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Analytic work for electric double layer (EDL) is often pursued for an infinite channel. But in 

reality the channel must be finite in length. The note is aimed to address how the electrostatic 

EDL potential near the open edge of a channel is affected by the boundary conditions on the 

end walls and the location where we specify the reservoir condition. The analysis is performed 

under the Debye-Hückel approximation, which enables us to solve for the EDL potential by a 

semi-analytical approach. Two non-dimensional transition lengths are defined to characterize 

the effects near the open edge: the inner transition distances di and the outer transition distance 

do, in particular, we report their dependence on the non-dimensional electro-kinetic width K 

under various conditions. It is found that the inner di is of the order unity for small K, reaches 

its maximum for K near 1 or less, and decreases monotonically with increasing K. On the other 

hand, the outer do for small K could be the same order as the normalized distance from the 

open edge to the reservoir, and decreases monotonically with increasing K. These different 

transition behaviours on the two different sides of the channel edge are explained with the 

collaboration effects among the imposed boundary conditions. 

 

 

Introduction 

In the past years, we have seen that microfluidic devices are 

finding growing applications in modern technologies, such as 

microbiological sensors and micro-electro-mechanical systems1. One 

of the principles is to use the EDLs in a micron- or nano-scale 

channel to transport, mix or separate electrolytes by externally 

applying a steady or time-varying voltage. There have been 

extensive publications regarding theoretical analysis of novel 

devices; yet most of the analytical studies for electric double layers 

(EDLs) are pursued for infinite-length channels. Analytical solutions 

for EDLs under the Debye–Hückel approximation include circular 

cross section2, parallel plates3, and the rectangular cross section (in 

infinite series4-6). Keh et al.7 present the analytical solutions in 

closed forms obtained with the cylindrical cell model. For all other 

cross sections, semi-analytical methods with boundary collocations9 

or even fully numerical methods such as finite elements8 must be 

used. 

The interest of the present study is to pursue a semi-analytical 

study for investigating the electrostatic EDL potential at the edge of 

an open channel. The edge is where the channel is open to the 

external environment (reservoir), which necessarily modifies the 

EDL potential inside the channel. In addition, there are also 

boundary conditions on the end walls of the channel (cf. Fig 1), 

which the electrostatic potential must satisfy. Naturally, we inquire 

about (1) how deep into the channel (from the edge) is the EDL 

potential affected? and (2) how quickly (from the edge) does the 

electrostatic EDL potential modify itself to satisfy the reservoir 

condition? In other words, we investigate the transition of the EDL 

potential from deep inside the channel to the reservoir. We shall 

define two distances (normalized by one-half width of the channel) 

to characterize the transition: the inner transition distance (di) and 

the outer transition distance (do) (cf. Fig. 2). 

It is worthwhile to review some recent devices using EDL 

potentials for applications among many others. Lee et al.10 

present a new electro-kinetically driven active micro-mixer 

which uses localized capacitance effects to induce zeta potential 

variations along the silica-based micro-channels. Their 

numerical and experimental results demonstrate that the 

developed microfluidic device permits a high degree of control 

over the fluid flow and an efficient mixing effect. Mahabadi et 

al.11 present the fabrication of micro fluidic channels in PMMA 

by direct proton beam writing (PBW) and the experimental 

characterization of their electro-kinetic characteristics using the 

methods of current monitoring and particle image velocimetry 

(PIV). Kuo et al.12 focus on the development of a bubble-free 

ac electro-kinetic microfluidic driver via the asymmetrically 

capacitance-modulated (ACM) microelectrode arrays, which 

can enhance the desired tangential electric field to control the 

local fluid and drive the micro-objects. Plecis et al.13 propose a 

new approach for FlowField Effect Transistors (FFETs) by 

using polarizable interfaces indirect contact with the electrolyte. 

This is a method for precise control of electro-osmotic flow. 

And the concept will be interesting for the development of 

highly programmable microfluidic separation devices. Fine et 
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al.14 elucidates the potential of important new therapeutic 

paradigms, including metronomic delivery and chronotherapy. 

