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Abstract: A transport model with double Gaussian density of state (DOS) for organic 

semiconductors is proposed, with one Gaussian DOS for free carriers and one for trapped carriers. 

The variations of the density of trapped carriers with the density of free carriers, the effective 

mobility and ratio of diffusion coefficient to effective mobility with the density of trapped carriers 

are analyzed. It is shown that the ratio of diffusion coefficient to effective mobility is the Einstein 

type for free carriers, the ratio for total carriers is the non-Einstein type, and is an increasing function 

of the density of trapped carriers at low density, decreasing function at high density. The importance 

of non-symmetric barriers at contacts is emphasized to quantitatively describe the current-voltage 

relationships of typical organic layers sandwiched in two metallic electrodes. It is shown that slopes 

of current-voltage curves at low bias are very sensitive to the values of right barriers. The slopes in 

all bias are sensitive to the values of left barriers, and would increase as the left barrier decreasing. 

As applying the modified model to three organic diodes, the excellent agreement between theoretical 

results and experimental data is obtained. 
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1. Introduction 

The research of the optoelectronic and electrical transport properties in conjugated semiconducting 

polymers has drawn intensive attention because of their potential applications in organic semiconductor 

devices such as light-emitting diodes (LEDs) and field-effect transistors (FETs) [1-18]. Understanding 

their charge-carrier transport properties is very useful to improve the device performances, design and 

synthesize better materials. It was demonstrated that the current in single carrier diodes with amorphous 

polymer layers sandwiched by two electrodes is space-charge limited (SCL) [1-18]. 

  Davids et al. [1] proposed a unified device model considering two types of carriers for single layer 

organic LEDs, and Crone et al. [2] extended it into bilayer diodes. They also studied the impact of local 

electric fields on the injection barrier. Koster et al. [3] proposed a model for organic solar cells considering 

two types of carriers. However, the most organic diodes are single type of carriers, the SCL current in 

organic diodes is described by the solutions of drift and Poisson equations, with different expressions of 

mobility. The density dependent mobility of Vissenberg and Matters (VM) [4] is popular, which is 

originated from hopping in an exponential density of states (DOS). This description has been used to unify 

the charge transport in FETs and LEDs [5-7]. Pasveer et al. [8] developed a description for the mobility 

incorporating both the density and field dependence, based on charge-carrier hopping within the Gaussian 

DOS. The mobility of Pasveer et al. has been widely applied to describe current-voltage (J-V) relationships 

of organic devices by many authors [9-18]. 

Van Mensfoort et al. [11] and we [12,13] have numerically solved drift-diffusion model (DDM) and 

drift model by using parameters optimized by Pasveer et al. [8] for NRS-PPV and OC1C10-PPV. The 

obtained J-V curves are in good agreement with experimental data [9-13]. Zhou et al. [14] studied the 

effect of high carrier density to mobility by using Monte Carlo simulation. Coehoorn et al. [15, 16], 
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Bässler and Köhler [17] reviewed recent advances in charge transport in disordered organic 

semiconductors. Myers and Xue [18] reviewed organic semiconductors and their applications in 

photovoltaic devices, discussed the fundamental electronic nature of organic semiconductors, processing 

techniques, and their application to two main classes of optoelectronic devices, light emitting diodes, and 

photovoltaics. 

  However, Zhang et al. [19] demonstrated that electron transport is consistently described by the concept 

of free electrons in combination with deep traps. Recently Nicolai et al. [20, 21] analyzed the reason that 

both VM and Pasveer models provide a consistent description of the J-V relationships of organic devices. 

The reason is that the section of the Gaussian DOS that is being filled during a J-V scan may also be 

approximated by an exponential, or vice versa [20, 21]. Nicolai et al. [20, 21] further emphasized that the 

trapped carriers are very important for description of J-V curves. If considering the trapped carriers with 

Gaussian DOS in the DDM and treating the mobility as a constant, the J-V curves of many organic diodes 

can be qualitatively described. But the fitting procedure and values of parameters are not clearly presented 

and explained [20, 21]. 

