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Adsorption of potentially toxic metals on 

negatively charged liposomes: Equilibrium 

isotherms and quantitatively modeling 

Y. Yua, X. Liub, W. Gongb, G. Liub, D. Chengb, H. Baoa and D. Gaob  

We investigated the adsorption behaviour of ten potentially toxic metals (Ni, Co, Cd, Fe, Ba, Sr, Cr, Hg, 

Ag and Zn) on negatively charged liposome vesicles composed of phosphatidyl choline (PC), phosphatidyl 

glycerol (PG) and cholesterol. The adsorption data for selected metal ions closely fit the Freundlich 

isotherm. Most metal ions (except Cr3+ and Cd2+) were strongly adsorbed by liposomes (n > 1) and the ionic 

covalent index significantly affected the Freundlich adsorption intensity. We used multivariate statistical 

methods, including principal components analysis regression and partial least squa res regression, to 

elucidate the adsorption relationships between 18 physical and chemical properties and their respective 

Freundlich isotherm constants (KF). The cross-validated correlation efficient (Q2
cum) and correlation 

coefficient (R2
Y) of the model were 0.76 and 0.91, respectively. High Q2

cum and R2
Y values indicated that 

the predictive model was both precise and robust. According to the VIP value, parameters like ionic 

polarisation, ion charge and ionisation potential played crucial roles in predict ing KF. 

Introduction 

 Potentially toxic mental pollution is becoming an worldwide 

environmental issue due to its increasingly negative impacts on 

human health1-4. Many studies 5-7 using animal and cell cultures 

to assess the toxicity of metallic elements have demonstrated a 

connection between metal exposure and the onset of various 

diseases. Understanding biological processes at the membrane 

level is imperative because toxic metals must first interface with 

cell membranes before further interaction can occur8, 9. 

Nevertheless, studying a specific process on natural membranes 

is extremely challenging due to the complex composition and 

dynamic environment of membranes10. One attractive solution is 

to use a biomembrane mimetic system in lieu of a natural 

membrane structure 11-13. Liposome vesicles, with their artificial 

spherical lipid bilayer structure, are the most widespread kind of 

mimic biological membrane due to its self-assembled and well-

known composition 14. In most studies, the main component of 

liposome membrane is phosphatidyl choline (PC) 15-18, which is 

zwitterionic lipid abundant in natural membranes. Usually, 

phosphatidyl glycerol (PG), a negatively charged lipid that 

results in a negatively charged liposome vesicle, and cholesterol 

are added to improve the stability and permeability of liposome 

vesicles 14, 17, 19, 20. In this study we used negatively charged 

liposome vesicles as the adsorbent in part because oppositely 

charged particles should interact more strongly 17. 

 Most relevant investigations have sought to describe binding 

characters and the corresponding changes on membranes 17, 21, 22, 

while the adsorption is in fact a major cause of toxic metal 

accumulation 23, 24. Therefore, studying the adsorption process is 

vital to understanding of how toxic metals bond with and 

transport across membranes. Previous studies have demonstrated 

that metal ions are adsorbed by the membrane according to 

specific molecular interactions that depend on the metal ion 

species and liposome composition 25-27. Alkaline and alkaline-

earth metal ions have been frequently investigated 19, 25, 28, 29, but 

interactions between toxic metal ions and liposome vesicles 

remain poorly understood.  

 Due to financial and practical limitations, investigating the 

adsorption of every species of metal ion is impossible. Thus, 

developing an efficient method to predict the adsorption 

behaviour of untested metallic ions is desirable 30. One approach 

to estimating the potential hazards of chemicals is to develop 

mathematical models, e.g. quantitative structure activity 

relationship (QSAR) models31, 32. In past decades, these have 

been employed successfully in the drug discovery and activity 

prediction fields 33-35. 

 Beyond adsorption conditions and adsorbent species, metal 

ionic properties also affect adsorption processes in aqueous 

solutions. Properties such as electrochemical potential (∆E0), 

covalent index (Xm
2r), log of the first hydrolysis 

constant (|logK𝑂𝐻|), and ionic radius (r) have been identified as 

influential factors in predicting metal and metalloid toxicity and 
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biosorption capacity 30, 36, 37. However, these studies were 

restricted by the use of bivariate linear correlation tests such as 

ordinary least squares regression. Considering the great number 

of variables examined, known models are subject to 

misinterpretation 38. Consequently, their conclusions might be 

misleading, and therefore, a more reliable model is required. In 

this study, principal components analysis (PCA) regression 39 

and partial least squares regression (PLS), two multivariate 

methods that can cope with numerous and strongly collinear 

variables 40-42. 