They present an actively controlled nano-fluidic membrane that 

exploits electrophoresis to control the magnitude, duration, and 

timing of drug release. These examples are all related to the use 

of electro-osmosis or electrophoresis which heavily replies on 

the EDL potentials. All the applications in practical micro-

fluidic devices necessarily use channels of finite lengths for 

which the effects of open edges need to be addressed. The 

effects are also important in the assessment of the access 

resistance of small pores15-16. 

 

 

The model problems 

To address the effects of an open channel (necessarily with 

end walls), as shown in Fig. 1a-b, we consider three boundary 

conditions to be specified in (15). Fig. 1a shows two-dimensional 

periodic channels between two large reservoirs. Normalize all 

lengths by the half channel width L. After normalization by the zeta 

potentialζ of the side walls, the EDL potential on the channel walls 

becomes 1, and the reference potential is set to be 0 on the reservoir 

walls. The period of the channels is 2bL (b>1) and the reservoir wall 

is cL from the channel. Fig. 1b shows the end region where the 

origin of the Cartesian coordinates is placed at the centre of the exit. 

We separate a period of the domain to two regions. Region 1 

( 0, | | 1x y−∞ < < ≤ ) is inside the channel; Region 2 

(0 , | |x c y b< < ≤ ) is between the exit and the reservoir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Schematic of the physical problem with the coordinates specified on the right panel: (a) An array of open channels 

considered is made periodic in the y-direction with 2L the channel width and 2bL the length of a period. The “reservoir” is at the 

distance cL from the open edges (or end walls). Note that the channels extend to infinity in the negative x-direction; (b) One period 

of a channel depicted in terms of the coordinates (x, y) (using L as the reference length) with the origin at the centre of the channel 

edge. Note that the region is divided to two sub-regions: R1 and R2. The side walls of the channel are given the same zeta potential 

value ζ , which is used to normalize the electrostatic EDL potential withφ (x≤0; y=±1)=1. As a remark for clarity, we  simply  

say  an  infinite  channel  if  the  channel  has  no  open  edge, namely, its side walls extend to infinity in both positive and negative 

x-directions (and thus c → ∞ ). Three cases of boundary conditions for the end walls are specified in (15). 

 

 

Basic equations 

Consider the problem of finding the EDL potential for a 

micro-channel. Let us start with Poisson’s equation for the 

electrostatic system, 

                                                                         (1) 

where is the electric potential,ε is the electric permittivity of 

the solution, and
eρ is the charge density. The charge density can be 

expressed by 

                                                                     (2) 

where e (positive) denotes the proton charge, z+ and z- are the 

valences of cations and anions, and n+ and n-
 
are the number 

concentrations of cations and anions, respectively. It is assumed 

that the concentrations of ions follow the Boltzmann distribution, 

                                            (3) 
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where p is a reference point,  is the Boltzmann constant, and T 

is the temperature.  

For simplicity, a symmetric electrolyte is assumed, and p is chosen 

to the reference where the fluid is electro neutral. It is convenient to 

set 
0

z z z+ −= − = , ( ) 0ψ ′ =p , and 
0( ) ( )n n n+ −= =p p , where 

0n  is 

the number concentration of the bulk electrolyte. The point p for 

the zero reference potential ( ) 0ψ ′ =p  need not be inside a channel, 

but must lie somewhere outside. It follows from Eqs. (1)-(3) that 

the electric potential ψ ′  obeys the Poisson–Boltzmann equation 

( ) 0
0 02 sinh

b

z e
z en

k T

ψ
ε ψ

 ′
′ ′ ′∇ ⋅ ∇ =  

 
                                            (4) 

In addition, we have ψ ζ′ =  at the wall (shear plane), where ζ  is 

the zeta potential, a measurable electrical information. In the case 

of low values of zeta potential, i.e., small 
0 / bz e k Tζ , we may 

linearize Eq. (4) and recast it into the non-dimensional form, 

2 2 .Kφ φ∇ =
                                                                              

(5) 

This is usually called the Debye–Hückel approximation. All the 

lengths are normalized by the characteristic channel dimension L, 

and we have normalized the electrostatic EDL potential by setting 

/φ ψ ζ′= . The parameter / DK L λ= with 2 2 1/2

0 0( / 2 )D bk T z e nλ =  

the Debye length is sometimes called the non-dimensional electro-

kinetic width
17-18

. Equations (1)-(5) can be found in a standard 

textbook in microfluidics; see, for example, in Chapter 7 of Ref. 

