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WO4/g-C3N, composite photocatalysts were prepared by ahave been made to improve the photocatalytic agtofi WO;,
simple calcination method and H production activity of these Such asd n0b|§7 metal Ioaglﬁ*?g a”dd COUrF]’““g with ]?ther
composites was evaluated. The photocatalytic actlyi of the semicon uctors. In our previous study, The aCt'Y'ty 0 .WO

. . particles could be significantly improved by thedny loading
composites .hlghly. o!epended on Wg)cpntent. The enhanced of Ag and CuO as cocatalysfsAmong them, studies have
photocatalytic activity could be ascribed to the Zscheme

confirmed that W@ is a good candidate for synthesizing
mechanism, which results in the efficient charge paration. semiconductor heterojunctions with higher photdygéta

activity. As WGQ, and g-GN, are both visible-light-driven
As a typical metal free inorganic semiconductoapfiitic photocatalysts, after the polymeric g\NG photocatalyst being
CisN, (9-CN,) has attracted intensive attention for, Hcombined with WQ the obtained W@g-C;N, composite may
generatior, pollutant degradatidnand CQ reduction’ It is be a promising candidate for efficient photocatalyactivity
well-known that the band gap of g/, is about 2.7 eV, which under solar light irradiation. However, there aréew reports
can absorb visible light up to 460 fnfurthermore, the CB on the photocatalytic activity evaluation of W@ C;N,
minimum (-1.12 eV vs. NHE) of g-fl, is extremely negative, composite'®>?° Furthermore, to the best of our knowledge, there
so photo-generated electrons should have high tieduability. are no reports on the application of W@C;N, composite
However, the photocatalytic efficiency of the pu@eC;N, is  photocatalysts for Hproduction from aqueous solution, and no
limited by the high recombination rate of its phgtnerated attention has been paid to the photocatalytic masha of the
electron—hole pairs.One of the techniques for increasing theomposite-catalysed reaction, which has remainetean to

separation efficiency of photo-generated electrote-tpairs is
to form a composite photocatalyst using two kinds
semiconductors. Suitable matching of the band $ewél the
conduction and valence bands in the two semicowndsicffers
appropriate driving forces to separate and trangfleoto-
generated electron—hole pdirs. To improve g-GN,
photocatalytic  activity, various  semiconductor/gNg
composite photocatalysts have been reported, sacAn®!
TiO,,2 AgsPO,° AgBr,*° Bi,WOs,'! M0S,,*2,
the photodegradation of organic dyes in solutioowkver, the
photocatalytic H production over semiconductor/gN,
composite photocatalysts has been proposed
reports®®

On the other hand, studies have shown that;VifOa
visible-light responsive photocatalyst with a riglaly narrow
band-gap energy (2.4-2.8 eV) and a VB potentiallaino that
of TiO,.!* Therefore, the oxidizing power of holes in the ¥B

date.

0 In this paper, different ratios of W@-C;N, composite
photocatalysts were synthesized via the calcinapoocess.
The photocatalysts were characterized by varioghnigues
such as powder X-ray diffraction (XRD), scanningotton
microscopy (SEM), transmission electron microsc¢pgM),
UV-visible diffuse reflectance spectra (DRS), amdos. The
photocatalytic activity was evaluated by ldroduction from

etc, and used for triethanolamine (TEA) aqueous solution under aitfi solar

light. The separation mechanisms of photo-excitmdliers for
the composite photocatalysts were also proposdtebasis of

in elimithe results for the photoluminescence (PL) analysis

The XRD patterns of Wgg-C;N, composites, g-§N, and WQ
are shown in Fig. 1. For pure gNG, two broad diffraction peaks
around 27.5 and 13.0° were observed, correspontirtpe (002)
and (100) diffraction planes, respectivelyThe former, which
corresponds to the interlayer distance of 0.325 ismattributed to

WO; and TiG are considered to be almost the same. Howevete long-range interplanar stacking of aromatidsjrthe latter with
pure WQ is not an efficient photocatalyst because of dt& | a much weaker intensity, which corresponds to taniigd = 0.681
CB level, which limits the photocatalyst's ability react with nm, is associated with interlayer stackingzor WQyg-CsN,
electron acceptors such as oxydem.he low CB level also composites, the XRD patterns reveal a coexistend&©f and g-
increases the recombination of photo-generatedreleehole C;N,. The peak intensities of g8, rapidly decreased with
pairs leading to lower photocatalytic activity. Maattempts increasing the W@contents. It is difficult to confirm the diffracin
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Fig. 3. UV-vis DRS of g-C3N4, WO3 and WOs/g-CsN, composite photocatalyst.