  Lange et al. [22] proposed a model for band bending in contacts of polymer layers with metallic 

electrodes. Cottaar et al. [23, 24] present a scaling theory for charge transport in disordered molecular 

semiconductors that extends percolation theory to the percolating one in the random resistor network 

representing charge hopping. A density dependent mobility for Miller-Abrahams and Marcus hopping on 

different lattices with Gaussian energy disorder are derived. Oelerich et al. [25] suggest a recipe on how to 

determine the density of states (DOS) in disordered organic semiconductors from the measured 

dependence of the charge carrier mobility on the concentration of carriers. The recipe is based on a theory 

for the concentration-dependent mobility. Fishchuk et al. [26] developed an analytical mobility model to 
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describe hopping transport in organic semiconductors including both energetic disorder and polaronic 

contributions due to geometric relaxation. 

 Bruyn et al. [27] derived an analytic approximate JV formula for organic diodes. In the derivation of the 

analytic formulae, the mobility has been treated as a function of temperature being independent to density 

and electric field. But the analytic formula cannot consider trapped carriers; and it merely describes JV 

data qualitatively. It is notable that Pasveer et al. [5], Bruyn et al. [27], and Nicolai et al. [20, 21] belong to 

the group of Blom. They have proposed about tens of models considering different physical effects, but the 

final model has not been found [3, 5, 8, 19-21, 27, 42]. 

  Except for the traps, the barriers at contacts between organic layer and electrodes are important for 

quantitative description of JV data. Davids et al. [1] and Crone et al. [2] studied the impact of local electric 

fields on the injection barrier. Chen et al. [28] studied electrostatic field and partial Fermi level pinning at 

the pentacene-SiO2 interface. Recently, Yogev et al. [29] and Oehzelt et al. [30] independently proposed 

Fermi level pinning is induced by gap states in organic semiconductors. Because the height of barriers is 

tightly related with Fermi levels, since the Fermi level in organic semiconductors is pinned, it implies the 

barriers almost are constant. Neumann et al. [31, 32] developed self-consistent theory of unipolar 

charge-carrier injection in metal/insulator/metal systems. They derived boundary conditions used for the 

drift-diffusion equations. The densities of electrons [31] or holes [32] are expressed as functions of barriers 

which are weakly dependent to electric field at interfaces. Thus, Bruyn et al. [27] directly adopted constant 

barriers in their derivation of an analytic JV formula. 

  In the DDM, the ratio between the diffusion coefficient D and the mobility µ is given by the Einstein 

relationship (ER), D/µ = kBT/q. Some authors [33-36] proposed the ER should be replaced by the 

generalized Einstein relation (GER) with the ratio kBT/q multiplied by a factor. However, Neumann et al. 
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[37] disapprove the GER through theoretical analysis. Wetzelaer et al. [38] confirmed the validity of the 

ER in organic semiconductors by studying the diffusion-driven currents of single-carrier diodes. 

  In this paper, we would present detailed formulation of DDM with Gaussian traps taken into account, 

give an explanation to the GER, and show that, except the Gaussian traps, the non-symmetric potential 

barriers at contacts also are important factor for quantitative description of J-V curves by applying the 

DDM to three typical diodes. 

 

2. Fundamental Model 

The fundamental energy-band model for p-type materials used in this paper is schematically plotted in 

Fig. 1. The model in Fig. 1 consist two Gaussian DOS. One Gaussian for free carriers and one for 

trapped carriers with widths σ and σt, center energy levels Ev and Et, respectively. 

( ) ( ) ( )[ ]22

0 2exp2 σπσ vf EENED −−=                      (1) 

( ) ( ) ( )[ ]22
2exp2 ttttt EENED σπσ −−=                      (2) 

N0 is the total concentration of states at energy levels Ev, Nt is the total concentration of traps. The 

densities of free and trapped holes can be expressed as 

( ) ( )dEEfEDp ff ∫
∞

∞−
=                                 (3) 

( ) ( )dEEfEDp tt ∫
∞

∞−
=                                  (4) 

( ) ( )[ ]{ } ( )( )[ ]{ } 11
exp1)(exp1

−− −+≡+−+= TkExETkxqEEEf BFBF ϕ             (5) 

Here f(E) is the Fermi-Dirac (FD) distribution function, EF is the Fermi energy level without external 

electric field, and ( ) )(xqExE FF ϕ+=  is the quasi-Fermi energy level. There is no constant EF(x) in a 

device under SCL conditions, but the separated EF should be a constant. 
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 6 

 It should be pointed out that although the same FD distribution f(E) is used in both Eqs. (3) and (4), Refs. 