[19]. 

Apparently, K measures the relative thickness of the channel width 

(L) compared to the Debye length 
Dλ  of the electric double layer. 

Hence we have relatively a wide channel if K is large and a thin 

one if K is small. In particular, the EDLs next to the two side walls 

overlap with each other, say, for K< 2, and are well separated, say, 

for K> 4. It is quite typical that K lies in the range 1-104 in capillary 

electrophoresis applications. Consider, for example, a microfluidic 

channel with width L=10nm~10μm where the Debye is in the 

range 
Dλ =1~10nm. Smaller K can be produced by using smaller 

micro-channels or decreasing the concentration of the bulk 

electrolyte. In particular, we present results for 0.2<K<20 which 

covers a range from overlapped EDLs (K< 2) to well-separated 

EDLs (K> 4). 

The normalized Debye-Hückel equation in component form is 

2 0xx yy Kφ φ φ+ − =
                                                                       

(6) 

First of all, we consider the simple case of the channel between two 

infinite plates with ( , 1) 1xφ ± = . It is known that the solution to Eq. 

(6) is given by 

cosh( )

cosh( )

Ky

K
φ = ,                                                                               (7) 

and along the centreline (y=0), we have 

0

1

cosh( )K
φ =                                                            (8) 

Next refer to the problem concerned in this study, as sketched in 

Fig. 1a-b. We shall find the (partial) solutions, respectively, for 

Regions 1 and 2 (necessarily with undetermined coefficients), and 

then match them at the channel edge to completely determine the 

solution. 

For region 1 (R1), the complete general solution to Eq. (6) that 

satisfies ( , 1) 1xφ ± =  is given by 

1

1

cosh( )
cos( )

cosh( )
nx

n n

Ky
A y e

K

αφ α
∞

= +∑ %

                                         

(9) 

where 

2 21
,

2
n n

n Kα π α α = − = + 
 

%                                         (10) 

The first term of (9) which satisfies the boundary condition is also 

solution to Eq. (6) for the infinite channel. The second term of (9), 

the complete Fourier series solution to Eq. (6) which must be 

identically zero on the side walls, is included to account for the 

open edge effect. Note that each term in (9) is an even function of y 

for we have considered symmetric boundary conditions on the two 

side walls. 

For region 2 (R2), the complete general solution to Eq. (6) that 

satisfies the reservoir condition 0φ = at x=c and the reflective 

conditions 0),(/ =±∂∂ bxyφ is 

2 0

1

sinh[ ( )] cos( )sinh[ ( )]
n n

B K x c B y x cφ β β
∞

= − + −∑ %             (11) 

where 

2 2,n n n

n
K

b

π
β β β= = +%                                                      (12) 

The first term of (11) is the solution to Eq. (6) that satisfies the zero 

reservoir condition, thus leaving an undetermined coefficient B0. 

The second term of (11) is the complete Fourier series solution that 

satisfies the reflective conditions to account for periodic structure 

of the array of micro-channels in the y-direction. 

