, E^e is the energy of free electrons on hydrogen scale with the value of about 4.5 eV, E_g is the bandgap energy of a semiconductor, and E_{CB} can be obtained by the equation $E_{CB} = E_{VB} - E_g^{-24}$ For β-AgVO₃, χ is about 5.88 eV and E_g is 2.25 eV, so of its top of VB is calculated to be 2.50 eV. Accordingly, its bottom of CB is calculated to be 0.25 eV. In the same way, χ value of BiVO₄ is 6.07 eV, its E_{VB} and E_{CB} are 2.8 eV and 0.35 eV, respectively.

Fig. 3 DRS spectra of as-prepared products (a) and the plots of $(\alpha h \upsilon)^2$ versus $h \upsilon$ of β -AgVO₃ and BiVO₄ (b).

 70 Fig. 4 The average photodegradation rates of as-prepared products (a) and the temporal evolution of the absorption spectra of RhB solution by $\beta\text{-}BiVO_4@\beta\text{-}AgVO_3\text{-}15\%$ (b).

The photocatalytic activities of as-prepared samples were ⁷⁵ evaluated by photodegradation of RhB under visible light irradiation at room temperature. Fig. 4a displays the average degradation rates of BiVO₄@β-AgVO₃ composites (0, 5%, 10%, 15%, 20%) under visible light irradiation for 4h. For comparison, the photocatalytic activities of pure β-AgVO₃ and BiVO₄ were ⁸⁰ also measured under the same condition. Obviously, β-AgVO₃@BiVO₄ composites can degrade RhB more effectively than pure β-AgVO₃ and BiVO₄ and the photocatalytic activities of composites are affected dramatically by the content of BiVO₄. The best activity comes from BiVO₄@β-AgVO₃-15% with 17.1% ⁸⁵ · h⁻¹, while the rates are 0.9% · h⁻¹ and 7.8% · h⁻¹ over pure β-AgVO₃ and BiVO₄@β-AgVO₃-5%, respectively. In addition. the

AgVO₃ and BiVO₄@ β -AgVO₃-5%, respectively. In addition, the BiVO₄@ β -AgVO₃-10% and BiVO₄@ β -AgVO₃-20% show nearly the same degradation rates, 11.1% · h⁻¹ and 10.8% · h⁻¹. As

RSC Advances

Table 1 BET values and average	photodegradation rate of RhB fo	r β-AgVO ₃ , BiVO ₄ , and	β-AgVO ₃ @BiVO ₄ composites.
ruore i BET fuides and aferage	photouegradation rate of fund to	. p g . o ., D o ., u	

Sample code	а	b	с	d	e	f
BiVO ₄ molar ratio(%)	0	100	5	10	15	20
Average size of BiVO ₄ (nm)	-	-	80	100	140	175
$BET(m^2 \cdot g^{-1})$	2.8042	1.2115	4.6333	6.2214	3.8801	7.1321
Average photodegradation rate of RhB $\Delta C/C_0$ (h ⁻¹)	0.9%	5.3%	7.8%	11.1%	17.1%	10.8%

a result, it can be concluded that the optimal BiVO_4 content is 15%

- ⁵ for the BiVO₄@β-AgVO₃ compiste. Fig. 4b shows the temporal evolution of the absorption spectra of RhB solution with BiVO₄@β-AgVO₃-15% composite. We can see the absorption at 554nm decreases gradually under visible light irradiation, which indicates the effective degradation of RhB. The TOC (total corrected by before and after photoestallysis by BiVO @β.
- ¹⁰ organic carbon) before and after photocatalysis by BiVO₄@ β -AgVO₃-15% was evaluated with the value of 8.793 mg·L⁻¹ and 5.779 mg·L⁻¹, respectively. We can confirm after 4h under visible light irradiation, TOC decreased by 34.3%. Thus, we concluded that it is possible for Rhodamine B to be converted to CO₂ ¹⁵ eventually.