 The primary goal of this research was to examine the 

potential application of mimic biomembrane materials and to 

develop a quantitative detection method for multiple metal ions. 

We used liposome vesicles, a mimetic membrane structure, to 

investigate the adsorption of 10 potentially toxic metal ions. 

Considering the diversity of metal properties,   the selected metal 

ions covered main-group elements and transition metals, mono-, 

di- and trivalence metals, including Ba2+, Sr2+, Ni2+, Co2+, Cd2+, 

Fe3+, Cr3+, Hg2+, Ag+ and Zn2+. The liposome vesicles were made 

of egg phosphatidyl choline (ePC), dipalmitoyl phosphatidyl 

glycerol (DPPG) and cholesterol. The adsorption data of each 

metal ion matched the Freunlich experimental adsorption 

equilibrium. We developed a quantitative model of metal ion 

physical and chemical properties relative to the Freundlich 

constant, KF, using PCA and PLS. The value of this new model 

lies in understanding and predicting the adsorption behaviour of 

ions on liposome vesicles. 

 Materials and methods  

Chemicals and reagents  

 Egg phosphatidyl choline (ePC), dipalmitoyl- phosphatidyl 

glycerol (1, 2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) DPPG) were purchased from Shanghai Advanced 

Vehicle Technology L-td. Co. Sodium dihydrogen phosphate 

NaH2PO4, disodium hydrogen phosphate Na2HPO4, cholesterol, 

chloroform and methanol were purchased from Sino pharm.  

FeCl3, Co(NO3)2, CdCl2, Ni(NO3)2, Ba(NO3)2, AgNO3, Sr(NO3)2, 

HgCl2, ZnSO4, and Cr(NO3)3 were used to prepare stock 

solutions with deionised water. Ultrafiltration membrane were 

purchased from Pall Corporation. 

Preparation and characterisation of liposome vesicles 

 Liposome vesicles were prepared by solvent evaporation 

method 15, wherein 100 mg ePC, 40 mg cholesterol and 10 mg 

DPPG were dissolved in 5mL of a chloroform/methanol solvent 

mixture (2:1 v/v) in a round bottom flask. Next, we attached the 

flask to a rotary evaporator and immersed it in a water bath. The 

resulting solution was dried and yielded a dry lipid film 

deposited on the wall of the flask. Next, we placed the open flask 

in a vacuum for at least 1 h to remove any traces of organic 

solvent. After this step, the lipids were hydrated by adding 5 mL 

phosphate-buffered solution (PBS; 10mM phosphate; pH 7.5) to 

the flask, attaching the flask to the evaporator and rotating it until 

all the lipids were removed from the wall of the flask. This 

yielded a homogeneous milky-white suspension of multilamellar 

large vesicles (MLVs) with no visible particles.   

 Each batch of liposome vesicles was sized using a laser 

particle size analyser (Microtrac S3500, Microtrac Inc, USA). 

The settings for which were as follows: flow rate 50%; runtime 

30s; each sample was run twice and then averaged; type of 

particle: reflection; shape of particle: regular.  

Adsorption of metal ions  

 Each type of metal ion solution was derived from dissolved 

salts, producing a stock solution with deionised water. The 

experiment proceeded in same process order each time. First, we 

added stock and buffer solutions (PBS; 10mM phosphate; pH 7.5) 

to a glass cuvette and then added the liposome suspension. The 

initial metal concentrations were ranged from 0.5 to 12 mg/L due 

to the hydrolysis of some metal ions, for instance Cr3+ and Fe3+
. 