The unknown coefficients An of (9) and Bn of (11) are determined 

by the conditions at the junction x=0 of regions 1 and 2, where we 

require continuity 

b
k

Page 3 of 8 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

),0(),0( 21 yy φφ =  11 ≤≤− y                         (13) 

),0(),0( 21 y
x

y
x ∂

∂
=

∂
∂ φφ  11 ≤≤− y                         (14) 

On the end walls ( byx ≤<= 1,0 ), we consider three cases: 

2

2

2

Case 1:  0 (the same potential as in the reservoir);

Case 2: 1 (the same potential as on the side walls);

Case 3: 0 (namely,  the end walls are insulated).
x

φ

φ

φ


 =


=
 ∂ =

∂         

(15) 

 

Method of Collocation 

We truncate the series 
nA to N terms and 

nB to M terms. For even 

spacing of the collocation points, let M=Integer(bN),  

( 0.5)
, 1 , 0 1

( 0.5)
( 1) 1, 1 , 1

j j

i i

j
y j to N y

N

i
y b i to M N y b

M N

− = = ≤ <


− = − + = − < ≤
 −

                  

    
                     

(16) 

For Case 1, Eqs. (9), (11) subject to the conditions (13), (14) and 

(15) gives 

0

1

1

1

cos( ) sinh( )

cosh( )
      cos( )sinh( )

cosh( )

N

n j

n

M
j

n j

n

A y B Kc

Ky
B y c

K

α

β β

=

−

=

+

+ = −

∑

∑ %

,   j=1 to N       (17) 

0

1

1

1

cos( ) cosh( )

       cos( )cosh( )=0

N

n j

n

M

n j

n

A y B K Kc

B y c

α α

β β β

=

−

=

−

−

∑

∑

%

% %

,  j=1 to N                        (18) 

1

0

1

sinh( ) cos( )sinh( ) 0
M

n i

n

B Kc B y cβ β
−

=

+ =∑ % ,  i=1 to M-N              (19) 

There are M+N unknowns and M+N linear equations, which are 

inverted easily.  

For Case 2, Eq. (19) is replaced by
1

0

1

sinh( ) cos( )sinh( ) 1, 1
M

n i

n

B Kc B y c i to M Nβ β
−

=

− − = = −∑ %             (20) 

For Case 3, Eq. (19) is replaced by 

1

0

1

cosh( ) cos( )cosh( ) 0, 1
M

n i

n

B K Kc B y c i to M Nβ β β
−

=

+ = = −∑ % %    

    

(21) 

A typical convergence is shown in Table 1 where we examine the 

successive difference of the solutions with N=N1 and N2 over the 

entire computational domain R=R1∪	R2 

( ) ( )
1

22

1 2 2 1
R

1
( , ) , ,

R
e N N x y N x y N dxdyφ φ φ  = −   ∫  

where we recall M=Integer(bN) as the collocation is equal-spacing. 

In all the computations, it is sufficient to take N=250.  

 

Table 1. Typical convergence of the three different cases: the 

successive difference
1 2( , )e N Nφ are listed for b=2 (M=2N), c=1, 

K=1. 

(N1 , N2) (50,100) (100,150) (150,200) (200,250) 

Case 1 8.612e-06 2.107e-06 7.756e-08 3.228e-08 

Case 2 2.145e-06 1.142e-06 3.358e-07 6.914e-08 

Case 3 4.310e-05 2.154e-05 1.154e-05 5.958e-06 

 

Results and discussion 

For illustration, the two transition distances di (inner) and do 

(outer) are graphically displayed in Fig. 2a. Here we compare the 

potential 
c

φ  of the channel with an open edge to the potential 
0

φ
for the infinite channel (Eq. (8)) along the centreline (y=0). The 

inner transition distance di is measured from the channel edge 

toward the inside of the channel beyond which 
c

φ  is 95% close or 

more to 
0

φ . The outer transition distance do is measured from the 

open edge toward the reservoir beyond which 
c

φ is smaller than 

5% of
0

φ . Note that di is limited to 1.5 which is less than one 

channel width (=2 in the non-dimensional unit) for all the three 

cases with b=2, c=5, K=1, while do is about 3.5 compared to c=5 

where the reservoir condition is imposed. On the other hand, Fig. 