To explain the photocatalytic mechanism of different photocatalytic activities, the possible factors including surface areas, optical absorption properties, morphologies and energy band structure of composite are discussed below. The BET 20 specific surface areas and average photodegradation rate of pure β-AgVO₃, BiVO₄, and BiVO₄@β-AgVO₃ composites are

- presented in Table 1. It shows that the specific BET surface areas of β -AgVO₃ and BiVO₄ are very small and the introduction of different BiVO₄ contents does not have large effect. In addition, 25 the change of BET surface areas does not show the same
- tendency with that of average photodegradation rate. Therefore, it can be concluded that the BET surface areas make little contribution to the enhanced and various photocatalytic activities of $BiVO_4@\beta$ -AgVO₃ composites. In terms of the optical
- $_{30}$ absorption properties, from the previous analysis it can be seen both of β -AgVO₃ and BiVO₄ have good optical absorption in visible light region. And the coupling between them does not make large difference, only leading to a little shift of absorption edge. So it is not the major factor in the photodegradation process.
- ³⁵ The main factors that affect the activities of as-prepared products lie in the energy band structure of β -AgVO₃ and BiVO₄ and the varied amounts and morphologies with increasing of BiVO₄ content, which will be illustrated specifically in the following.
- Fig. 5 illustrates the band energy levels of β -AgVO₃ and ⁴⁰ BiVO₄ and the possible charge separation process, According to above calculation. Under visible light irradiation, both of β -AgVO₃ and BiVO₄ can be excited and generate electrons and holes. As the CB of β -AgVO₃ (0.25 eV) is more negative than that of BiVO₄ (0.35 eV), while the VB of BiVO₄ (2.80 eV) is
- ⁴⁵ more positive than that of β -AgVO₃ (2.50 eV), the photoinduced electrons on the CB of β -AgVO₃ can transfer to the CB of BiVO₄ and the holes will pass from the VB of BiVO₄ to the VB of β -AgVO₃. In this process, the simultaneously occurred transfer of electrons and holes decrease charge carriers' recombination
- ⁵⁰ possibility, increase their quantum yield and lifetime. So, electrons on CB of $BiVO_4$ can be consumed by reducing absorbed O_2 molecules to OH^- , considering the more negative potential (0.35 eV) compared to the reduction potential of $O_2/$ OH^- (0.401 eV), while the holes can be consumed by two
- ⁵⁵ pathways. I .Can be used for the direct degradation of RhB.²⁵ II. Oxidize the surface OH⁻ to ·OH due to the more positive potential than the standard oxidation potential of OH⁻/·OH (1.99eV),²⁶ which plays an important role in oxidative degradation of RhB.²⁷

As a result, charge carriers can be separated effectively and 60 enhance the photocatalytic activities of BiVO₄@β-AgVO₃ composites.

Fig. 5 Schematic diagram for energy band of $\beta\text{-}AgVO_3$ and $BiVO_4$ and the possible charge separation mechanism

With increasing content of BiVO₄, the activities of composites increase firstly and then decrease, the reason of which is attributed to the different contents and morphologies of BiVO₄. Firstly, with increase of $BiVO_4$ content (5%-15%), more $BiVO_4$ ⁷⁰ nanoparticles (about 100-150nm) are formed on the surface of β -AgVO₃ nanowires, effectively enhancing the charge carriers separation for the degradation reaction. Thus, the photocatalytic activity is obviously improved. However, when the BiVO₄ content increases further, the composite photocatalytic activity 75 declines, implying the high content of BiVO₄ is unfavorable for the photodegradation. The reason is that the excessive $BiVO_4$ nanoparticles with larger size (150-200nm) may act as mediators for recombination of photoinduced electrons and holes. Therefore, considering the synergistic effect of content and size of BiVO₄ ⁸⁰ nanoparticles, there is an optimal ratio between β -AgVO₃ and BiVO₄, and the BiVO₄@ β -AgVO₃-15% exhibits the best photocatalytic activity.

In summary, we have prepared pure β -AgVO₃ nanowires using a simple hydrothermal method. Furthermore, BiVO₄@ β -

85 AgVO₃ composites were synthesized via in-situ growth of BiVO₄, and β-AgVO₃ nanowires acted as not only V resources, but also effective framework to immobilize BiVO₄ nanoparticles. The BiVO₄@β-AgVO₃ composites showed better photocatalytic performance than pure β-AgVO₃ and BiVO₄ in degradation of 90 RhB dye under visible light. The reason is attributed to the matched energy band structure formed in the heterojunction that can effectively enhance the separation of photoinduced electrons and holes.

This work is financially supported by a research Grant from ⁹⁵ the National Basic Research Program of China (the 973 Program; No. 2013CB632401), the National Natural Science Foundation of China (No. 21333006, 11374190 and 51021062).

Notes and references

- ^a State key lab of crystal materials, Shandong university, Jinan, China,
- 100 250100. Email: bbhuang@sdu.edu.cn (Baibiao Huang), yyliu@sdu.edu.cn (Yuanyuan Liu)
 - ^b School of physics, Shandong university, Jinan, China, 250100.