Fig. 1. XRD patterns of g-C3N4, WO3 and WO3/g-CsN4 composite photocatalyst.
large number of W@particles were observed on the gNg surface

(Fig. S3a-c). Further, HRTEM observation was coneldicto

peaks of g-GN, in the XRD pattern of the 30 wt% W@-C;N, investigate the interfacial structure of the conifgosample (Fig.
sample. The XRD pattern of WOcould be indexed as theS3d). The (020) lattice fringe of monoclinic W@.375 nm) was
monoclinic structure. These results along with FEfectra (Fig. clearly observed in the HRTEM image. The gray area be
S1) and XPS spectra (Fig. S2) showed clearly th@/¢/C;N, ascribed to g-¢N,. From the SEM, TEM and HRTEM analyses, ..
composite photocatalysts could be synthesized kycticination can be concluded that the heterojunction strucka® formed in the
method. composite.

Fig. 2 shows SEM and TEM images of gNg, WO; and 10 The UV-vis DRS of g-6N,, WO; and all composite
wit% WO;/g-C;N, composite samples. It is clearly seen in Fig. J2hotocatalysts are shown in Fig. 3. For all sampthe optical
and d that the morphology of g€, was smooth, thin and flat absorption edge was estimated to be at around 460 The
sheets. In addition, a typical porous morphologg-;N, powders composite samples displayed better photon absarptian both
was exhibited® From Fig. 2b and e, WQOshowed aggregatedWO; and g-GN, because the composites would have higi:
particles with the particle size of 20-150 nm. he tcomposite crystallinity due to the calcination at 450°C duritige composite
sample, WQ particles were sparsely observed onto the;Nd,C photocatalysts preparation. The band gap can lreatetl from the
surface. WQ particles did not agglomerate and were directiipllowing equation:
attached to the surface of gMG. With increasing W@ content, a

Fig. 2. SEM and TEM images of (a), (d) g-CsNg; (b), (€) WOs; (c), (f) 10 wt% WOs/g-C3N,.
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was higher than that of gsi, (27 pmol b g™) under visible light
a) 7 b) irradiation. The apparent quantum efficiencies @ 4am were 0.34
and 0.90% for g-@N, and 10 wt% WQ@g-CsN,4, respectively.

Fig. 4b shows the time courses ofpfoduction obtained over g-
CsN, and 10 wt% WQ@g-CsN, samples under light irradiation. For
both samples, the production of steadily increased with prolonged
time of light irradiation. However, the photocatidyactivity of g-
C:N, for H, production gradually decreased during the
photocatalytic reaction and a total, Broduction was about 1.6
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G0N  SwINC: 10WIRNOM 15MWOL 20WINC: 0 10 » ©»  mmol g* (36 mL g") after 30 h. On the other hand, a total of 3.3
Reactonime () mmol g H, gas (74 mL @) was produced over 10 wt% WQ-
Fig. 4. (a) Photocatalytic H, production over g-CsN, and WOs/g-CsNy CaNg, and no obvious deactivation of the CompOSite WHIH'ySt
composite photocatalysts under artificial solar light irradiation; (b) Time was found, suggesting the good stability of WEC:N, as an
courses of H, production over g-CsN; and 10 wt% WOs/g-CsN; composite organic-inorganic composite photocatalyst for séfarproduction.
photocatalyst artificial solar light irradiation. Furthermore, no changes of the composite sampleer aft