[20, 21] show that the Einstein relationship is valid for organic semiconductors, this implies that the 

organic semiconductors should be nondegenerate, ( ) kTEE vF >>− . Therefore, the position of EF is near 

Et and deviated from Ev in Fig. 1. The boundary conditions in Eqs. (16,17) shows that φ(x) > 0, so even 

under SCL conditions, the quasi-Fermi energy EF(x) also satisfies the nondegenerate condition, 

( )( ) kTExE vF >>− . This means that the free holes can be seen as non-degenerate, and the trapped holes 

should be treated as degenerate. The Fermi-Dirac distribution in Eq. (4) can and cannot be approximated 

by Boltzmann distribution as applied to free holes and trapped holes, respectively. And Eq. (3) for free 

holes can be simplified as following form 

( ) dEkTxqEEEDp Fff ]/))(exp[( ϕ−−= ∫
∞

∞−
                       (6) 

Defining the effective DOS 

( ) dEkTEEEDN Fff ]/)exp[( −= ∫
∞

∞−
                         (7) 

the density of free holes can be expressed as 

( )[ ]kTxqNp ff )(exp ϕ−=                              (8) 

Introducing dimensionless variable, ( ) 2σvEEy −= , we can evaluate the integral in Eq. (7) 

( )[ ] ( ) 



=−−−∫

∞

∞−

2
222

2exp2]/)exp[(2exp kTdEkTEEEE vv σπσσ  

And obtain expression of effective DOS as follows 

( )[ ] ( )[ ]22

0 2expexp kTkTEENN Fvf σ−=                      (9) 

where σ the standard deviation of the Gaussian distribution. Although the Fermi-Dirac (FD) distribution 

in Eq. (5) cannot be approximated by Boltzmann distribution as applied to trapped holes, we can 

reformulate it by using Eq. (8). Solving Fermi energy EF from Eqs. (8) and substituting it into Eq. (5), we 

obtain 
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( ) ( ) ( )[ ]{ } 1
exp1

−−+≈ TkEEpNEf BFff                         (10) 

One situation easy misunderstanding is that to derive Eq. (8), the Fermi-Dirac distribution is approximated 

by a Boltzmann distribution and then, this result is substituted in the Fermi-Dirac statistics in Eq. (5) and 

arrives at Eq. (10). This treatment is correct, and we explain the reason in more detail. The original Fermi 

distribution Eq. (5) is applicable to both free and trapped holes. But the Boltzmann approximation in Eq. (8) 

merely is used to free holes. As the transformed Eq. (10) is applied to free holes, we may obtain the 

identity, pf = pf. So no contradiction there exists in Eq. (10). 

  Nicolai et al. [20, 21] pointed out that the trapped holes can be easily realized in program based on the 

discretization method of Gummel and Scharfetter [39, 40], if the Dt(E) for trapped holes being taken as the 

single trap model. Whereas, the Fermi integral in Eq. (4) with Gaussian DOS is not easy to realize [20, 21]. 

It is necessary to use the accurate approximation of the Gauss-Fermi integral recently reported by Paasch 

and Scheinert [41]. By using their approximation [41], the effect of Gaussianly distributed traps on the 

transport can be accessed. However, from Eq. (10), we can derive following expression 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]TkEEpNTkEEpNpfp BFffBFfvff −−+=∂∂ −
expexp1

2
       (11) 

Substitution of Eq. (10) into Eq. (11) yields 

( ) ( ) ( )ffffpfp ff −=−=∂∂ − 1112
                       (12) 

Then the derivatives of trapped charges with respect to the free charges can be easily evaluated as 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]dEEfEfEENppp ttttftf −−−=∂∂ ∫
∞

∞−
12exp2

2

σπσ         (13) 

By the combination of Eq. (13) with the discretization method of Gummel and Scharfetter [39, 40], the 

Gauss-Fermi integral can be easily and directly realized in program, and no need of the approximation of 

Paasch and Scheinert [41]. 

With trapped charges taken into account, the Poisson equation is as follows  
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( )tf

r

pp
q

dx

d
+−=

0

2

2

εε
ϕ

                              (14) 

Considering that the trapped charges don’t contribute to current, and supposing a constant mobility, 

drift-diffusion equation takes following form 

 
x

p
kTµ

x
pqµJ

f

f ∂

∂
−

∂

∂
−= 00

ϕ
                             (15) 

As solving Eqs. (14, 15), we need use Eqs. (4, 8, 10). 