† Electronic Supplementary Information (ESI) available: Experimental details, Figure S1-S3. See DOI: 10.1039/b000000x/

- 1 H. F. Cheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai Chem. Commun., 2012, 48, 97.
- 2 P. Wang, J. Wang, T. S. Ming, X. F. Wang, H. G. Yu, J. G. Yu, Y. G. Wang, M. Lei, ACS Appl. Mat. Interfaces., 2013, 5, 2924.
- 3 W. L. Yang, L. Zhang, Y. Hu, Y. J. Zhong, H. B. Wu, X. W. D. Lou, Angew. Chem. Int. Ed., 2012, 51, 11501.
- 10 4 M. Ni, M. K. Leung, D. Y. Leung, K. Sumathy, *Renewable Sustainable Energy Rev.*, 2007, 11, 401.
 - 5 S. Chakrabarti, B. K. Dutta, J. Hazard. Mater., 2004, 112, 269.

15

- 6 Y. Park, K. J. McDonald, K.-S. Choi, Chem. Soc. Rev., 2013, 42, 2321.
- 7 S. N. Habisreutinger, L. Schmidt Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, **52**, 7372.
- 8 L. Q. Jing, D. J. Wang, B. Q. Wang, S. D. Li, B. F. Xin, H. G. Fu, J. Z. Sun, J. Mol. Catal. A: Chem., 2006, 244, 193.
- 9 G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, K. Rajeshwar, *Chem. Commun.*, 2013, **49**, 1297.
- 20 10 S. Usai, S. Obregón, A.I. Becerro, G. Colón, J. Phys. Chem. C, 2013, 117, 24479.
 - 11 D.-K. Ma, M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, S.-M. Huang, *Dalton Trans.*, 2012, **41**, 5581.
 - 12 H. F. Cheng, B. B. Huang, Y. Dai, X. Y. Qin, X. Y. Zhang, *Langmuir.*, 2010, **26**, 6618.
- 13 F. Y. Cheng, J. Chen, J. Mater. Chem., 2011, 21, 9841.
- 14 J. Ren, W. Z. Wang, M. Shang, S. M. Sun, L. Zhang, J. Chang, J. Hazard. Mater., 2010, 183, 950.
- 15 L. Q. Mai, L. Xu, Q. Gao, C. H. Han, B. Hu, Y. Q. Pi, *Nano Lett.*, 2010, **10**, 2604.
- 16 J. Xu, C. G. Hu, Y. Xi, B. Y. Wan, C. L. Zhang, Y. Zhang, Solid State Sci., 2012, 14, 535.
- 17 G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung, T.C.-K. Yang, Ind. Eng. Chem. Res., 2011, 50, 2807.
- ³⁵ 18 P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, Y. Dai, Z. Y. Wang, Z. Z. Lou, *ChemCatChem.*, 2011, **3**, 360.
 - 19 Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, J. H. Ye, J. Am. Chem. Soc., 2011, 133, 6490.
- 20 G. M. Wang, Y. C. Ling, X. H. Lu, F. Qian, Y. X. Tong, J. Z. Zhang, V. Lordi, C. Rocha Leao, Y. Li, *J. Phys. Chem. C*, 2013, **117**, 10957.
- 21 D. G. Wang, H. F. Jiang, X. Zong, Q. Xu, Y. Ma, G. L. Li, C. Li, *Chem. Eur. J.*, 2011, 17, 1275.
- 22 S. J. Hong, S. Lee, J. S. Jang, J. S. Lee, *Energy Environ. Sci.*, 2011, 4, 1781.
- 45 23 J. Q. Yu, A. Kudo, Adv. Funct. Mater., 2006, 16, 2163.
- 24 Y. Xu, M.A. Schoonen, Am. Mineral., 2000, 85, 543.
- 25 X. K. Li, J. H. Ye, J. Phys. Chem. C, 2007, 111, 13109
- 26 H. B. Fu, C. S. Pan, W. Q. Yao, Y. F. Zhu, J. Phys. Chem. B, 2005, 109, 22432.
- 50 27 H. M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, J. Photochem. Photobiol., A, 2004, 163, 37.

Novel BiVO₄@ β -AgVO₃ composite synthesized by an in-situ growth method on surface of β -AgVO₃ nanowires exhibited enhanced visible photocatalytic activity.

80x39mm (300 x 300 DPI)