2b shows the effects of K for Case 1 with b=2, c=5 in which we see 

apparent increase in di and do with decreasing the non-dimensional 

electro-kinetic width K. Fig. 2 shows a typical dependence of the 

transition distances on K, yet the detailed dependence, especially in 

the range of small K, is more sophisticated and is the subject of the 

presentation below. 
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Fig 2. The centreline potential along the x-direction: (a) The curves from top denote, respectively, Case 2, Case 3, Case 1 with b=2, c=5, K=1. 

The top horizontal line is the asymptote 
0 0.648φ = (=1/cosh(1)) for the infinite channel; (b) The curves from top denote, respectively, 

K=0.2, 1, 2 for Case 1 with b=2, c=5 with corresponding 
0

φ =0.9803 (K=0.2), 0.648 (K=1), 0.2658 (K=2). 
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di do 
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Fig 3.The transition distances versus K for various lateral periods b: (a) Case 1 (c=5); (b) Case 2 (c=5); (c) Case 3 (c=5); (d) Case 2 (c=10). 

The left panels show the inner transition distance di, while the right panels show the outer transition distance do. As an illustration, 

comparison between Case 2 (c=10) and Case 2 (c=5) shows that the reservoir distance c has small effects on the inner distance di, yet it has 

very significant influence on the outer distance do. 

 

 

Fig 4. Typical EDL potential lines for K=1: (a) Case 1;(b) Case 2; (c) Case 3, illustrated for b=2, c=2. The difference between curves is 

0.1φ∆ = . In all the three cases, the inner EDL potential patterns are quite similar while the outer EDL potential patterns look much different. 

Case 1, with the end-wall φ =0, shows a pattern of bulge from the open edge toward the reservoir. Case 2, with the end-wall φ =1, shows 

more uniform convergence from the open edge toward the reservoir. Case 2, with insulated end walls, shows an intermediate EDL pattern 

between Case 1 and Case 2.   

 

 

 

(c) 

(d) 

(a) (b) (c) 
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Fig. 3a-d collects results of all the three cases for c=5 with various 

b, and results for Case 2 with c=10 for comparison. The general 

features include: (1) the inner transition distance di is varied 

drastically in a range of small K, but of the order unity, has a peak 

at about K=1, especially in Cases 2 and 3; then decreases with 

increase in K, and becomes about 0.35~0.4 at the large K=20, and 

(2) the outer transition distance do is inversely proportional to K, 

being about the order of c for small K, then decreases with increase 

in K and becomes about 0.45~0.5 at the large K=20. Moreover, the 

results show that do has little dependence on the lateral period b, 

increasing only slightly with increase in b. The period b has more 

significant effects on di, in particular in a range of small K (say, 

0.2~2) where the difference in di could be as large as 100% when b 

is varied between 1.01 and 3. In additional, we observe that the 

period b has opposite effects on the inner transition distances 

between Case 2 and Case1 & Case 3, in particular for small K; the 

former has a smaller di while the latter have a larger di with 

increasing b. 

 

It is also of interest to see the typical EDL potential 

patterns and their relations to the transition distances. Fig. 4a-c 

shows some typical EDL potential lines for K=1, illustrated 

for b=2, c=2. In all the three cases, the patterns of the 

electrostatic potential lines inside the channel are quite similar 

while their patterns outside the channel look different. Case 1, 

with the end-wall boundary condition 0,φ =  shows a pattern 

of bulging both inward and outward from the open edge of the 

channel. Case 2, with the end-wall boundary condition 1φ = , 

shows a pattern of bulging from the reservoir toward the 

inside of the channel. Case 3, with the insulated wall condition, 

shows an intermediate pattern between Case 1 and Case 2. In 

general, the higher degree the bulge is, the longer distance the 

EDL potential takes from its value of the infinite channel to 

the zero reservoir condition. Apparently (from the plots), these 

bulge behaviours are dependent upon K, and are sophisticated 

in the range of small K ~ 1, and the end-wall length (b-1) or 

simply the lateral period b has also important influence on the 

bulge depth. 