photocatalytic reaction were observed in XRD pattamd TEM
image (Fig. S5).
ahv = A (hv —Eg)" To understand the higher photocatalytic activify 10 wt%
WO,/g-C3N, relative to other composites, ghG, and WQ, the PL
Wherea, h, v, andEg are the absorption Coefﬁcient, Plank’s Constargpectra of the Samp|es at 270 nm were recorded 5F|gt is clear
light frequency, and band gap, respectively, Arid a constant. The that the PL spectra of the composite andsi-Ghotocatalysts have
factor n depends on the characteristics of the opticakitiam of a g strong emission peak at around 450 nm, whichdcbelrelated to
semiconductorn( = 1 for direct transition and = 4 for indirect the recombination of the photo-excited electrorehafl g-GN,"*1??
transition). The band gaps of gily and WQ were estimated to be while a weak emission peak at around 460 nm of,WW@&s assigned
2.78 and 2.60 eV, respectively (Fig. $4jAfter coupling these two to |ocalized state in the band gap due to oxygecameies or
semiconductors, the band gaps of MWCN, composite defects® From Fig. 5, it can be seen that the PL intésitf the 5,
photocatalysts kept at around 2.8 eV, implying t@mposite 15 and 30 wt% Wglg-C;N, photocatalysts exhibited the stronger
photocatalysts are also responsible for the vidighe region. emission than that of the pure gMG, suggesting that the
The photocatalytic Hproduction over the all samples is showRecombination of the photo-excited electron-hole the g-GN,
in Fig. 4a. It revealed that the loading of Wpeatly influenced the photocatalyst surface is higher. On the contrdrg, RL intensity of
photocatalytic performance of ggif,. The H production rate over 10 wt% WGQ/g-C;N, composite photocatalyst was lower than that c*
g-C:Ns was 54pmol ' g™ As a comparison, the compositgyure g-GN,, which means that the recombination of the phot.
photocatalysts showed that the ptoduction rates were lower thanexcited electron-hole of the composite photocatakyss lower than
that on g-GN, except for 10 wt% Wgg-CsN, photocatalyst in pure g-GN,. It indicates that when the amount of W suitable
which the H production rate was 11@mol h* g% ie., the (10 wi%), the recombination of the photo-excitedction-hole on
photocatalytic activity of this composite was ab@utimes higher the g-GN, surface is suppressed. However, 10 wt% JNQ:N,
than that of g-gN,. However, the photocatalytic activity of theshowed the highest PL intensity at around 360 nroranthe all
mechanical mixture of Wand g-GN, sample with 10 wt% W® samples examined (inset of Fig. 5). The peak ar@r&60 nm was
content (6Qumol i* g™*) was almost the same as that of pures.C assigned to the electron-hole recombination oni@; surface?®
The photocatalytic activity of 10 wt% W(@-C3N, composite was Therefore, the recombination of the charge carrershe interface
also evaluated under visible light irradiation (842m). As a result, of 10 wt% WQ/g-CN, in the composite photocatalyst would be
the H, production rate over 10 wt% W@-C:N4 (66 umol W g™)  higher than that of pure WOThe PL results are agreement with the
results of photocatalytic Horoduction onto Wgg-C;N, composite
photocatalysts. It means that higher and lower Rénisities at 360
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Fig. 6. Schematic diagram of Z-scheme photocatalytic mechanism of WOs/g-
Fig. 5. PL spectra of g-C3N,;, WO3 and WO;/g-CsN, composite photocatalysts. C3N4; composite photocatalyst.
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and 450 nm indicate a higher photocatalytic agtivih the Namely, a typical Z-scheme photocatalyst is favbledor the
experimental conditions. The higher PL intensiae860 nm of the production of H gas from water. The Z-scheme mechanism of
samples would be attributed to the higher recontlwnarate WOs/g-C;N, composite photocatalyst has been also reported by
between photo-excited electrons in the CB of JVdhd photo- the other researchef.

excited holes in the VB of g+8, on the interface of the composite, In this study, the unsuitable contents of Wi® WOs/g-C;N,
suggesting that rich electrons in the CB of fNCand holes in the photocatalyst showed low photocatalytic activity kb, production.

VB of WO; participate in the reduction reaction of lnd the Unfortunately, the reasons are not fully understoadently. We
oxidation of TEA, respectively. As a result, theagle separation need the further studies to be clear the more Ideteitocatalytic
could be promoted on the 10 wt% W®C;N, composite, leading mechanism of Wglg-C;N, composite.

to the higher photocatalytic activity of the comp@gphotocatalyst.
Based on these results, it could be concluded HeatQy/g-CsN,
system is a typical Z-scheme photocatalyst.

On the basis of the above results, the photodatalyechanism In summary, the composite photocatalyst WAC:N, was
for the WQ/g-C;N, composite sample is tentatively proposed arfdbricated via a simple calcination method. The hbgj
schematically illustrated in Fig. 6. For pure g\Ng the photo- photocatalytic activity was achieved for 10 wit% WC;N,
generated electrons and holes in g tend to recombine and onlycomposite at b production rate of 11@mol h* g7, which was
a fraction of them participates in the photocatalyteaction, about 2 times higher compared to that of purey;CFurthermore,
resulting in a relative low activity. For Wf@-C;N, composite with the composite showed a good stability for the regmee
an optimal WQ content, i.e. 10 wt%, part of the surface of fNgis production reaction. The enhanced activity was tuethe
covered by W@ particles, leading to the formation of Z-scheméormation of WQ/g-C;N, Z-scheme photocatalytic system anc
photocatalytic system. According to previous steditne CB and an efficient charge separation of the photo-geedraiectron-
VB positions of WQ are about +0.74 and +3.4 V, respectivély, hole pairs. This present study would provide nesights on
while those of g-gN, are about —1.13 and +1.57 V, respecti8ly.enhancing the photocatalytic, froduction activity of g-gN,4
Further, the band structure of W@-C;N, used in this study can beby the formation of Z-scheme W/@-CN, composite
also estimated according to the empirical equatisnshown below: photocatalyst.

Conclusions
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