Assuming the thickness of organic layer is L, the left-side contact (x = 0) can be seen as Ohmic with low 

potential barrier Wleft. And the right-side contact (x = L) can be seen as Schottky with high potential barrier 

Wright. The difference between right and left potential barriers, 
leftrightbi WWV −= , just is the built-in 

potential in the devices. The boundary conditions for the Poisson equation is as follows [27] 

( ) VWleft +=0ϕ ,   ( ) rightWL =ϕ                              (16) 

( ) ( )LVV bi ϕϕ −=− 0                                  (17) 

As for the boundary conditions for the drift-diffusion equations, Neumann et al. [31, 32] have derived 

following equations 

( ) ( )







−−= 0exp0 F

kT

ql

kT

W
Np

leftrleft

ff

ε
                          (18a) 

   ( ) ( )







+−= LF

kT

ql

kT

W
NLp

rightrright

ff

ε
exp                          (18b) 

Where F(0) and F(L) are values of electric field at contacts, l is a characteristic length of electrodes 

∞

∞=
nq

E
l

2

0

3

2ε
                                    (19) 

The typical values of parameters in Eq. (19) are as follows, n∞ ≈ 4eV, E∞ ≈ 3×10
28

 m
3
, the value of l is 

about 7.088×10
-11

 m. In the devices studied in this paper, the values of F(0) and F(L) are about 10
3
 and 10

7
 

(V/m), respectively. The values of ( )0Fqlleftrε  and ( )LFqlrightrε  are about 10
-6

 and 10
-2

 eV, respectively. 
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The second terms in exponential functions of Eq. (18) can be neglected as compared with the first terms. 

And Eq. (18) can be simplified to following form [27] 

( ) ( )kTWNp leftff −= exp0 ,   ( ) ( )kTWNLp rightff −= exp                  (20) 

These boundary conditions Eqs. (16, 20) have been used by Bruyn et al. [27]. 

 Ahead of concrete calculations, it is necessary to explain our model goes beyond the suggestion of 

previous publications. At first, Nicolai et al. [20, 21] adopted the program in [3] of Koster et al., they 

didn’t consider potential barriers at contacts, and adopted symmetric Ohmic contacts with Wleft =Wright, as 

mentioned in last line of page 2 in [20]. But our calculations show that the asymmetric contacts with 

different barriers are very important to improve fitting quality of experimental J-V data. At second, Nicolai 

et al. [20, 21] didn’t mention boundary conditions used for the drift-diffusion equations. At third, they 

didn’t not use the non-degenerate condition for free holes, and didn’t extract effective DOS as function of 

temperature. They also didn’t extract temperature function of mobility. At fourth, they didn’t derive 

relationships in Eqs. (11-13), they must use approximation of the Gauss-Fermi integral proposed by Paasch 

and Scheinert [41]. 

 

3. Analysis 

Eqs. (4, 8, 10, 14, 15) show that the calculation of trap-limited currents requires a separation of the total 

carrier density into free (pf) and trapped (pt) carriers. We plot the (pt - pf) relationship with different values 

of σ in Fig. 2. The figure also shows that the influence of σ to (pt - pf) curves is very prominent. The pt 

always is an increasing function of pf and σ. The slopes of (pt - pf) curves are large as pf being low and 

small σ, the slopes decrease as pf and σ increasing. The pt would reach saturation at high pf. There exists a 

cross point of pf for all curves, at this value of pf, all curves take the same value of pt. 
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Now we give a qualitative explanation to increase of mobility and GER based on trapped charges. For 

simplicity, we just consider the single trap case. In terms of Eqs. (4, 10), if supposing single trap level Et, 

the density of trapped charges can be expressed as 

( ) ( ) ( )[ ]{ } 1
exp1

−−+== TkEEpNNEfNp BtFftttt                  (21) 

In the situation considering GER, it is not needed to divide the carriers into free and trapped types. We 

may introduce total density of carriers 

tf ppp +=                                   (22) 

the Poisson and DD equations can be reformulated by using p 

p
q

dx

d

r 0

2

2

εε
ϕ

−=                                 (23) 

x

p
qD

x
qpJ

∂

∂
−

∂

∂
−=

ϕ
µ                              (24) 

The substitution of Eq. (21) into Eq. (22) results in the quadratic equation for pf 

( ) 02 =−−−− qqtff pNNNppp                            (25) 