Finally, we adjusted the pH to the expected value of 7.5. The 

solution was shaken at 180 rpm for 12 h in the dark until it 

reached an equilibrium at  temperature(25 ± 2ºC). Before metal 

concentration analysis, free metal ions were separated by 

ultracentrifugation at 14,000×g (12,210 rpm) for 60 min, and 

metal concentration was measured by inductively coupled 

plasma atomic emission spectrometry (ICP-AES, SPECTRO 

ARCOS EOP). The quantity of adsorbed metal ions in the 

liposome vesicle can be expressed as 

𝑄𝑒 =
𝐶𝑖 − 𝐶𝑒

𝑆
 

(1) 

 

Where, Qe, Ci, Ce and S are the adsorbed metal ions (mg/g), the 

initial concentration (mg/L), the equilibrium concentration of 

metal ions (mg/L) and the liposome mass (mg), respectively. 

Model development 

 Freundlich isotherm are readily available and easily adopted 

for correlating metal adsorption equilibria 23, 37. The Freundlich 

isotherm model is empirical equation, as follow: 

𝑄𝑒 = 𝐾𝐹𝐶𝑒
1 𝑛⁄

 (2) 

Where KF and n are Freundlich constants, and KF is the 

Freundlich isotherm constant related to adsorption capacity. The 

Freundlich equation is an isotherm model indicating the 

adsorbent surface to be heterogeneous 43. 

 The Freunlich adsorption constants (KF) were regarded as 

independent variables and were and correlated with various ionic 

properties. Eighteen metal ion variables (in Table 1) were 

selected for analysis 30, 36, 37, 44. Polarisation force parameters and 

other similar polarisation force parameters were calculated 

according their respective definition. 

Table 1 Physical and chemical properties of metal ions 

 Property Symbol 

Atomic number AN 

Ionic radius r 

Electrochemical potential ∆E0 

Electronegativity Xm 

Log of the first hydrolysis 

constants 

|logK𝑂𝐻| 

Covalent index X2
mr 
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Ion charge Z 

Atomic weight AW 

Softness index σp 

Atomic radius AR 

Ionization potential ∆IP 

Polarization force 

parameters 

Z2/r, Z/r, Z/r2 

Similar polarization force 

parameters 

Z/AR,  Z/AR2 

Electron density AR/AW 

Atomic ionization potential AN/∆IP 

 

 We performed multivariate data analyses (MVAs) using 

ORIGIN 8.0 (Origin Lab), MINITAB 15 (Minitab Inc.) and 

SIMCA software (Simca-P+ Version 11.5, DEMO, Umetri AB). 

No data need to be normalised or scaled to unit variance before 

MVA. We implemented the PLS procedure based on the default 

options, including a significant level limit of 0.05, seven cross-

validation rounds and a 95% confidence level for each of the 

parameters. In PCA regression and PLS, the original set of 

correlated variables was transformed to a set of orthogonal 

variables, known as “principal components” and “latent 

variables” respectively. 

 The large number of physical and chemical metal properties 

measured required that important information be extracted from 

intercorrelated data tables. We employed PCA to classify 18 

physical and chemical properties and to reduce of the number of 

variables. The central principle of PCA is to reduce the 

dimensionality of a data set consisting of a large number of 

interrelated variables, while retaining as much as possible the 

variable present in the data set. This goal is achieved by 

transforming the whole data set into a new set of variable (PCs). 

PCs are uncorrelated, so that the first few retain most of the 

variation presented in all of the original variables.45 To explore 

the relationship between principal components and dependences, 

PCA and multi-linear regression can be combined, this method 

is known as PCA regression. Not all PCs contribute significantly 

to the final regression equation.  

 In PLS analysis, a model including all physical and chemical 

properties of metal ions is firstly calculated, and any variable 

with a variable importance in the projection (VIP) value < 0.5 is 

eliminated, resulting in a new PLS regression model. In a PLS 

model, the VIP is a parameter that shows the relative importance 

of a variable. This procedure is repeated until only the variables 

with a VIP > 0.5 remained in the model 38.  

Result and discussion 

Particle size 

 The volume average diameter of liposome vesicles was 

around 10μm (Fig. 1), which is in line with both the area average 

diameter and average number diameter. Strictly controlling the 

preparation process ensured the range of diameter among 

liposome vesicles batches remained constant.  

 

 

Adsorption isotherms 

 Metal adsorption equilibrium data fit the Freundlich isotherm 

model relatively well. Eight metal ions (all except Zn2+ and Cr3+) 

were highly correlated (R2>0.9) with the Freundlich isotherm. 