 

Let us give some physical insight into the interesting 

bulge behaviours. Generally speaking, the same boundary 

condition may “collaborate with each other.” The end-wall 

condition 
0

φ =0 (Case 1) will collaborate with the 0 reservoir 

potential to help penetration of the bulge toward the inside of 

the channel, while the end wall condition 
0

φ =1 (Case 2) will 

collaborate with the same side-wall potential to exclude the 

bulge from the inside of the channel. (i) When the channel is 

wider (K larger than, say, 6), 
0

φ =1/cosh(K) is approximately 

zero, thus the (smooth) transition (
c

φ ) takes a shorter distance 

(di plus do) from 
0

φ  to the reservoir value 0 (cf. fig 2(b)). (ii) 

When the channel is narrow (K smaller than, say, 1) when the 

two side walls are so close to each other, we have to 

distinguish between the three cases. Case 1 with end wall φ =0 

presents a larger bulge, and the inner transition distance di for 

b> 1.4 typically increases with decreasing K. But for shorter 

end walls (1<b<1.4), collaboration between the end walls and 

the reservoir is weaker, the inner transition distance di is 

reduced with decreasing K. On the other hand, for Case 2 with 

the end-wall boundary condition φ =1, the side walls and the 

end walls collaborate to effectively exclude the bulge 

behaviour, thus reducing the inner entrance distance with 

decreasing K (as the side walls are so close to each other). 

Case 3 with insulated end walls again shows intermediate 

behaviours. It is also noted that given the reservoir distance c, 

none of the collaboration effects have significant effects on 

the outer transition distance do for the entire range of K (> 0.2) 

under investigation; yet variation of b does have some effects 

in Case 1 for K smaller than 4 (cf. Fig. 2a). 

Concluding Remarks 

In practice, all EDL channels are finite in length and have 

open edges. As the channel width becomes small, the EDLs on the 

two side walls overlap, and thus the zero reference potential does 

not attain in the channel, but must lie somewhere outside it. In this 

study, we have addressed the important issue of open-edge effects 

for the electrostatic EDL potential by considering three different 

boundary conditions on the end walls: Cases 1, 2 and 3. 

The effects of the open edge on the EDL potentials are 

characterized by two non-dimensional transition distances. One is 

the inner di, beyond which the EDL potential deviates less than 5% 

from that for the infinite channel. The other is the outer do, beyond 

which the EDL potential becomes 95% close or more to the 

reference (zero) potential of the reservoir. The analysis, under the 

Debye-Hückel approximation, is pursued for all channel widths, 

namely, for arbitrary values of K (the non-dimensional electro-

kinetic width). Nevertheless, we focus our discussion for K 

between 0.2 and 20,which cover a range of great interest from 

overlapped EDLs (say, K< 2) to well-separated EDLs (say, K>4). 

Two other parameters also play an important role in determining 

the transition distances: b, the normalized period between parallel 

channels, and c, the normalized distance between the open edge 

and the reservoir. 

It is found that (1) the inner transition distance di is varied 

drastically but of the order unity for small K with peaks at about 

K=1, especially in Cases 2 and 3, then decreases with increase in K, 

and becomes about 0.35~0.4 at K=20; (2) the outer transition 

distance do is inversely proportional to K; it is of the order c for 

small K, then decreases with increase in K and becomes about 

0.45~0.5 at K=20. Moreover, the results show that do has little 

dependence on the period b, but does increase somewhat with 

increase in b for Case 1. The lateral period b has more significant 

effects on di, in particular for small K (say, 0.2~2) when b is varied 

between 1.01 and 3. These trends have been explained, with the 

help of bulge behaviours observed from the plots of EDL potential 

lines, by the collaboration effects between the end walls and the 

reservoir for Case 1, and by the collaboration effects between the 

end walls and the side walls for Case 2. Generally speaking, Case 3 

with insulated end walls shows intermediate behaviours. 

The present quantitative results provide useful references to 

the design of channels for practical applications in micro- and 

nano-fluidics, especially for those intended to be operated under 

transient and unsteady conditions. The latter conditions require 

quick equilibrium in the electrostatic (EDL) potential so that full 
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development assumed in the steady-state analysis can be applied 

with greater accuracy. 
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