The solution is as follows 

( )( ) ( ) ( )[ ] 212
42121 pNNNpNNpp qqtqtf +−−+−−=                (26) 

( )[ ]TkEENN BtFfq −= exp                              (27) 

Its derivative can be evaluated as 

( ) ( )[ ] ( ){ } ( )
x

p
pQ

x

p
NNppNNNp

x

p
qtqqt

f

∂
∂

≡
∂
∂

+−+−−+=
∂

∂ − 212
4121          (28) 

If substituting Eqs. (26, 28) into Eqs. (14, 15), and comparing the resulting equation with Eq. (23, 24), we 

obtain the effective mobility and diffusion coefficient 

( ) 0µµ pp f= ,     0

1

µ
q

kT

x

p

x

p
D

f 














∂

∂








∂

∂
=

−

                  (29) 

( ) 















=















∂

∂








∂

∂








=

−

q

kT

p

p
pQ

q

kT

x

p

x

p

p

pD

f

f

f

1

µ
                 (30) 
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It should be pointed out that trap-modulated mobilities were introduced decades ago [1,2,4, 23-26], 

although not within the Gaussian DOS leading to Eqs. (29), and there are many possibilities GERs, for 

example field-depend mobility [33-37]. 

  Eq. (29) shows that although the mobility µ0 in the original model in Eqs. (14, 15) is a constant, where 

the carriers being divided into free and trapped types, the effective mobility µ and diffusion coefficient D 

in the transformed Eq. (24) become functions of density of carriers. In Fig. 3, we plot the relationships of µ 

and D /µ with p. The figure show that µ is a increasing function of p, and the increase becomes more 

dramatic as the depth of traps increases. This tendency is in agreement with that of VM theory [4-7]. The 

VM theory doesn’t divide the carriers as free and trapped, and express µ as a function of density of 

carriers. 

 Based on the analysis, one may deduce following assumption that the trapped carriers is equivalent to the 

function of effective mobility as density of carriers, both factors cannot be considered at same time. The 

latest works of Zhang et al. [19] and Nicolai et al. [20, 21] also consider this situation. Since they consider 

trapped charges in their model [19-21], they treat mobility as a constant, and don’t use the mobility model 

of Pasveer et al. [8] which treat mobility as function of density of carriers and electric field. But both 

authors belong to same research group leaded by Blom [8, 19-21]. 

  Fig. 3 also shows that the ratio of D/µ indeed deviating from the ER value kT/q, and the GER appears. 

But the ratio also is different from the one in previous references [33-35], which the GER is due to 

degenerate effect of carriers. Since the viewpoint on GER is controversial in literature [33-36], and the 

latest experiment [37] supports the ER for free carriers, so the theoretical frame dividing carriers into free 

and trapped types is consistent with the experiment [37]. 
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  The model of Nicolai et al. [20, 21] doesn’t consider the asymmetric barriers at contacts, and adopted 

symmetric Ohmic contacts with Wleft =Wright [20]. In our calculations, it is shown that the potential barriers 

have severe impact on the shape of J-V curves. In Fig. 4 we plot several J-V curves with different values of 

leftW  and 
rightW . The figure shows that if keeping 

leftW  as constant and increasing 
rightW  the J-V curves 

would dramatically bend down at low voltage side. If keeping 
rightW  as constant and increasing 

leftW  the 

J-V curves would move down and the slope also slightly decreases. So it is necessary to adjust values of  

leftW  and 
rightW  to fit shapes of J-V curves. 

 

4. Application to devices 

Now we apply above Gaussian model to polymer layers of poly[4'-(3,7-dimethyloctyloxy)-1,1' 

-biphenylene-2,5-vinylene] (NRS-PPV),  poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-p-phenylene 

-vinylene) (OC1C10-PPV) [8,10], and poly(3-hexylthiophene) (P3HT) [5,42] , with thickness L=560 nm, 

275 nm and 95 nm respectively. In figures 5-7, we plot J-V curves for the three materials with comparison 

with experimental points. The three figures show that the agreement of theoretical curves with 

experimental J-V points is fairly good. For the three devices studied in this work, the agreement is 

quantitative for every isothermal line, not only the shapes and slopes from low to high voltage ranges, but 

also the values of current at every point within wide varying ranges, from 10
-6

~1, 10
-5

~1 and 10
-19

~1 A/m
2
 

for NRS-PPV, OC1C10-PPV and P3HT devices, respectively. Because the works of Nicolai et al. [20, 21] 

don’t consider non-symmetric barriers at contacts, so they merely obtain qualitative agreement between 

theoretical results and experimental data. As compared with the works of Nicolai et al. [20, 21], it can be 

seen that the non-symmetric barriers are important factor for arrival of quantitative agreement between 

theoretical results and experimental data. 