Metal ion adsorption data and Freundlich model fitting data are 

shown in Fig. 2. The Freundlich constants  were shown in Table 

2, KF stands for the adsorption capacity and n is a measure of 

adsorption intensity, which varies with the heterogeneity of the 

material being examined43. Cr3+ had the highest KF value but a 

relatively lower n value. Cd2+ and Cr3+ displayed concave-

upward isotherms (n < 1) and are classified as solvent affinity 

isotherms, indicating that their marginal sorption energy will 

increase with increasing surface concentration46, while the other 

eight metals have isotherm with convex tendency (n>1). Hg2+ 

had the highest n value, indicating that it has a higher affinity to 

liposome vesicle functional groups than other ions. Fe3+, Co2+ 

and Ni2+ all had similar n values, indicating that their respective 

adsorption intensities on liposomes are similar. However, high 

affinity is not analogous to having a high KF value (high 

adsorption capacity). KF is governed by properties such as the 

size distribution of metal ions and adsorbents, the specific 

surface area and the surface functional groups of adsorbents 46.  

Table 2 Parameters of Freundlich isotherm 

Metals Freundlich isotherm constants 

KF n R2 

Ni2+ 2.40 1.53 0.99 

Ba2+ 2.07 1.20 0.99 

Sr2+ 2.00 1.40 0.98 

Ag+ 1.27 1.04 0.99 

Hg2+ 2.30 2.12 0.99 

Co2+ 4.24 1.77 0.98 

Fe3+ 7.36 1.64 0.99 

Cd2+ 3.07 0.45 0.98 

Zn2+ 1.10 1.40 0.80 

Cr3+ 9.08 0.66 0.84 

Fig. 1 The particle size distribution of liposome vesicles. Black dot line is a 

frequency distribution (% channel) and red line is a cumulative distribution (% 

passing). 
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 Liposome binding sites are thought to be oppositely charged 

phosphodiester trimethyammonium groups, which are located at 

the surface of liposome vesicles47. It was found that the 

electrostatic interaction determined portioning of the ionized 

species in membrane system 48, 49. That is the reason why metal 

particles could be adsorbed strongly by the negatively charged 

liposome vesicles. Most metal ions partially complex with 

HPO4
2+ in the buffer solution. While Fe, Hg and Cr tend to 

combine with OH- and Ag remains free ion (for the species 

distribution of metals, see supporting information Table S1.). All 

the metal ions can be dissolved in aqueous solution in our 

concentration range.  Mercury is characterised as a “soft” Lewis 

acid due to its high polarisability. It tends to form strong covalent 

bonds with soft Lewis bases, such as the liposomes in our study 
40. Ni2+ and Co2+ both have large covalent index (Xm

2r) and 

polarisation parameters (Z2/r) and display a strong tendency to 

bind with liposomes, leading to higher n values. The borderline 

metal Fe3+ has a low Xm
2r value and a higher Z2/r value, resulting 

in higher adsorption intensity. Ba2+ and Sr2+, two typical hard 

Lewis acids, tend to bind weakly with liposomes via electrostatic 

attraction. Silver is another soft Lewis acid but has an extremely 

low Z2/r value; hence the n value of Ag+ was just above 1. The 

tendency of Zn2+ to form covalent bonds is a low. Furthermore, 

a neutral aqueous solution will result in a decrease in Cr3+ 

concentration; however, other species, such as Cr(OH)2
+, saw 

increased because of their low |logK𝑂𝐻| values, and were also 

attracted to negatively charged functional liposomes 50. The n 

value of Cd2+ is difficult to explain, but it may be due to Cd2+ 

interacting with liposomes via a different mechanism altogether. 

Further studies are required to address this issue. Besides, we 

have also proceed the Pb adsorption investigation but did not get 

detectable free Pb ions because of its great lipophilicity 51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multivariate data analysis 

PCA regression on eighteen physical and chemical properties 

 Only KF was considered when correlating ionic property 

parameters. PCA allowed us to summarise the initial data (i.e. 

physical and chemical properties of metal ions) into a form more 

easily overviewed and used42, 45, 52.  

 PCs represent variation in the original data. PCA extracted 

nine PCs (with eigenvalues of 10.752, 4.31, 2.14, 0.26, 0.15, 0.10, 

0.03, 0.03 and 0.01). Only three components had an eigenvalue 

larger than 1, and together, the first three components accounted 

for 96.8% of the inertia. Variable loading in the first three PCs 

shown in Fig. 3; the 18 physical and chemical properties are 

displayed in three groups. 