Page 12 of 24RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 13 

Nicolai et al. [20, 21] extracted parameters for the three materials as follows, σ ∼ 0.1 eV, Nt ∼ 

(1.3×10
23

-4.0×10
23

) m
-3

, (Et−Ev) ∼ 0.6 eV. Although they don’t analyze variation of parameters with 

temperature, they postulate that the electron traps have a common origin, and is most likely related to 

hydrated oxygen complexes. However, analysis of variation of parameters with temperature is very 

important to implore the internal consistency of a theoretical model. Therefore, we list all parameters 

optimized in Tables 1 and 2. Our modified model yields that σ ∼ (0.055-0.15) eV, Nt ∼ (7.5×10
22

-7.6×10
24

) 

m
-3

, (EtF =Et−EF) ∼ 0.2 eV. The dispersion of Nt is not in line with the postulation of Nicolai et al. [20, 21]. 

The positive value of EtF means that the position of traps is higher than the Fermi energy EF. Table 1 also 

shows that the values of Wleft and Wright are non-symmetric, with Wright > Wleft and the built-in potential 

leftrightbi WWV −=  in the devices is positive. 

We may further analyze variations of Nf and µ0 with temperature. We can fit Nf by using Eq. (8) and 

determine characteristic energies of EvF = Ev−EF and σ. The µ0 can be fitted by using following 

non-Arrhenius expression 

( )[ ]2

000 exp kTkT ∆+∆= λµµ                          (31) 

with three regression coefficients µ00, ∆ and λ. The fitted curves are compared with data points in Fig. 8. 

The figure shows that the agreement is satisfactory. The determined parameters for Nf and µ0 are listed in 

Table 3. The values of EvF =Ev−EF always are negative, which means that the Fermi energy EF always is 

higher than the valence level Ev. The free holes indeed are non-degenerate, and the formulae for free holes 

in Eqs. (8, 9) are reasonable. We can calculate Etv in terms of the relationship, Etv =Et−Ev = 

(Et−EF)−(Ev−EF) = EtF−EvF. The results are about 0.22, 0.44 and 0.45 for NRS, OCC and P3HT, 

respectively. This is within error range of Nicolai et al., their results are about 0.6 eV. So our results for Etv 
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are in line with that of Nicolai et al., and support the assumption that the electron traps have a common 

origin, and is most likely related to hydrated oxygen complexes. 

 

5. Conclusion 

  In this work, we analyze variations of the density of trapped carriers with the density of free carriers, the 

effective mobility and ratio of diffusion coefficient to effective mobility with the density of trapped 

carriers. It is shown that the density of trapped carriers is a dramatically increasing function of the density 

of free carriers at low density, and tends saturation at high density. The density of trapped carriers always 

is increasing function of the density of trapped carriers, and the slope dramatically increases as high 

density of trapped carriers. Although the ratio of diffusion coefficient to effective mobility is the Einstein 

type for free carriers, the ratio for total carriers is the non-Einstein type, and is an increasing function of the 

density of trapped carriers at low density, decreasing function at high density. This explains recent 

argument about Einstein or non-Einstein types. 

  We emphasize the importance of non-symmetric barriers at contacts to quantitatively describe the 

current-voltage relationships of typical organic layers sandwiched in two metallic electrodes. It is shown 

that slopes of current-voltage curves at low bias are very sensitive to the values of right barriers. The 

slopes in all bias are sensitive to the values of left barriers, and would increase as the left barrier 

decreasing. 

  As applying the modified model to three typical devices with organic NRS-PPV, OCC-PPV and P3HT 

layers, we obtain excellent agreement between theoretical results and experimental data. Evident 

improvement can be seen as compared with the qualitative agreement of Nicolai et al. [20, 21] The 
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extracted main parameters of materials are within error range of Nicolai et al., and support the assumption 

that the electron traps have a common origin. 
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Table 1  Temperature-independent parameters of double Gaussian model with non-symmetric potential 

barriers at contacts optimized by fitting J-V data for NRS, OCC [8, 10] and P3HT [5, 42] organic diodes. 