 
 

 

 

 

 Six variables, including ∆IP, Z2/r, Z/r2, Z/r, Z/AR and Z/AR2, 

had strong positive loadings in the first component. ∆IP is the 

energy change in the ionisation process. Z2/r was used as an 

index of both the ability of cations to form ionic bonds and the 

stability of the metal–ligand complex in aqueous solution. Z/r is 

an index of the tendency to form ionic bonds. Z/r2, Z/AR and 

Z/AR2 are all polarisation force parameters and are related to 

ionic bond stability during metal–ligand electrostatic interactions 
36, 44, 53. The ratio of atomic number to ionisation potential 

AN/∆IP and the Pauling ionic radius  r contributed negatively to 

the first component. Hence, PC1 contains mostly information 

about ionic interaction, such as the tendency of forming ionic 

bonds and the strength of those bonds. 

 Parameters like E0, AR, AR/AW and softness index, σp, 

dominated the second component and correlated negatively, 

while Xm and Xm
2r correlated positively. E0 is the absolute 

difference between the ion and its first stable reduced state. It 

reflects the ability of the ion to change its electronic state 44 and  

qualities, affecting interactions with ligands in aqueous solutions 
36. AR/AW is a measure of an ion’s electron density. σp separates 

metal ions into three groups according to their softness and 

quantifies electron devotion ability. This index also reflects ionic 

interactions and the energy of an ion interacting electrostatically 

Fig.2 Experimental adsorption for ten metal ions (data points), and 

corresponding fitted isotherm (line) (PBS buffer solution, 0.01M; pH, 7.5; 

adsorption time, 12h; temperature, 25±2℃; shaken rate, 180 rpm ). 

 

Fig.3 Loading of variables in first three principal components 
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with a ligand. Electronegativity (Xm) reflects an ion’s ability to 

attract electrons, while Xm
2r reflects the tendency to interact 

covalently with ligands, as opposed to ionically 30, 36, 44, 54. 

Therefore, PC2 represented conditions surrounding the metal 

ions’ electrons. A greater likelihood of forming covalent bonds 

and a higher affinity for electrons will result in increased PC2. 

Moreover, PC2 would decrease with increasing electron density 

and electron devotion ability. 

 PC3 reflected various properties related to atomic size, and 

was significantly affected by atomic weight, atomic number and 

the ratio between the atomic radius and atomic weight. Larger, 

heavier atoms and those with greater charge should yield higher 

PC3 values. 

Table 3 The linear regression analysis of relationship between Freundlich 

constant KF and three principal components 

 Const

ant 

PC1 PC2 PC3 R2  R2
adj 

Model l 3.49 0.66   0.65 0.61 

Model 2 3.49 0.66 -0.19  0.68 0.59 

Model 3 3.49 0.66 -0.19 0.64 0.80 0.70 

 Stepwise regression retained only PC1 in the final regression 

model. When PC2 was added (model 2), the correlation 

coefficient (R2) increased slightly, while R2
adj declined (0.65–

0.68 and 0.61–0.59, respectively). Thus, it is perhaps not 

surprising that PC1 was the most important component, as other 

studies 18 have proposed that the interaction of metal ions and 

liposomes involves electrostatic forcing. PC3 had a slightly 

positive effect on the adsorption quantitative model. In other 

words, the adsorption interaction of metal ions and liposomes is 

simpler when the metal ions are larger and heavier (Table 3). 

 

PLS on adsorption isotherm constans  

  

 In PLS, we applied leave-one-out cross-validation (LOOCV) 

in optimising the number of components and chose the model 

giving the lowest PRESS as the optimal predicting model. We 

also calculated the cross-validated correlation coefficient, Q2, 

defined as 1.0-PRESS/SS 45, 50, and performed CV-ANOVA to 

assess the statistical significance of PLS after developing each 

model. In general, models with Q2
cum > 0.5 are most acceptable.  

  

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )2

𝑦

 

 

(1) 

𝑄𝑐𝑢𝑚
2 = 1 −

∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
2

𝑛

∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑛)
2

𝑛

 (2) 

 Based on the adsorption constant and 18 physical and 

chemical properties of metal ions, the PLS model with eight 

significant properties was obtained and presented as blow.  

    

𝐾𝐹 = −8.7 + 4.9𝑟 + 4.4 × 10−1∆𝐼𝑃 + 3.2 ×

10−1 𝑍2

𝑟
+ 3.3 × 10−2𝑍 − 5.0 × 10−2 𝑍

𝑟2 − 2.6 ×

10−2 𝑍

𝑟
+ 5.5 × 10−1 𝑍

𝐴𝑅
+ 6.3 × 10−1 𝑍

𝐴𝑅2           

(3) 

 

 The quantitative model consisted of three latent variables 

(with eigenvalues of 7.31, 0.45 and 0.16, respectively) with the 

following model performance statistics: R2
X(cum) = 0.99; R2

Y(cum) 

= 0.91; Q2
(cum) = 0.76. The Q2

(cum) values (all >0.5) indicate good 

robustness and predictive ability. The CV-ANOVA results 

suggest that this model is highly significant, with a p-value of 

0.001. As shown in Table 4, the VIP values of the polarisation 

force parameters, the ionisation potential and the ion charge were 

near or greater than 1, and were all important variables in the 

predictive model. Ionic radius was retained in the PLS model as 

well, illustrating its significant role in predicting the adsorption 

interaction of metal ions. Other parameters, similar polarisation 

force parameters or other forms of polarisation force are all 

supplements to Z2/r.  

Table 4 The VIPs in the PLS model 

Variables VIP 

Z2/r 1.11 

∆IP 1.01 

Z 1.03 

r 0.97 

Z/r 0.98 

Z/AR 0.96 

Z/r2 0.97 

Z/AR2 0.94 

  

 Based on the PLS model, we calculated the KF values of test 

metal ions and plotted the predicted KF values against the 

observed KF (Fig. 4). Ten observed metal ion KF values and 10 

KF values predicted by the PLS adsorption model were all near 

the 1:1 line within the 95% confidence intervals. Thus, the 

predicted values from the PLS model fit the experimental data 

well. Furthermore, the high correlation coefficients (R2 = 0.91, p 

< 4.6 E–6) between predicted and observed values confirmed the 

predictive model’s accuracy. 

 

 
 

 PLS is the regression extension of PCA. Using PLS allowed 

the data set to be efficiently modelled, and KF, which is related 

Fig. 4 Plot of the observed vs. predicted KF values of ten metal ions 
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to the metal ionic adsorption capacity of liposome vesicles, to be 

predicted by metal ionic characteristics. Eight variables 

contributed to the adsorption model. Variables like Z2/r, Z and 

∆IP not only correlated positively with KF but also played an 

important role in the predictive model (VIP > 1). Metal ions with 

high polarisation force parameters should promote adsorption 

behaviour, which is consistent with the PCA regression model 

result. Stronger ionic binding strength and a greater tendency to 

form ionic bonds would also enhance the adsorption of metal 

ions on liposomes. As a measure of the electron affinity, ∆IP 

correlated positively with the predictive equation, indicating that 

the electrophilic metal ions will facilitate adsorption. Because of 

the importance of  electrostatic interactions between liposomes 

and metal ions 48, 49, Z and r play a key role to describe the 

adsorption interaction.  To some extent, Z/r, Z2/r, Z/r2, Z/AR and 

Z/AR2 are just derived from this two parameters. 

 Unfortunately, the factors listed here were not sufficient to 

fully account for the adsorption process of toxic metals on 

liposome vesicles, most likely due to other contributing factors 

such as metal species and liposome composition. The predictive 

models enabled us to explain metal adsorption processes on 

liposome vesicles theoretically, and further studies are therefore 

required to provide experimental corroboration. 

Conclusions 

 In this paper, we used PCA regression and PLS analysis to 

develop a new quantitative model to predict the adsorption 

constant of metal ions on liposome vesicles by metal ionic 

properties. The adsorption equilibrium isotherms fit Freundlich 

isotherm models relatively well. Using this model, the 

Freundlich constant can be predicted accurately and 

conveniently. The model also allows us to estimate the  

possibility of liposome worked as metals detection material and 

encourages us to continue searching the liposome application 

potential. 
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