 

Table 2  Temperature-dependent parameters Nf and µ0 of double Gaussian model with non-symmetric 

potential barriers at contacts optimized by fitting J-V data for NRS, OCC [8, 10] and P3HT [5, 42] organic 

diodes. 

 

Table 3  Temperature-independent parameters for functions Nf(T) and µ0(T) determined by fitting data in 

Table 1. 
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Fig. 1 (color online). Schematic diagram of energy-band model proposed in this paper. 

 

Fig. 2 (color online). Schematic diagram for the (pt - pf) relationship calculated by using Eqs. (4, 10) at 300 

K, with Nf = 10
26

/m
3
, Nt = 10

23
/m

3
, EtF = 0.3 eV, and with different values of σt, σt = 0, 0.05, 0.1, 0.15, 0.2 

eV, respectively. The calculations in this figure don’t involve the Gaussian width σ of free holes. 

 

Fig. 3 (color online). The qualitative (µ - p) and (D/µ - p) relationships calculated by using Eqs. (26-30) at 

300 K, with Nf = 10
26

/m
3
, Nt = 10

23
/m

3
, EtF = 0.2 eV (solid lines) and 0.3 eV (dashed lines), and with σt = 0 

eV. The calculations in this figure don’t involve the Gaussian width σ of free holes. 

 

Fig. 4 (color online). The J-V curves calculated at 300 K, with µ0 = 2×10
-10

 m
2
/Vs, Nt = 2×10

22
/m

3
, σ = 0.1 

eV, and EtF = 0.22 eV. (a) Wleft = 0.1 eV, and Wright = (0.1, 0.3, 0.5, 0.7, 0.9) eV. (b) Wright = 0.1 eV, and 

Wleft = (0.1, 0.3, 0.5, 0.7, 0.9) eV. 

 

 

Fig. 5 (color online). Experimental (symbols) [8, 10] and theoretical (lines) J-V curves of a NRS-PPV hole 

only diode, with thickness L=560 nm and at different temperatures. 

 

Fig. 6 (color online). Experimental (symbols) [8, 10] and theoretical (lines) J-V curves of a OC1C10-PPV 

hole only diode, with thickness L=275 nm and at different temperatures. 

 

Fig. 7 (color online). Experimental (symbols) [5, 42] and theoretical (lines) J-V curves of a P3HT hole 

only diode, with thickness L=95 nm and at different temperatures. 

 

Fig. 8 (color online). Variations of Nf(T) and µ0(T) with temperature. Symbols are data listed in Table 2, 

and lines are smoothed curves by using Eq. (9) and Eq. (31), respectively. 
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Table 1 

 NRS OCC P3HT 

σt (eV) 0.055 0.1285 0.15 

Nt (m
-3

) 7.55E22 1.3E24 7.6E24 

EtF (eV) 0.2 0.11 0.235 

Wleft (eV) 0.1 0.375 0.28 

Wright (eV) 1.01 0.578 1.2 

 

Table 2 

NRS 

T (K) 233 252 272 298  

Nf (m
-3

) 2.12E25 2.2E25 2.3E25 2.4E25  

µ0 (m
2
/Vs) 1.4E-11 2.75E-11 3.9E-11 8.5E-11  

OCC 

T (K) 235 255 275 293  

Nf (m
-3

) 2.7E26 2.8E26 3.0E26 3.5E26  

µ0 (m
2
/Vs) 1.1E-7 1.2E-7 1.4E-7 1.5E-7  

P3HT 

T (K) 215 235 255 275 294 

Nf (m
-3

) 3.0E18 1.7E19 2.9E19 3.5E19 1.0E20 

µ0 (m
2
/Vs) 2.2E-9 2.2E-8 1.3E-6 2.0E-5 2.0E-4 

 

 

 

Table 3 

 NRS OCC P3HT 

N0 (m
-3

) 4.6756E25 8.5742E29 4.6121E23 

EvF (eV) -0.0214 -0.3350 -0.2158 

σ (eV) 0.0149 0.0834 0.00 

    

µ00 (m
2
/Vs) 2.2073E-6 2.6554E-6 3.8970E023 

∆ (eV) -0.3411 -0.1037 -2.1517 

λ 0.0175 0.0737 0.0031 
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